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Average balance equations, scale dependence, and energy cascade for granular materials
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A new averaging method linking discrete to continuum variables of granular materials is developed and used
to derive average balance equations. Its novelty lies in the choice of the decomposition between mean values
and fluctuations of properties which takes into account the effect of gradients. Thanks to a local homogeneity
hypothesis, whose validity is discussed, simplified balance equations are obtained. This original approach solves
the problem of dependence of some variables on the size of the averaging domain obtained in previous approaches
which can lead to huge relative errors (several hundred percentages). It also clearly separates affine and nonaffine
fields in the balance equations. The resulting energy cascade picture is discussed, with a particular focus on
unidirectional steady and fully developed flows for which it appears that the contact terms are dissipated locally
unlike the kinetic terms which contribute to a nonlocal balance. Application of the method is demonstrated in
the determination of the macroscopic properties such as volume fraction, velocity, stress, and energy of a simple
shear flow, where the discrete results are generated by means of discrete particle simulation.
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I. INTRODUCTION

The behavior of granular materials under deformation and
flow is often studied by means of numerical methods that solve
the equations of motion for every single body and account for
the interactions between particles through appropriate models
(see, e.g., Refs. [1–3]). These methods, commonly grouped
under the name of discrete element methods (DEM) [4–6],
can be extremely useful for simulating discrete media with
the purpose of establishing micro-macro relations, and in this
perspective they need consistent averaging procedures [7–12].
An averaging method computes continuum-like variables (e.g.,
a velocity field) starting from their discrete, particle-scale
counterparts (e.g., particle velocities). When using such an
approach, two issues have to be considered with utmost
attention: the representativity of the average and the physical
meaning of the obtained estimates. We can say that an average
performed at a given point is representative if a sufficiently
large domain in space and time can be defined, where particles
share the same properties. Such a volume, usually called
“representative volume element,” may be defined with respect
to only some variables.

An important step in the development of averaging tech-
niques was made by Babic [7]. In that work the author
developed a general framework for weighted space-time
averages, applicable to a wide range of conditions, and giving
a large set of self-consistent continuum balance equations. In
Babic’s method, the definition of a representative volume is
intrinsically that of a zone where affine velocity fields are
locally uniform, i.e., no gradients occur. The assumption that
such a volume can be defined is called by Babic the “continuum
assumption.” Now, the lack of scale separation typical of
granular flows (the scale of spatial variation of variables has
the same order of magnitude of the particle size) implies that
in a three-dimensional (3D) flow we cannot in practice define
such a volume. As a consequence, the physical meaning of
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averages obtained using Babic’s approach in a 3D flow is
generally questionable. At least some average estimates will
then probably depend on the size of the averaging volume
[8,13].

We can see a simple example of this by considering a
uniform shear flow; if all particles follow the mean flow
with no frustration, we will tend to say that fluctuations are
negligible. But this depends on the definition of fluctuation.
If we calculate the fluctuational kinetic energy εT [which is
related to granular temperature [14]; see also Eq. (15)] by
considering fluctuations as Babic does, we find εT ∼ (γ̇ D)2,
where D is the averaging scale. Thus the fluctuations depend
on the averaging scale which casts doubt on such a method.
Also the kinetic contribution to the stress tensor will suffer
the same problem. Thus, as we will show below, such an
approach may lead to errors that can reach several hundred
percentages.

In this work we focus on this problem, with a particular
attention on the mechanical energy equation. We discuss both
the issue of dependence on the size of the averaging domain
and the energy cascade picture associated with the averaging
method.

It is clear that the dependence of some average variables on
the averaging domain size is intrinsic to Babic’s definition
of fluctuations. In the following we show how a different
fluctuation decomposition taking into account gradients yields
a new derivation of continuum balance equations. These
balance equations have the merit of clearly separating affine
and nonaffine fields and identifying the terms responsible for
averaging scale dependence. With this decomposition it is
possible to attribute a more sound physical meaning to the
terms appearing in the final balance equations. We show how
these balance equations may be greatly simplified by a “local
homogeneity assumption,” which is strongly related to the
fluctuation decomposition itself and which yields less strict
requirements than Babic’s “continuum assumption.” Applying
this method to a simple class of flows, we find that two separate
paths for fluctuating energy dissipation are implied: while
kinetic stress power enters a nonlocal balance, the contact
stress power seems to be dissipated locally. This result, as
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well as the robustness of the method, is verified with discrete
element simulations of a simple shear flow.

II. A NEW DERIVATION OF BALANCE EQUATIONS

A. Weighted average, fluctuation decomposition, and local
homogeneity assumption

Given a particle property ψp(xp,t ′), Babic defined the
averaged property ψ̄ at point x and time t as a weighted
space-time average:

ρψ̄ =
∫ ∞

−∞

∑
p

w(xp − x,t ′ − t)mpψpdt ′, (1)

where w(xp − x,t ′ − t) = wp is a normalized weighting func-
tion, ρ the average density, and mp the mass of a grain. The
fluctuation was simply defined by Babic with respect to the
center of the averaging volume:

ψ̃p = ψp − ψ̄(x). (2)

This may seem harmless, but in fact—as shown in
Ref. [8]—the dependence of some terms of the continuum
averaged equations on the size of the averaging domain is
strictly related to this choice for the fluctuation decomposition.

We propose to define the fluctuation not with respect to the
average value at point x (as was done in Ref. [7]), but with
respect to the particle center,

ψ̃p = ψp − ψ̄(xp). (3)

In the following we will redevelop continuum-averaged
equations in the spirit of Babic’s approach but using this new
fluctuation decomposition.

In order to simplify the result, we will make a constitutive
assumption. We suppose that a scale exists where the gradients
of ψ̄ are smooth and that if this scale is the averaging scale
intrinsic to the weighting function wp, we can approximate
∇ψ̄ as a constant near the averaging point. We call this
assumption the local homogeneity assumption. Together with
this assumption we also assume a homogeneous distribution of
particle centers near the averaging point and the decorrelation
of positions and velocities. These three assumptions are strictly
related.

While the absence of scale separation usually prevents
identification of a scale where gradients are zero, such a first-
order approximation is reasonable and—as we will see—very
fruitful.

The local homogeneity assumption, involving gradients
instead of variables, is less strict than Babic’s continuum
hypothesis and therefore more likely to be valid under a proper
choice of the weighting function. Based on this assumption,
we can therefore approximate ψ̄(xp) by

ψ̄(xp) = ψ̄(x) + (xp − x) · ∇ψ̄(x). (4)

Following Babic’s approach, it is possible to develop a
generic balance equation for the particle property ψ̄(xp).
Details are given in Appendix A; here we show the main
findings, with a particular regard to the continuity, momentum,
and translational energy equations. When performing the
derivation, many new terms appear (with respect to Babic’s

treatment), but most of them vanish due to the local homo-
geneity hypothesis.

B. Continuum balances

The local homogeneity hypothesis leaves the continuity
equation unchanged:

∂

∂t
ρ + ∇ · ρv̄ = 0, (5)

where average density and velocity are defined by:

ρ =
∫ ∞

−∞

∑
p

wpmpdt ′, (6)

ρv̄ =
∫ ∞

−∞

∑
p

wpmpvpdt ′. (7)

As for the momentum balance, we end up with the classical
equation:

∂

∂t
ρv̄ + ∇ · ρv̄v̄ = ∇ · T + ρg, (8)

where the total stress tensor is composed by three contribu-
tions: T = Tc + Tk + Tγ . The first two terms are the same as
in Babic. The first contribution is due to contact forces (both
long-lasting contacts and collisions) and is given by

Tc =
∫ ∞

−∞

∑
p

∑
q>p

wF
pq lpqfpqdt ′, (9)

where wF
pq is a weight function related to the fraction of the

branch vector joining the two particles p and q lying within
the averaging function. Due to the new decomposition, Babic’s
kinetic stress tensor is decomposed in a truly kinetic part,

Tk = −
∫ ∞

−∞

∑
p

wpmpṽpṽpdt ′, (10)

and a new term,

Tγ = −ρ(D · ∇v̄)(D · ∇v̄), (11)

which contains all the dependence on averaging domain size
through the vector D. It is useful to recall that the emergence
of a part of the stress tensor depending on velocity gradients
has nothing to do with constitutive relations but is the joint
product of coarse graining and scale dependence. Due to
their definition, both Tγ and Tk are symmetric. Evidently, in
absence of velocity gradients, T γ will vanish; in that case, the
kinetic stress tensor as defined by Babic will no longer depend
on the coarse-graining length. The components of D, related
to the characteristic size of the domain along each direction,
are defined by the following equation:

ρD2
i =

∫ ∞

−∞

∑
p

wpmp(xpi − xi)
2dt ′, (12)

where xi is the i-th coordinate of the averaging point.
If the local homogeneity hypothesis holds, Di can be

shown to scale with Dm,i , the size of the averaging domain
in the i direction (see Appendix B). The scaling will depend
also on the shape of the weighting function. Moreover, if the
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assumption of local homogeneity holds, Tγ contains all the
dependence on the coarse-graining width of the stress tensor
while the kinetic stress tensor Tk defined by means of the
present fluctuation decomposition appears to be independent
on averaging domain size.

The translational kinetic energy balance is only slightly
more complicated than the one obtained by Babic. Once
more, most of the new terms are negligible under the local
homogeneity assumption.

The total translational kinetic energy is found to be the
sum of three contributions, ρET + ρE

γ

T + ρεT , which are
respectively the translational kinetic energy of the mean
flow, the translational kinetic energy related to the velocity
gradients, and the truly fluctuational translational kinetic
energy. These three variables are defined as

ρET = ρ
1

2
v · v, (13)

ρE
γ

T = 1

2
ρ(D · ∇v̄) · (D · ∇v̄), (14)

ρεT = 1

2

∫ ∞

−∞

∑
p

wpmpṽp · ṽpdt ′. (15)

The translational kinetic energy balance equation is derived
as:

∂

∂t

(
ρET + ρE

γ

T + ρεT

) + ∇ · (ρET + ρE
γ

T + ρεT

)
v̄

= ∇ · (qk + qc)

+∇ · [(Tk + Tc + Tγ ) · v̄]

+ ρg · v − γ k − γ γ , (16)

where qk and qc are Babic’s energy fluxes (see Appendix
A). The last two terms correspond to the rate of conversion
of kinetic energy to other forms of energy (dissipation due to
friction, collisions, plasticity, but also to storage and restitution
of elastic energy). In the rigid limit they represent dissipation
through friction and inelastic collisions and are therefore
positive. The first one contains the contribution of fluctuations:

γ k = −
∫ ∞

−∞

∑
p

∑
q>p

fpq · (ṽp − ṽq)wS
pqdt ′, (17)

and the second one the rate of conversion of mechanical energy
due to affine deformations:

γ γ = −
∫ ∞

−∞

∑
p

∑
q>p

fpq · [(xp − xq) · ∇v̄]wS
pqdt ′, (18)

where wS
pq is the mean of wp and wq . Both terms are

independent of the size of the averaging domain. We can
see here again the benefit of our approach: On one hand
the domain size-dependent terms are clearly identified in the
equation (ρE

γ

T and Tγ ); on the other hand, the contribution of
affine deformations is separated from the contribution of the
fluctuations.

In fact, by superficially interpreting Babic’s approach, one
could conclude that all the energy is dissipated by means of
fluctuations. This is incorrect, since affine deformations do also
dissipate energy; the reason for this misunderstanding is that

affine deformations are considered as fluctuations in Babic’s
method.

We can remove the mean flow kinetic energy terms by
manipulating the momentum equation in a classical way (for
example, see Ref. [15]). The result is an equation expressing
the balance for the fluctuating energy related to fluctuations
and to affine deformations:

∂

∂t

(
ρE

γ

T + ρεT

) + ∇ · (
ρE

γ

T + ρεT

)
v̄

= (Tc + Tγ + Tk)† : ∇v̄ + ∇ · (qk + qc) − γ k − γ γ ,

(19)

where † stands for transposition. Let us do some more
manipulation. By looking at the term accounting for the rate of
conversion of mechanical energy due to affine deformations,
manipulation of Eq. (18), making use of lpq = xq − xp, allows
us to rewrite γ γ in the following form:

γ γ = Tc∗† : ∇v̄, (20)

where

Tc∗ =
∫ ∞

−∞

∑
p

∑
q>p

wS
pq lpqfpqdt ′ (21)

is a new contact stress tensor, differing from the Tc by the
weight used. Indeed, as mentioned above, wS

pq is the simple
mean of wp and wq , whereas wF

pq is related to the fraction of
the branch vector lpq lying within the averaging region.

III. ONE DIRECTIONAL, STEADY, FULLY
DEVELOPED FLOW

In this section we will apply our method to a simplified flow
situation in order to gather some information on the effect of
the new terms on force balance and on energy cascade.

Let us consider a one-directional, steady, fully developed
flow [defined by v = (vx,0,0), ∂x = 0, ∂t = 0]. In such a case,
the continuity equation is identically zero. The momentum
equation becomes

∇ · (Tc + Tγ + Tk) + ρg = 0 (22)

and the fluctuating energy equation

(Tc + Tγ + Tk)† : ∇v̄ + ∇ · (qk + qc) − γ k − γ γ = 0. (23)

According to the definition of Tγ , it is easy to see that its only
nonzero component is

Tγ
xx = −ρ(Dy∂yvx + Dz∂zvx)2, (24)

and it is therefore straightforward to see that

(Tγ )† : ∇v̄ = 0, (25)

that is, the contribution of affine deformations to the stress
tensor does not perform any work. Moreover, it is obvious that
Tγ directly affects only the x component of the force balance.
Given that the flow is fully developed, we can safely remove
it out from the balances, obtaining:

∇ · (Tc + Tk) + ρg = 0, (26)

(Tc + Tk)† : ∇v̄ + ∇ · (qk + qc) − γ k − γ γ = 0. (27)
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According to Eq. (20):

(Tc)† : ∇v̄ − γ γ = (Tc − Tc∗) : ∇v̄. (28)

It is clear that Tc and Tc∗ are not in principle the same,
particularly when the averaging domain is smaller than a
particle diameter. However, if the averaging domain spans
more than one particle diameter, we can assume that Tc ≈ Tc∗.
Equation (27) becomes therefore:

Tk : ∇v̄ + ∇ · (qk + qc) − γ k= 0. (29)

This means that the work provided by the contact part of the
stress tensor is converted locally by affine deformations, while
only the kinetic part of the stress tensor enters into a nonlocal
energy balance. This result has important consequences, since
it shows that separate paths may exist for the dissipation of the
work of kinetic and contact stresses. However, it does not cast
doubt on the validity of hydrodynamic theories [16–19] since
our results do not deal with constitutive relations but suggest
that a revision of the balances used for such theories could
lead to a simplified description in some cases. Concerning
the size of the averaging domain, it may seem strange to talk
about domains smaller than a particle diameter, because it
may seem obvious that such domains are inappropriate: Few
particles are indeed contained in a snapshot of such a domain.
However, we are always dealing with space-time averages, so
even if the averaging domain is small, in many cases (e.g.,
slowly evolving or steady-state processes) the domain indeed
contains a lot of particles since many of them traveled through
it during their history without affecting local homogeneity.
In other cases, periodic boundary conditions may help too,
allowing use of small domains along some directions. That is
one of the reasons why in the next section we will employ the
averaging method to some DEM simulation results pertaining
to this class of simplified flows.

IV. DEM SIMULATIONS

A. Method and parameters

We use our own 2D implementation [2,20] of the classical
discrete element method where Newton’s equations of motion
for a system of N “soft” disks are integrated. Such a technique,
which is able to reproduce successfully the experimental
results in many configurations (e.g., gravity-driven flows
[1,2,21,22], sheared systems [3,23], granular materials close to
jamming [24], silos [25], and rotating drums [26,27]), requires
giving an explicit expression for the interparticle forces. The
discrete element method is classical and well known and can
found in the aforementioned references. Therefore, we just
present here the forces used in this work.

For the normal force between two overlapping disks we
use a standard linear spring-dashpot interaction model [6],
Fn = knδn − γnvn, where δn is the normal overlap, kn is
the spring constant, γn the damping coefficient, and vn the
normal relative velocity. The damping models the dissipation
characteristic of granular materials. Likewise, the tangential
force is modeled as a linear elastic and linear dissipative
force in the tangential direction Ft = ktδt − γtvt , where kt

is the tangential spring constant, δt the tangential overlap, γt

the tangential damping, and vt the tangential velocity at the
contact point. The magnitude of δt is truncated as necessary

FIG. 1. Snapshot of the simulated system. A 2D granular material
is sheared between two bumpy walls. The lower wall is fixed, the
upper one moves horizontally at a constant velocity Vtop = 100 and
is submitted to a constant vertical stress P = 1.

to satisfy the Coulomb law, |Ft | � μ |Fn|, where μ is the
grain-grain friction coefficient. The simulated system is two
dimensional (Fig. 1). The granular material is a dense assembly
of N dissipative disks of average diameter d and average mass
m. A small polydispersity of ±20% is considered to prevent
crystallization.

The granular material is submitted to a plane shear, without
gravity, leading to a uniform stress distribution. The material
is sheared between two parallel rough walls, separated by
a distance H . One of the walls is fixed, while the other
moves at the prescribed velocity V . The flow and transverse
directions are respectively called x and y. Periodic boundary
conditions are applied along the flow direction, and the length
of the simulation box, Lx , is set to 60 grain sizes. The
wall roughness is made of disks sharing the characteristics
of the flowing grains (same polydispersity and mechanical
properties, no rotation). Their centers are equally spaced by
a distance equal to the largest disk diameter 1.2d. Along the
y axis, the position y = 0 corresponds to the center of the
glued grains on the fixed wall. The normal stress applied
on the moving wall, P0, is controlled. The vertical position
of the moving wall is thus not fixed and, using the method
described in Ref. [28], the height of the system H obeys Ḣ =
(P0 − Pw)Lx/gp, where gp is a viscous damping parameter
and Pw is the normal stress exerted by the grains on the
moving wall.

The following values of the parameters are used: kn/P0 =
105, kt = 2kn/7,γt = 0, and μ = 0.5 and gp = 100

√
kn m.
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(a) (b)

FIG. 2. (Color online) (a) x velocity and (b) solid fraction profiles along the y direction (Vtop = 100). The system appears to be in a simple
shear condition (linear velocity profile, constant solid fraction) in the center of the cell. The size of the averaging window is 2d .

The value of γn is adjusted to obtain a normal restitution
coefficient en = 0.5 [5]. The equations of motion for the
translational and rotational degrees of freedom are integrated
with a velocity-Verlet scheme with a time step 10−4√m/P0.
The number of grains, N , is adjusted so the size of the system
in the y direction, H , is roughly equal to 80d. The initial state
of the system is a randomly diluted hexagonal lattice with
disorder both on grain positions and velocities. The attainment
of a steady state is verified by observing time-invariant total
kinetic energy and distance between the two walls.

B. Averaging procedure

For the simulation set up described above, we implemented
an averaging procedure following the method developed in the
earlier sections of the paper.

Several snapshots of the state of the system (positions,
velocities, contact forces) at given times were captured. For
each time a space average was performed; given that the
system was periodic, averages were computed at different y

values. A Heaviside step function was chosen as the weighting
function. The only parameter of the weighting function was
therefore the averaging window size. Some authors suggested
[9,10] smoother weighting functions. Here we preferred a step
function for its simplicity and to avoid smoothing the profiles
too much. Given that the system was simple and periodic, we
felt that a nonsmooth function was the best choice, so as not
to lose information about layering, localization, and so on.

Given that the simulations displayed a stationary state,
the time average was performed as a simple mean over
the results obtained for each snapshot. Standard errors
of the time averages were estimated by the blocking method
[29] in order to take into account time correlation of the
data.

Note that, in order to calculate the full set of variables, two
steps were necessary: a first step to calculate average values of
solid fraction, velocity, and contact stresses and a second step
to calculate terms containing velocity fluctuations. Two steps
are needed since velocity fluctuations are defined with respect
to the mean field.

(a) (b)

FIG. 3. (Color online) (a) Fluctuating energy calculated by the present approach along the y direction (Vtop = 100). The size of the averaging
window is 2d . (b) Relative difference (in percentage) between the fluctuating energy profiles obtained in several ways [Babic’s (solid lines) or
the present method (dashed lines), where the color represents the size of the averaging window] and that obtained with the present method and
with an averaging window of 1d .
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C. Results

In the following we will apply the method to a simulation
with a velocity of the top wall Vtop = 100d

√
P/m; as stated

above, the flow is at constant pressure, so the vertical position
of the top wall evolved freely to a stationary value, ytop ≈
83.9d. It is convenient to characterize such a shear using the
so-called inertial number I that compares the typical time scale
of microscopic rearrangements with the typical time scale
of macroscopic deformations: I = γ̇ d/

√
P/ρS. Note that I

corresponds to the square root of the Savage number [14] and is
also called the Coulomb number [30]. Our system corresponds
to a rapid flow with a global value of the inertial number
corresponding to I > 1; such a flow regime was chosen
because kinetic and contact stresses have the same order of
magnitude, allowing us to test the results of the previous
sections. A snapshot of the system at steady state is given
in Fig. 1. All profiles shown in the following are calculated
using an averaging window of 2d unless otherwise stated.

Figure 2(a) shows the velocity profile at steady state. As
highlighted in the figure, the profile is clearly linear except
from two zones (∼10d wide) near the bumpy walls, where the
shear rate increases approaching the boundary.

The solid fraction profile [Fig. 2(b)] displays a central zone
with a constant value, and a decreasing behavior approaching
the walls. The state of the system, characterized by a lower
compaction near the walls, can be appreciated also from Fig. 1.
In fact, all the variables suggest that the system is in a simple
shear condition (uniform shear, stresses, no energy flux) in
the center and deviates from this state only in two narrow
bands (∼10d wide) near the bumpy walls. Another feature
of the system that can be appreciated in Fig. 2(b) is a slight
asymmetry of the profiles near the walls. As it could be seen
also in Fig. 1, in the shear zone near the upper wall the material
is denser and less agitated than in the shear zone near the
bottom wall. This slight difference is related to the asymmetry
of boundary conditions: while the bottom wall is fixed, the
upper one is free to move vertically in order to impose a
constant normal stress. This yields slightly asymmetric profiles
for all the variables.

Figure 3(a) displays the fluctuating energy profile calcu-
lated with the new procedure developed in this work for an
averaging window of 2d. To compare the two approaches
(the present one and Babic’s one) we report in Fig. 3(b) the
quantity k − 1, where k is the ratio of the fluctuating energy
profile calculated using one of the methods with different
averaging sizes to a reference profile obtained with the present
method and an averaging size equal to D = 1d. It clearly
shows that the Babic’s method leads to an estimate of the
fluctuating energy which increases with the domain size. On
the contrary, the present method leads to an estimate which
does not depend on the size of the averaging window. However,
if the latter size is too large it influences the averages close to
the walls due to the inhomogeneity of the shear in such an
averaging window. To illustrate this point, we have reported in
Fig. 3(b) results obtained with D = 5d. Note also that, using
the present method, the fluctuating energy profiles for D = 1d

and D = 2d are almost equal for any position y.
Figure 4(a) displays the profiles of the components of the

contact part of the stress tensor (here mainly due to collisions,

(a)

(b)

(c)

FIG. 4. (Color online) Components of the stress tensor [contact
part (a), kinetic part (b), and total tensor (c)] along the y direction.
The upper wall velocity is Vtop = 100 and the size of the averaging
window is 2d .

since the flow is quite rapid). Again, a plateau is found at
the center; when approaching the walls all the components
decrease in absolute value.

At the same time [Fig. 4(b)], the components of the kinetic
part of the stress tensor increase when approaching the walls.
This is a well-known direct consequence of the decreasing of
solid fraction. In our simulation, near the walls, kinetic stresses
are larger than collisional ones.

The sum of the two parts gives the total stress tensor, shown
in Fig. 4(c). As predicted by the stress balance, the (xy) and
(yy) components of the total stress tensor are uniform along
y. Concerning the third part of the stress tensor, Tγ , it is clear
that according to Eq. (24) its only nonzero component is the

032202-6



AVERAGE BALANCE EQUATIONS, SCALE DEPENDENCE, . . . PHYSICAL REVIEW E 91, 032202 (2015)

(a) (b)

FIG. 5. (Color online) Kinetic (a) and contact (b) fluxes of fluctuating energy along the y direction (Vtop = 100). The size of the averaging
window is 2d .

(xx) one. For the reference simulation it was verified that,
apart for a small difference in a thin zone (∼2d) close to the
walls (where slight deviations from local homogeneity appear
due to the shape of the wall), Dy ≈ Dm,y/

√
12, confirming the

scaling given above.
Figure 5 collects contact and kinetic flux profiles. All

the components of these fluxes differ from zero only when
approaching the wall; as regards the y component of the fluxes,
fluxes are negative when the fluctuating energy decreases with
y and positive otherwise. This agrees with the sign convention
used for q in the derivation and supports a Fourier-like
expression for the flux dependence on fluctuating energy
gradient. On the other hand, the horizontal components of the
fluxes are not negligible near the walls. This contrasts with a
linear transport theory since there is no gradient of fluctuating
energy in the x direction.

Figure 6 displays the estimates of the stress power related to
contact and kinetic contributions and of the dissipative terms
related to affine and nonaffine motions. First, it can be seen
that far from the walls, the algebraic relations hold:

Tc† : ∇v̄ = γ γ , Tk† : ∇v̄ = γ k, (30)

therefore justifying the separate dissipation paths for kinetic
and contact stress powers. Then, near the walls, the energy
fluxes seem to influence only the kinetic part, therefore
supporting the result obtained in the previous section: only
kinetic terms enter in a nonlocal energy balance, while contact
stress power is dissipated locally.

V. DISCUSSION

In the previous sections we developed an averaging proce-
dure for granular materials which was based on a weighted
average plus an original fluctuation decomposition. Through
numerical simulation results we proved the strength of the
approach which gives consistent predictions for kinetic terms,
and—more importantly—gives a new picture of the energy
cascade in granular flows, at least for simple flows. In this
section we discuss the validity of such an approach. It is clear
that the assumption of local homogeneity holds only when the
solid fraction and the shear rate profiles do not display large
gradients with respect to the averaging domain size. For the
simulations presented above, two zones were identified near
the walls where such gradients exist. The independence of the
fluctuating energy profile on the size of the averaging window

(a) (b)

FIG. 6. (Color online) Stress power and dissipative terms: (a) contact stress tensor and (b) kinetic stress tensor, along the y direction
(Vtop = 100). The size of the averaging window is 2d .
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(a) (b)

FIG. 7. (Color online) Layering close to a bumpy wall: solid fraction computed using the present method with an averaging window of 1d ,
on lines and on slices (1d wide) for (a) Vtop = 100, and (b) Vtop = 10.

and the respect of the stress balance are two proofs that the
assumption is still acceptable.

Figure 7 allows us to discuss another important point: the
physical meaning of the variables obtained by the method,
with a particular regard to solid fraction. In the figure, the
solid fraction profile was computed by two other methods:
estimating the fraction of (1) a horizontal line and (2) of a
horizontal slice (1d wide) intersecting the particles. These two
methods have a clear geometrical meaning, the second being
a moving average of the first.

For the rapid flow simulation which was taken as the
reference [Fig. 7(a)], where no layering occurs, the three
methods agree very well. Figure 7(b) displays the results
of the three methods for a denser flow (Vtop = 10, ytop ≈
50,⇒ I ≈ 0.2). Please note that the quite ordered bumpy wall
was explicitly prepared to display layering. In this case the
estimates on lines strongly fluctuate near the wall, and the
average on slices is a smoother profile which still fluctuates,
while the estimate produced by the present averaging method
seems to be intermediate between the two. Far from the wall
results from the methods coincide. Therefore, in the presence
of layering, the solid fraction calculated by use of the present
method may not have the direct geometrical meaning that
its name implies. This problem may be reduced by choosing
a smoother weighting function (in this paper we chose on
purpose a very abrupt weighting function); we also suspect
that in three dimensions this rather pathological issue may be
less important.

Another issue caused by layering is that the strong spatial
fluctuation of variables may imply that some of the assump-
tions of the local homogeneity hypothesis do not hold: The
distribution of particles around the averaging point is not in
principle homogeneous. Fluctuations are evidently associated
with strong local gradients of solid fraction and shear rate.
Therefore, when strong layering occurs, care has to be taken in
applying the present method due to the approximations therein.

The inhomogeneous distribution of particles inside the
averaging domain yields also a deviation of the virtual center of
mass X from the center of the domain. This is not, in principle,
a problem, because the averaging procedure is related to a
volume and not to a point; average variables may be harmlessly
referred to the virtual center of mass instead of the simple
geometric center of the averaging domain. In other words the
relation X = x which seemed to be a consequence of the local
homogeneity assumption can be taken as a definition of x, the
point where averages are supposed to be related.

In addition, results from simulations at Vtop = 1 and Vtop =
10 (which show quite strong layering), not shown here for
the sake of brevity, show that stress balance is respected
and confirm locality of the dissipation of the contact stress
power. However, if layering occurs, local homogeneity may
be difficult to assume, and therefore the simplified balances
obtained in this work have always to be critically analyzed
when dealing with regions very close to the walls.

VI. CONCLUSIONS

In this work, we propose a new derivation of continuum
balance equations for granular materials which is inspired by
the work of Babic [7]. We introduce a new decomposition of
particle scale velocities into mean and fluctuations, taking into
account velocity gradients. A very reasonable local homogene-
ity hypothesis allows us to simplify the balances, ensuring at
the same time representativity and physical meaning of the
continuum estimates obtained.

Two important results are obtained. First, the method solves
the problem of dependence of some variables (e.g., fluctuating
energy, kinetic stresses) on the averaging domain size which
is intrinsic to previous methods [7] by clearly identifying
scale-dependent terms. Second, the development suggests a
new physical picture for the energy cascade in granular flows:
kinetic terms enter in a nonlocal energy balance, while contact
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terms (containing both collisions and long-lasting contacts)
seem to be dissipated locally. Both results are verified against
discrete element simulations of granular flows, with respect to
which the method is shown at work.

This point is particularly important with regards to the hope
of obtaining a statistical mechanics for granular flows whose
predictions can be faithfully tested in physical experiments and
numerical simulations. Note also that the question of the size of
the averaging window close to a boundary [11] is problematic
since it is bounded by the distance between the center of a
grain and that boundary.

A last note has to be added on the domain of application of
the present method. Discrete element methods are sometimes
divided into smooth and nonsmooth ones [31]. The present
averaging method (as Babic’s one) applies rigorously only
to smooth methods, since the idea of smooth (differentiable)
particle fields was implicit in the expression of the equation
of motion. The adaptation of such a method to nonsmooth
dynamics is a very important point which will be the subject
of future works.
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APPENDIX A: DERIVATION OF BALANCE EQUATIONS

The derivation follows closely that of Babic, except for
the choice of the fluctuation decomposition. The evolution
equation for a generic particle property ψp is

mp

dψp

dt
=

∑
q

Ppq + mpgp. (A1)

We multiply by wp, sum on p, and integrate on time:∫ ∞

−∞

∑
p

wpmp

dψp

dt ′
dt ′

=
∫ ∞

−∞

∑
p

∑
q

wpPpqdt ′ +
∫ ∞

−∞

∑
p

wpmpgpdt ′. (A2)

The left-hand side term can be developed into [7]:

∂

∂t

∫ ∞

−∞

∑
p

wpmpψpdt ′ + ∇ ·
∫ ∞

−∞

∑
p

wpmpψpvpdt ′.

(A3)

As regards the right-hand side of Eq. (A2), Babic also
showed that the interaction term could be developed as:∫ ∞

−∞

∑
p

∑
q

wpPpqdt ′

=
∫ ∞

−∞

∑
p

∑
q>p

(Ppq + Pqp)wS
pqdt ′

+∇ · 1

2

∫ ∞

−∞

∑
p

∑
q>p

lpq(Ppq − Pqp)wF
pqdt ′. (A4)

where wF
pq and wS

pq are two weighting functions respectively
defined as:

wF
pq =

∫ 1

0
w(xp + slpq − x,t ′ − t)ds (A5)

and

wS
pq = wp + wq

2
. (A6)

Now let us see the effect of the fluctuation decomposition
on Eq. (A3). Decomposing the velocity field with the new
decomposition leads to:

vp(xp) = v̄(x) + (xp − x) · ∇v̄(x) + ṽp(xp). (A7)

The divergence term on Eq. (A3) can be written as:

∇ · ρv̄ψ̄ + ∇ · ρψ ṽ

+∇ ·
{[∫ ∞

−∞

∑
p

wpmpψp(xp − x)dt ′
]

· ∇v̄

}
. (A8)

Decomposing also ψp yields for the second term in Eq. (A8):

ρψ ṽ =
[∫ ∞

−∞

∑
p

wpmpṽp(xp − x)

]
· ∇ψ̄(x)dt ′

+
∫ ∞

−∞

∑
p

wpmpṽpψ̃pdt. (A9)

Given that∫ ∞

−∞

∑
p

wpmp(xp − x)dt ′ = ρ(X − x), (A10)

where X is the average center of mass of the averaging domain,
the integral in the third term of Eq. (A8) becomes∫ ∞

−∞

∑
p

wpmpψp(xp − x)dt ′ = ψ̄ρ(X − x)

+
∫ ∞

−∞

∑
p

wpmp((xp − x) · ∇ψ̄)(xp − x)dt ′

+
∫ ∞

−∞

∑
p

wpmpψ̃p(xp − x)dt ′. (A11)

Following the homogeneity assumption, we neglect correla-
tions of fluctuations and of particle positions, and we consider
that the average center of mass coincides with the averaging
point. This means that terms under the divergence operator in
Eq. (A8) simplify to:

ρv̄ψ̄ + ρψ̃ ṽ

+
{∫ ∞

−∞

∑
p

wpmp[(xp − x) · ∇ψ̄](xp − x)dt ′
}

· ∇v̄.

(A12)

Developing the k component of the third term in
Eq. (A12) [using the definition �xpi = (xpi − xi)]
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yields:∫ ∞

−∞

∑
p

wpmp[(xp − x) · ∇ψ̄][(xp − x) · ∇v̄k]dt ′

=
∑

i

∑
j

∂xi
ψ̄∂xj

v̄k

∫ ∞

−∞

∑
p

wpmp�xpi�xpjdt ′. (A13)

Assumption of local homogeneity also implies decorrelation
of the components of particle position with respect to the
averaging point. This means that:∫ ∞

−∞

∑
p

wpmp�xpi�xpjdt ′ = ρD2
i if i = j, 0 otherwise,

(A14)

where Di is related to the scale of the averaging volume in the
i direction. If D is the vector with components Di , the third
term of Eq. (A12) is

ρ(D · ∇ψ̄)(D · ∇v̄k). (A15)

This term renders explicit the scale dependence which was
otherwise implicit in Babic’s method. Equation (A3) is finally
reduced to:

∂

∂t
ρψ̄ + ∇ · ρv̄ψ̄ + ∇ · ρψ̃ ṽ + ∇ · [ρ(D · ∇ψ̄)(D · ∇v̄)].

(A16)

As regards to the effect of the fluctuation decomposition on the
right-hand side of Eq. (A2), the result depends on the particular
property ψp considered. Thus in the following we will analyze
each property separately.

If mass conservation is considered (ψp = 1, Ppq = 0,
gp = 0), the right-hand-side term of Eq. (A2) is zero and it
is straightforward to see that the classical continuity equation
is obtained [Eq. (5)].

If force balances are considered (ψp = vp, Ppq = fpq , gp =
g), Eq. (A3) becomes

∂

∂t
ρv̄ + ∇ · ρv̄v̄ + ∇ · ρṽṽ + ∇ · [ρ(D · ∇v̄)(D · ∇v̄)] .

(A17)

The last two terms can be considered as related to two
components of an effective stress tensor as defined by Eqs. (11)
and (10). On the other hand, the right-hand side of Eq. (A2)
is not affected by the nature of the fluctuation decomposition.
Substitution of the Ppq = fpq and gp = g yields to the standard
momentum equation, Eq. (8), with the third component of the
effective stress tensor given by Eq. (9).

Let us derive now the translational kinetic energy equation.
In this case the reference particle property is

ψp = 1
2 vp · vp. (A18)

The average translational kinetic energy is

ρψ̄ = 1

2

∫ ∞

−∞

∑
p

wpmpvp · vpdt ′, (A19)

and the fluctuation decomposition allows us to split this
quantity into six terms, three of which disappear due to the

local homogeneity assumption, yielding:

1

2
ρv̄ · v̄

+ 1

2

∫ ∞

−∞

∑
p

wpmp[(xp − x) · ∇v̄] · [(xp − x) · ∇v̄]dt ′

+ 1

2

∫ ∞

−∞

∑
p

wpmpṽp · ṽpdt ′ = ρET + ρE
γ

T + ρεT ,

(A20)

where, with respect to Babic’s development, ρεT is likely
to be scale independent, and a new term appears, which is
the translational kinetic energy related to affine deformation
within the average volume ρE

γ

T .
The divergence term in Eq. (A3) corresponds, for the kinetic

energy, to:

∇ ·
∫ ∞

−∞

∑
p

wpmp

1

2
(vp · vp)vpdt ′. (A21)

When developing this term, the fluctuation decomposition
gives 27 terms, most of which can be deleted as in the
previous development through (1) the postulate X = x, (2) the
assumption of decorrelation among components of xp − x,
and (3) the assumption of decorrelation between components
of xp − x and velocity fluctuations. It can be shown that the
irreducible terms are(

ρET + ρE
γ

T + ρεT

)
v̄ − qk − Tk · v̄ − Tγ · v̄, (A22)

where

qk = −1

2

∫ ∞

−∞

∑
p

wpmp(ṽp · ṽp)ṽpdt ′. (A23)

Let us treat the terms coming from the right-hand-side
term of Eq. (A2). First, we must identify the particle scale
interaction terms. Taking the product of vp and Newton’s
equation,

mpvp · dvp

dt
= vp ·

(∑
q

fpq + mpg

)

⇒ mp

d 1
2 vp · vp

dt
= vp ·

(∑
q

fpq + mpg

)
.

(A24)

Therefore, the particle interaction term is∑
q

fpq · vp, (A25)

and the particle source term is

mpg · vp. (A26)

Concerning the source term, local homogeneity implies:∫ ∞

−∞

∑
p

wpmpg · vpdt ′ = ρg · v̄ + [ρ(X − x) · ∇v̄] · g

= ρg · v̄. (A27)
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Developing the interaction terms yields:∫ ∞

−∞

∑
p

∑
q>p

(fpq · vp + fqp · vq)wS
pqdt ′

+∇ · 1

2

∫ ∞

−∞

∑
p

∑
q>p

(fpq · vp − fqp · vq)lpqw
F
pqdt ′.

(A28)

Using the fluctuation decomposition, the relation fpq = −fqp,
and the assumption of local homogeneity this becomes∫ ∞

−∞

∑
p

∑
q>p

fpq · (ṽp − ṽq)wS
pqdt ′

+
∫ ∞

−∞

∑
p

∑
q>p

fpq · [(xp − xq) · ∇v̄]wS
pqdt ′

+∇ · 1

2

∫ ∞

−∞

∑
p

∑
q>p

fpq · (ṽp + ṽq)lpqw
F
pqdt ′

+∇ ·
[(∫ ∞

−∞

∑
p

∑
q>p

fpq lpqw
F
pqdt ′

)
· v̄

]
, (A29)

which correspond respectively to:

−γ k − γ γ + ∇ · qc + ∇ · (Tc · v̄), (A30)

where the first two terms are the conversion rates of transla-
tional kinetic energy into other forms of energy respectively
due to velocity fluctuations (−γ k) and to affine deformations
(−γ γ ); qc can be seen as a translational kinetic energy flux
related to contact forces.

The translational kinetic energy balance equation is there-
fore given by Eq. (16), which can be further simplified to
Eq. (19) when subtracting the mean flow energy balance.

APPENDIX B: DERIVATION OF A SCALING FOR D

In the following, a simplified scaling for the vector D
which enters in the definition of Tγ is derived using the local
homogeneity hypothesis. Let us assume equal-sized spheres,
and a step function on space and time as a weighting function.
Let us consider variables computed at a point (x,t) in space
and time. The average density is therefore:

ρ = mp

∫ ∞

−∞

∑
p

wpdt ′, (B1)

where wp = 1/(V T ) for particles residing in the averaging
volume V during the period (t − T/2,t + T/2) and zero
otherwise. If we call Np the time average of the number
of particles lying in the averaging volume, it is clear that
ρ = mpNp/V . Developing the definition of the vector D, we
find:

ρD2
i = mp

∫ ∞

−∞

∑
p

wp(xpi − xi)
2dt ′, (B2)

where xpi is the i component of the particle position. The
local homogeneity hypothesis says that X = x and that xpi is
uniformly distributed around xi . This yields for large NpT to:

ρD2
i = mp

V T

∫ T/2

−T/2

∑
p∈	V,T

(xpi − xi)
2dt ′

≈ mpNpT

V T
σ 2

xpi−xi
= ρ

D2
m,i

12
. (B3)

Therefore if the local homogeneity holds, Di is likely to scale
on the size of the averaging domain in the i direction. The
proportionality will then depend on the choice of the weighting
function, on polydispersity, on shape, and so on.
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