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Preservation of thermodynamic structure in model reduction
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Based on the availability of an invariant manifold, we develop a model-reduction procedure that preserves
thermodynamic structure. More concretely, we construct the Poisson and irreversible brackets of the general
equation for the nonequilibrium reversible-irreversible coupling of nonequilibrium thermodynamics by means
of the ideas originally introduced for handling constraints. The general ideas are then applied to the Kramers
problem, that is, the description of transitions between two potential wells separated by a high barrier. This
example reveals how a fortuitous cancellation mechanism that allows a logarithmic entropy to generate a linear
diffusion equation is inherited by a master equation resulting from model reduction.
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I. INTRODUCTION

Model reduction is an important way of simplifying
dynamic systems. An overview of the variety of applications
and different reduction methods for linear and nonlinear
dynamic systems can be found in the reviews [1–5]. We
here address the question whether the property of being
thermodynamically admissible is preserved in a typical model-
reduction procedure. Of course, we first need to clarify the
precise meaning of the phrases in quotation marks.

We here use the definition that a set of evolution equations
is thermodynamically admissible if it possesses the structure
of the general equation for the nonequilibrium reversible-
irreversible coupling (GENERIC) [6–8]. In that approach, the
reversible contribution to time evolution is assumed to be of
Hamiltonian form and hence requires an energy function and a
Poisson bracket, which reflects the idea that the reversible time
evolution should be under mechanistic control. The remaining
irreversible contribution is generated by the nonequilibrium
entropy by means of an irreversible bracket. A brief summary
of the GENERIC framework of nonequilibrium thermody-
namics is offered in Sec. II. An overview of the development
of the general field of nonequilibrium thermodynamics since
1996, also showing the role of the GENERIC approach within
this field, can be obtained from the proceedings of a series of
international workshops on the topic and the corresponding
workshop reports [9–14].

For model reduction, we rely on the idea of inertial or
invariant manifolds (see, e.g., [2,5,15,16]). If we start the
evolution on an invariant manifold imbedded in a larger space,
the trajectory stays rigorously or, at least, approximately on the
manifold. Our task is to identify the GENERIC structure for the
evolution equations formulated intrinsically in the manifold,
provided that the original equations in the large space possess
GENERIC structure. This is the task we take on in Sec. III.
For the proposed construction, it is irrelevant whether the
invariant manifold is rigorous or approximate. For our analysis
of thermodynamic admissibility we assume that the invariant
manifold be given whereas, in general, finding the invariant
manifold is the most important goal of model reduction.
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For completing our task we heavily rely on the methods
for treating dynamic systems with constraints. The proper
treatment of Hamiltonian systems with constraints was de-
veloped by Dirac in the context of gauge conditions for
gravity [17,18]. His construction of a Poisson bracket on a
constrained manifold can easily be adapted to irreversible
brackets [19]. The problems of constraints and model re-
duction are intimately related as we need to constrain a
thermodynamically admissible evolution equation from a large
space to an invariant manifold in both cases. However, there
are some differences in the details. In dealing with constraints,
one usually eliminates only a small fraction of the degrees of
freedom and one often formulates evolution equations in the
original large space. In model reduction, one often eliminates
almost all degrees of freedom and one looks for equations
formulated intrinsically in the low-dimensional manifold of
the remaining degrees of freedom.

For the example of diffusion in a symmetric double-well
potential with a high potential barrier between the wells,
which is discussed in great detail in Sec. IV, we reduce from
an infinite-dimensional space of probability densities to an
approximately invariant one-dimensional manifold. From this
example we learn how a seemingly artificial feature of the
irreversible bracket arises in a perfectly natural way.

II. THERMODYNAMIC FRAMEWORK

Our summary of the GENERIC formulation of time-
evolution for nonequilibrium systems [6–8] is based on
Ref. [19]. If A is an arbitrary observable, that is, a sufficiently
regular real-valued function or functional of a set of variables x

required for a complete description of a given nonequilibrium
system, the time evolution of A is given by

dA

dt
= {A,E} + [A,S]. (1)

The observables E and S generating time evolution are the
total energy and entropy of the system, and {·,·} and [·,·]
are the Poisson and irreversible brackets, respectively. The
two contributions to the time evolution of A generated by the
total energy E and the entropy S in Eq. (1) are the reversible
and irreversible contributions, respectively. Equation (1) is
supplemented by the complementary degeneracy requirements

{S,A} = 0, [E,A] = 0, (2)
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which hold for all observables A. The requirement that the
entropy is a degenerate functional of the Poisson bracket
underlines the reversible nature of the Hamiltonian contri-
bution to the dynamics. The requirement that the energy is a
degenerate functional of the irreversible bracket expresses the
conservation of the total energy in a closed system, even when
energy is dissipated.

For completeness, we summarize some important proper-
ties of Poisson and irreversible brackets. The Poisson bracket
is antisymmetric and satisfies the Jacobi identity

{A,{B,C}} + {B,{C,A}} + {C,{A,B}} = 0, (3)

for arbitrary observables A, B, and C. These properties are
well known from the Poisson brackets of classical mechanics,
and they express the essence of reversible dynamics. The
irreversible bracket is symmetric (for a more sophisticated
discussion of the Onsager-Casimir symmetry properties of the
irreversible bracket, see Secs. 3.2.1 and 7.2.4 of Ref. [8] as
well as Ref. [20]) and satisfies the non-negativeness condition

[A,A] � 0. (4)

This non-negativeness condition, together with the proper
degeneracy requirement, guarantees that the entropy is a
nondecreasing function of time or, in other words, the second
law of thermodynamics,

dS

dt
= [S,S] � 0. (5)

Only the second term in Eq. (1) determines the entropy
production, which demonstrates its irreversible character.

In practical calculations, it is often convenient to formulate
GENERIC in terms of Poisson and friction operators instead
of brackets [7,8]. More precisely, one writes

{A,B} = δA

δx
L

δB

δx
, (6)

and

[A,B] = δA

δx
M

δB

δx
, (7)

where L is the Poisson operator and M is the friction operator.
The time-evolution equations for the system variables x

implied by Eq. (1) can then be expressed in the form

dx

dt
= L

δE

δx
+ M

δS

δx
. (8)

III. THERMODYNAMIC MODEL REDUCTION

We now proceed to construct a thermodynamically ad-
missible evolution equation on a submanifold of a given
thermodynamic system. We rely on the ideas developed in
Ref. [19] for the thermodynamically consistent treatment of
constraints. For model reduction, the submanifold defined by
the constraints is to be taken as the invariant manifold assumed
to be available.

Whereas observables can easily be restricted to the mani-
fold, the key problem is to define valid Poisson and irreversible
brackets on the manifold. If a submanifold of the large space is
given by the functions x(y) in terms of the intrinsic coordinates
y, we define Ā(y) = A(x(y)) for every observable A on the

large space. For the gradient of the observable Ā in the
manifold we then have the chain rule

δĀ

δy
= δA

δx

∂x

∂y
, (9)

introducing the tangential components of the gradient in the
large space.

To make contact to previous work, we assume that the man-
ifold is alternatively characterized by holonomic constraints of
the form

�α(x) = 0, (10)

where the label α can be discrete or continuous. If the
constraints are independent, the coordinates (y,�) are in a
one-to-one relationship to the coordinates x of the large space
(at least, locally).

A. Poisson bracket

For the proper treatment of gauge conditions in the
quantization of gauge field theories, Dirac [17,18] developed a
constrained Poisson bracket. For a finite number of constraint
conditions, his famous bracket can be written as (see, for
example, Sec. 8.5 of Ref. [21], ch. 1 of Ref. [22], and references
therein)

{A,B}c = {A,B} −
∑
αβ

{A,�α}J p
αβ{�β,B}, (11)

where J
p
αβ is the inverse of the matrix {�α,�β}. As we wish

to evaluate {A,B}c on the manifold, also the matrix J
p
αβ needs

to be calculated on the manifold only. In operator notation,
Eq. (11) can be written as

{A,B}c = δA

δx
(L − LRpL)

δB

δx
, (12)

where

R
p
jk =

∑
αβ

δ�α

δxj

J
p
αβ

δ�β

δxk

. (13)

Note that the matrices J p and Rp depend on the original
Poisson operator L and on the invariant manifold, but not on
the observable A. When the constrained bracket is evaluated on
the manifold, the gradients of the observables A and B on the
right-hand side of Eq. (12) may be replaced by their tangential
components. This remark follows from the observation

RpL
δ�

δx
=

(
δ�

δx
J p δ�

δx

)
L

δ�

δx
= δ�

δx
, (14)

which is based on the definitions of Rp and J p. Note that this
identity implies that RpL and LRp are projectors.

The existence of the inverse of the matrix {�α,�β} is
nontrivial. In choosing the constraints �α , one should clearly
avoid degenerate functions, such as the entropy in Eq. (2),
which are conserved quantities of the reversible dynamics.
The construction of constrained brackets should be performed
within the submanifold characterized by constant values of
the degenerate functions (that is, within symplectic leaves).
Even then, a set of independent constraints needs to be chosen
carefully for the matrix {�α,�β} to be invertible on the
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invariant manifold. In the nomenclature of Dirac [17], the
�α have to form a set of second-class constraints, that is, each
constraint has to have a nonzero Poisson bracket with at least
one other constraint.

For the generalization of Dirac’s bracket to an infinite
number of constraints, the constrained Poisson bracket can
alternatively be constructed by considering a modified observ-
able

Ap(x) = A(x) +
∑

α

λA
α (x)�α(x), (15)

for every observable A. If α is a continuous label, the sum is
to be replaced by an integral. The Lagrange multipliers λA

α (x)
are to be chosen such that

δ�α

δx
L

δAp

δx
= {�α,Ap} = 0, (16)

for all α as an identity on the manifold, but otherwise arbitrary.
The observables �α and Ap are defined on the large space, and
so is the observable {�α,Ap}. The size of the linear problem to
be solved (matrix inversion to obtain J

p
αβ or linear system for

λA
α ) is given by the number of constraints. On the manifold,

Eq. (10) implies that the modified observable Ap defined in
Eq. (15) coincides with A. In general, the Lagrange multipliers
λA

α are not unique, nor is there a guarantee for the existence
of a solution to the system of linear equations in Eq. (16).
The constraints �α should be chosen as described above. If
suitably modified observables Ap can be constructed, as needs
to be verified for the chosen constraints, the constrained Dirac
bracket is given by

{A,B}c = {Ap,Bp} = δAp

δx
L

δBp

δx
. (17)

On the manifold, {A,B}c is independent of the modifica-
tions Ap and Bp of the form (15), that is, independent of the
choice of the Lagrange multipliers, as long as the conditions
(16) are satisfied (also for Bp). The bracket (17) clearly inherits
all the properties of the original Poisson bracket, including the
Jacobi identity. Also the degeneracy of entropy is inherited by
the constrained Poisson bracket.

To verify that the Lagrange-multiplier construction repro-
duces the Dirac bracket (12), one should realize that Eqs. (15)
and (16) imply the representation

δAp

δx
= (1 − RpL)

δA

δx
. (18)

When Eq. (18) and the corresponding representation for Bp are
inserted into Eq. (17) and the projector property of RpL is used,
we indeed obtain the Dirac bracket (12). The representation
(18) still remains to be verified for any observable Ap

characterized by Eqs. (15) and (16). In geometric terms,
Eq. (15) expresses the idea that, on the manifold, the gradient
of A can be modified by an arbitrary component normal to the
manifold, whereas the component tangential to the manifold
remains unchanged. According to Eq. (16), the freedom of
choosing the normal component of δAp/δx should be used to
make the normal component of LδAp/δx vanish. This situation
is illustrated in Fig. 1. Indeed, Eq. (18) implies

δA

δx
− δAp

δx
= RpL

δA

δx
, (19)

δ
δ

δ
δ

δ
δ

δ
δ

FIG. 1. (Color online) Geometric interpretation of the modifica-
tion of an observable A into Ap such that LδAp/δx becomes tangential
to the manifold (the small circles indicate points in the manifold, the
dashed lines are perpendicular to the manifold).

and hence, in view of the definition (13) of Rp, that the
difference of the gradients is a linear combination of normal
vectors. And in view of the projector property of LRp, the
representation (18) moreover implies the condition (16).

B. Irreversible bracket

An irreversible bracket on the submanifold can be con-
structed by exactly the same ideas employed for the Poisson
bracket [19]. Instead of the constrained Poisson bracket (12),
we now have

[A,B]c = δA

δx
(M − MRdM)

δB

δx
, (20)

where

Rd
jk =

∑
αβ

δ�α

δxj

J d
αβ

δ�β

δxk

, (21)

and J d
αβ is the inverse of the matrix [�α,�β]. The matrices J d

and Rd depend on the original irreversible matrix M and on
the invariant manifold, but not on the observable A.

For the alternative construction of the constrained irre-
versible bracket, we start with the modified observables

Ad(x) = A(x) +
∑

α

λ̄A
α (x)�α(x), (22)

where the new set of Lagrange multipliers λ̄A
α (x) must now be

chosen such that

δ�α

δx
M

δAd

δx
= 0, (23)

for all α as an identity on the manifold. In general, the Lagrange
multipliers λ̄A

α are not unique. If suitably modified observables
can be constructed, the constrained irreversible bracket is
defined by

[A,B]c = [Ad,Bd] = δAd

δx
M

δBd

δx
, (24)
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where we have the formal representation

δAd

δx
= (1 − RdM)

δA

δx
. (25)

On the manifold, [A,B]c is independent of the modifica-
tions Ad and Bd of the form (22) as long as the conditions
(23) are satisfied (also for Bd). Moreover, the degeneracy of
energy is inherited by the constrained irreversible bracket. In
conclusion, the entire GENERIC structure is preserved for the
time evolution on the invariant manifold.

C. Alternative procedure

If the number of constraints is small, the linear system
associated with the determination of the Lagrange multipliers
λ̄A

α from Eq. (23) or the matrix inversion to obtain J d
αβ in

Eq. (21) is a small problem. However, when a large fraction of
the degrees of freedom is constrained, it may actually be more
convenient to focus on the remaining unconstrained degrees
of freedom. This can be done in terms of the parametrization
x(y) of the invariant manifold. We explain the basic idea in the
context of irreversible brackets (the reversible bracket can be
discussed in an analogous way).

The geometric content of the construction of constrained
brackets is recognized most easily in the Lagrange-multiplier
approach. Equations (22) and (23) imply that suitable normal
components of δAd/δx are introduced such that M δAd/δx

becomes tangential to the manifold (compare also Fig. 1).
By representing M δAd/δx in terms of the tangent vectors
∂x(y)/∂y and requiring that the tangential components of
δAd/δx coincide with those of δA/δx, we obtain the following
alternative procedure. First calculate the matrix

Kμν =
∑
jk

∂xj (y)

∂yμ

M−1
jk

∂xk(y)

∂yν

, (26)

and then find the reduced friction matrix by matrix inversion,

M̄ = K−1. (27)

In practice, instead of calculating the matrix K according to
Eq. (26), one can solve the problem

Maν = ∂x(y)

∂yν

(28)

to obtain aν for each tangent vector ν and then evaluate

Kμν = ∂x(y)

∂yμ

aν. (29)

Once the reduced friction matrix M̄ has been found, the
constrained irreversible bracket is given by

[A,B]c = δĀ

δy
M̄

δB̄

δy
. (30)

The matrix M̄ includes the indirect effects from the sup-
plemented normal components of the geometric construction
illustrated in Fig. 1. The matrix L̄ and the constrained Poisson
bracket can be constructed in a fully analogous way.

For a proof of the validity of the alternative procedure, we
start from the following representation in terms of tangential

vectors, ∑
k

Mjk

δAd

δxk

=
∑

ν

∂xj (y)

∂yν

XA
ν . (31)

The coefficients XA
ν can be determined from a set of linear

equations after multiplying Eq. (31) by M−1,

δAd

δxj

=
∑
kν

M−1
jk

∂xk(y)

∂yν

XA
ν , (32)

and projecting the result on the tangential vectors ∂x(y)/∂yμ,

∑
ν

KμνX
A
ν =

∑
j

δAd

δxj

∂xj (y)

∂yμ

= δĀ

δyμ

. (33)

For the last step, Eq. (9) has been used, together with the
fact that the tangential components of the gradients of A and
Ad coincide. With the following more explicit version of the
representation (32),

δAd

δxj

=
∑
kνν ′

M−1
jk

∂xk(y)

∂yν

K−1
νν ′

δĀ

δyν ′
, (34)

the constrained bracket (24) can now be evaluated to obtain
Eq. (30).

In our formulation of the alternative procedure, we have
used the inverse M−1, although M is degenerate. Equation (28)
shows that our procedure requires that the tangent space of the
invariant manifold is contained in the image space of M . If
that is not the case, M̄ should be constructed only on the
intersection of the tangent space and the image space of M .

D. Time-evolution equation

The evolution equation resulting from the model reduction
implied by an invariant manifold is given by

dx

dt
= L

δEp

δx
+ M

δSd

δx
, (35)

where, for any observable A, both LδAp/δx and M δAd/δx

are constructed to be tangential to the manifold. Equation (35)
hence describes evolution in the manifold and implies equiv-
alent evolution equations for the intrinsic coordinates y,
which inherit the full thermodynamic structure and can be
written as

dy

dt
= L̄

δĒ

δy
+ M̄

δS̄

δy
. (36)

Let us look more closely at the irreversible contribution
to Eq. (35) (the reversible contribution can be discussed in
an analogous way). In general, δSd/δx is not tangential to
the manifold but, by construction, M δSd/δx is. That is,
irreversible dynamics along the invariant manifold is not
directly generated by the tangential components of δS/δx.
However, indirectly it is. Given the tangential components,
we have to construct the corresponding normal components
to obtain the proper generator Sd. As the equations for
the Lagrange multipliers are linear, we expect the normal
components of δSd/δx to be linear functions of the tangential
components, and this is how complicated irreversible behavior
can develop in model reduction. Equation (25) nicely shows

032147-4



PRESERVATION OF THERMODYNAMIC STRUCTURE IN . . . PHYSICAL REVIEW E 91, 032147 (2015)

ξ

FIG. 2. Normalized double-well potential.

the direct and indirect effects when irreversible dynamics
is generated by the tangential components of the entropy
gradient. The indirect effect is also included in the reduced
friction matrix M̄ given by Eq. (27), so that it may develop
some nontrivial features.

IV. KRAMERS’ ESCAPE PROBLEM

We now illustrate the general thermodynamically consistent
model-reduction procedure of the previous section for a simple
diffusion problem studied in a classical paper by Kramers [23].
In spite of its simplicity, the problem has some highly relevant
features: (i) model reduction leads from linear to nonlinear
irreversible thermodynamics, and (ii) the problem can serve as
a toy model of chemical reactions, which are of great practical
interest.

A. Basic equations and invariant manifold

We study the one-dimensional Fokker-Planck or diffusion
equation for a potential barrier separating two minima as
shown in Fig. 2. We assume that the potential h(ξ ) is a
symmetric function with minima at the boundaries ξ = ±1 and
a maximum at ξ = 0. For simplicity, we assume h(±1) = 0,
h′(±1) = 0 and h(0) = 1. More general functions h(ξ ) are
discussed in Sec. 3.3 of [24]. The Fokker-Planck equation for
the probability density p = p(ξ,t) is given by

∂p

∂t
= D

∂

∂ξ

(
p

∂hε

∂ξ
+ ∂p

∂ξ

)
, (37)

where D is a constant diffusion coefficient and we have
introduced the potential hε = h/ε so that we can discuss the
limit of a very high potential barrier with activation energy 1/ε

in the limit ε → 0. Actually, D defines the inverse time scale
of our diffusion problem. We further assume impenetrable
walls at ξ = ±1, that is, the probability flux, or the expression
in parentheses in Eq. (37), vanishes at the boundaries. The
problem of interest is to find the rate at which transitions
between the two wells occur for high barriers, which is known
as the Kramers escape problem [23].

The equilibrium solution of Eq. (37) is given by

peq(ξ ) = e−hε (ξ )

Z
, Z =

∫ 1

−1
e−hε (ξ ) dξ. (38)

For the relative deviation from equilibrium, u = p/peq, we
obtain the simpler diffusion equation

∂u

∂t
= Dehε

∂

∂ξ

(
e−hε

∂u

∂ξ

)
. (39)

By introducing a rescaled spatial variable s = s(ξ ) with

ds

dξ
= ehε ,

dξ

ds
= e−hε , (40)

or

s(ξ ) =
∫ ξ

0
ehε (ξ ′) dξ ′, (41)

the diffusion equation (39) for u = u(s,t) becomes even
simpler,

∂u

∂t
= De2hε

∂2u

∂s2
, (42)

with impenetrable walls at the boundaries s = ±ŝ where
ŝ = s(1). The definition (38) of Z can be rewritten as∫ ŝ

−ŝ

e−2hε ds = Z, (43)

and the normalization condition for p is turned into the
constraint ∫ ŝ

−ŝ

e−2hε u ds = Z. (44)

In the limit of small ε, ŝ is dominated by the behavior
of hε(ξ ) around the maximum. By means of the saddle-point
approximation, we find

ŝ = 1

2

∫ 1

−1
ehε (ξ ) dξ ≈

√
πε

2|h′′(0)| e1/ε . (45)

On the other hand, the integral defining Z is dominated by the
behavior of hε(ξ ) near the boundaries and we find

Z ≈
√

2πε

h′′(1)
. (46)

In the same limit, the strongly peaked nature of exp{−2hε(s)}
implies the following leading-order terms for its integrals,∫ ŝ

0
e−2hε (s)f (s) ds = 1

2
f (ŝ)Z, (47)

and∫ ŝ

0
ds e−2hε (s)

∫ ŝ

s

ds ′ e−2hε (s ′)f (s,s ′) = 1

8
f (ŝ,ŝ)Z2, (48)

where f is a sufficiently regular function of one or two
arguments. The last two formulas follow from the fact that
the symmetric function exp{−2hε(s)} with the normalization
(43) approximates a δ function.

The diffusion equation in its simplest form (42) shows that
the properly normalized affine functions

uy(s) = 1 + ys (49)

play a special role as stationary solutions. They correspond
to a constant flux through the system and, strictly speaking,
are inconsistent with the boundary conditions, except for the
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equilibrium distribution with y = 0. However, through the
potential barrier, that is, away from the boundaries, constant-
rate solutions play a key role in Kramers’ original solution
of the escape problem [23]. In a more rigorous mathematical
treatment of the Kramers escape problem [25,26], the functions
uy are equally important as the minimizers in a variational cal-
culation of the integrand of an action, which can alternatively
be obtained from the large-deviation principle.

In our approach, the affine functions (49) provide the one-
dimensional approximately invariant manifold for a massive
model reduction of the diffusion problem. Note that the
points x of Sec. III in our example are relative probability
densities u(s) and the invariant manifold x(y), which here is
one dimensional, is hence given in the form uy(s). The big
problem of finding a suitable invariant manifold is solved by
considering the manifold of steady-state solutions. These are
the constant-rate solutions that play a key role in Kramers’
original work.

B. Diffusion as gradient flow

As a consequence of the absence of a reversible contribution
in the diffusion equation (42), the GENERIC framework
leads to a formulation as a gradient system. To keep the
discussion as simple as possible, we do not include a heat bath
which, strictly speaking, would be required to implement the
second degeneracy requirement in Eq. (2) expressing energy
conservation. The entropy is given by

S = −kB

∫ 1

−1
p ln(p/peq) dξ = −kB

Z

∫ ŝ

−ŝ

e−2hε u ln u ds,

(50)

with the gradient

δS

δu
= −kB

Z
e−2hε ln u, (51)

where, in view of the normalization constraint (44), the
derivative 1 + ln u of u ln u has been simplified to ln u. With
the friction operator

M = −ZD

kB
e2hε

∂

∂s
u

∂

∂s
e2hε (52)

we reproduce the diffusion equation (42). In spite of the
logarithmic nature of the entropy and the entropy gradient
(51), the resulting diffusion equation (42) generated by
the entropy gradient is linear in u because the factor u

in the friction matrix (52) cancels the factor 1/u arising from
the derivative of the ln u with respect to s. More generally, from
a thermodynamic perspective, such a fortuitous cancellation is
the origin of linearity of all Fokker-Planck equations modeling
classical dissipative behavior. It has been pointed out within
the GENERIC approach to quantum dissipation that such a
cancellation is prevented by operator-ordering problems so
that the resulting thermodynamic quantum master equation is
intrinsically nonlinear [27–29].

The total entropy production rate (5) is given by

dS

dt
= DkB

Z

∫ ŝ

−ŝ

1

u

(
∂u

∂s

)2

ds. (53)

When evaluated in the manifold (49), the result for the entropy
production is

dS

dt
= DkB

Z
y ln

1 + yŝ

1 − yŝ

= DkB

2Zŝ
(uR − uL)(ln uR − ln uL), (54)

with the left and right boundary values uL = u(−ŝ) and uR =
u(ŝ). The entropy production is always positive (for uR �= uL)
or zero (for uR = uL). This is consistent with the more general
formula given in Eq. (53), according to which zero entropy
production is reached for constant u(s).

For later reference, we evaluate the entropy (50) and its
gradient on the manifold of affine functions (49). For small ε,
the exponential factor in Eq. (50) is very small except in the
neighborhood of ±ŝ. For any slowly varying function u(s), in
particular, for any affine function, the integral in Eq. (50) is
hence given by

S = −kB

2
(uL ln uL + uR ln uR), (55)

where Eq. (47) has been used. Within the manifold given in
Eq. (49), we obtain S̄(y) from Eq. (55) and hence the entropy
gradient

∂S̄(y)

∂y
= kBŝ

2
(ln uL − ln uR) = kBŝ

2
ln

1 − yŝ

1 + yŝ
. (56)

The same result can be obtained from the general chain rule
(9) which, for our diffusion problem with a one-dimensional
invariant manifold, reads

∂Ā(y)

∂y
=

∫ ŝ

−ŝ

s
δA

δu(s)
ds. (57)

C. Construction of constrained friction matrix

In applying the alternative procedure of Sec. III C to
construct the friction matrix resulting from model reduction,
we need to consider only a single tangent vector. According to
Eq. (28) for the tangent vector ∂uy(s)/∂y = s obtained from
Eq. (49), we consider the problem

M̂a(s) = s, (58)

with the normalized diffusion operator

M̂ = e2hε
∂

∂s
u

∂

∂s
e2hε . (59)

According to Eqs. (27) and (29), the 1×1 friction matrix of
the reduced system then is given by

M̄ = −ZD

kB

[∫ ŝ

−ŝ

sa(s)ds

]−1

. (60)

The most general solution of Eq. (58) is given by

a(s) = 1

y
e−2hε (s)

[
ln(1 + ys)

∫ s

c

s ′e−2hε (s ′)ds ′

−
∫ s

c′
s ′ ln(1 + ys ′)e−2hε (s ′)ds ′

]
, (61)

with the integration constants c and c′, as can be verified by
applying M̂ and assuming u to be of the form (49). We first
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choose c′ by assuming that, for y = 0, the function a(s) should
have well-defined symmetry. This assumption requires c′ = 0,
resulting in antisymmetry of a(s). The choice of c′ actually
has no influence on the friction matrix (60). If we chose also
c = 0, the formula (47) would imply that a(s) vanishes to
leading order. Therefore, the remaining natural choices for c

are ŝ or −ŝ, which both lead to the same function a(s). We
hence choose

c = −ŝ, c′ = 0, (62)

in Eq. (61) to obtain a unique function a(s). Splitting the
first integral in Eq. (61) from c = −ŝ to s into integrals from
c = −ŝ to 0 and from 0 to s, the leading-order behavior of the
latter integral is canceled by the second integral with c′ = 0
and we obtain the simple approximate result

a(s) = −Zŝ

2

1

y
ln(1 + ys) e−2hε (s), (63)

where Eq. (47) has been used. For small ε, this function has
sharp peaks at s = ±ŝ. In the limit ε → 0, we can hence write

a(s) = −Z2ŝ2

2

δ(s − ŝ) ln uR + δ(s + ŝ) ln uL

uR − uL
, (64)

where we have used the convention that a δ function contributes
with full weight if it occurs at the limit of an integration. From
Eq. (63) or (64), we obtain∫ ŝ

−ŝ

sa(s)ds = −Z2ŝ3

2

ln uR − ln uL

uR − uL
, (65)

and hence from Eq. (60),

M̄ = 2D

kBZŝ3

uR − uL

ln uR − ln uL
. (66)

The equation of motion resulting from the friction matrix
(66) and the entropy gradient (56) according to GENERIC (36)
is

ẏ = − D

Zŝ2
(uR − uL), (67)

or

u̇R = −u̇L = − D

Zŝ
(uR − uL). (68)

Equation (68) has the structure of a simple example of chemical
reaction kinetics. In various thermodynamic approaches to
chemical reactions, objects closely related to M̄ have been
found (see, for example, Eqs. (8) and (9) of Ref. [30], ch. 12 of
Ref. [31], Eq. (113) of Ref. [7], Eq. (3.2) of Ref. [32], Sec. 1.8
of Ref. [25], and Eq. (12) of Ref. [33]).

The simplicity of the evolution equation (68) arises because
M̄ cancels the difference of logarithms resulting from the
entropy gradient and replaces it by the difference of the
arguments of the logarithms. Such a cancellation mechanism
may appear to be unsatisfactory as it removes the effect of the
entropy gradient. However, we have constructed M̄ by means
of a straightforward model reduction procedure. Moreover, the
evolution equation (68), together with the expressions (45) and
(46) for ŝ and Z, coincide with Eqs. (1.4) and (1.5) of Ref. [25].

How does the cancellation mechanism in the friction matrix
(66) arise? It can be traced back to the corresponding inverse

factor in Eq. (65) and hence to the factor (1/y) ln(1 + ys)
in Eq. (63). The latter factor arises from the integration of
1/(1 + ys) in inverting the operator M̂ in Eq. (59) with u of
the affine form (49). In other words, the cancellation indeed is
a straightforward result of the general reduction procedure for
the friction matrix. This factor arises in the construction of the
constrained functional derivative of any observable and has
nothing to do with the special logarithmic from of the entropy.
The cancellation mechanism has not been built in artificially to
remove the entropy gradient and to obtain the desired evolution
equation. Note that the cancellation ultimately arises from the
factor u in the diffusion operator (52) or (59). According to the
comments after Eq. (52), the fortuitous cancellation leading to
linear diffusion equations results from the same factor u in the
diffusion operator. In that sense, the cancellation mechanism
eliminating logarithms from the master equation (68) is
inherited from the mechanism that eliminates logarithms
from the diffusion equation (42). As pointed out before, the
cancellation mechanism occurring for diffusion equations does
not work in quantum dissipation. It has moreover been noticed
that a factor of the form (uR − uL)/(ln uR − ln uL) plays an
important role in the discussion of thermodynamic quantum
master equations (see Eq. (6) in Ref. [27], Eqs. (16)–(18) in
Ref. [28], and Eq. (4.3) in Ref. [34]).

The total entropy production rate (5) calculated from the
friction matrix (66) and the entropy gradient (56) coincides
with the previous result (54). The model reduction procedure
does not change the entropy production rate. This is actually
a characteristic hallmark of model reduction, distinguishing
it from coarse graining. Whenever degrees of freedom are
eliminated by a coarse-graining procedure, additional entropy
production arises from the rapid fluctuations associated with
the eliminated degrees of freedom (see comments on pp. 210
and 257 of Ref. [8] and the entire conference proceedings
volume [35] dedicated to this distinction).

The fact that we reproduce the correct entropy production
rate confirms our choice c = −ŝ in Eq. (62). For any other
choice −ŝ < c < ŝ, the functional form (66) of the friction
matrix M̄ would remain unchanged, but the friction matrix
and hence the entropy production rate would be enhanced by
a numerical prefactor which, as discussed in the preceding
paragraph, is inappropriate for a model-reduction procedure.

V. SUMMARY

We have adopted the GENERIC framework to define
thermodynamically admissible evolution equations and we
have associated model reduction with the evolution in an
invariant manifold. Given a thermodynamically admissible
evolution equation and an invariant manifold, we have then
formulated a thermodynamically admissible reduced model.
The key idea is to construct the corresponding Poisson and
irreversible brackets by constraining the original brackets to
the invariant manifold.

By applying the general idea to diffusion in a double-well
potential with a high potential barrier, we have found the
GENERIC building blocks for the master equation describing
the transitions between the potential wells occurring on the
time scale given by Kramers’ escape rate. Both for the
original diffusion equation and for the final master equation,
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logarithmic terms resulting from the entropy gradient gener-
ating the irreversible dynamics are canceled by the friction
matrix, so that the resulting equations are linear. We have
found that the cancellation mechanism is actually inherited by
the master equation through the model-reduction procedure.
Whereas the friction matrix for the diffusion equation is linear,
the resulting friction matrix for the master equation is highly
nonlinear. The seemingly suspicious form of the nonlinear
friction matrix involving a factor (uR − uL)/(ln uR − ln uL) is
the result of the need for components of the entropy gradient
perpendicular to the manifold to keep the resulting evolution
tangential to the manifold.

VI. CONCLUSIONS AND OUTLOOK

The availability of a general model-reduction procedure that
preserves thermodynamic structure opens new possibilities in
the field of model reduction for dynamic systems because the
resulting equations are then guaranteed to be well behaved.
The model-reduction procedure proposed in this paper sup-
plements the efforts to develop a coarse-graining procedure
that preserves thermodynamic structure [8,36,37] and leads to
thermodynamically guided simulation techniques [38].

Both model reduction and coarse graining deal with the
elimination of degrees of freedom to simplify a problem, where
these strategies are usually followed by disjoint communi-
ties. Model reduction is a solution procedure that does not
change the entropy production because, in evolution within an
invariant manifold, no relevant information is lost in spite
of the elimination of degrees of freedom; coarse graining
leads to the emergence of additional entropy production by
treating fast degrees of freedom as fluctuations accompanied
by dissipation, thus leading to the emergence of irreversibility
[35]. The proposed model-reduction procedure guarantees the
Jacobi identity for the Poisson bracket. In coarse graining, the
preservation of the Jacobi identity is a subtle issue that has been
related to the preservation of symmetries (see Sec. 6.1.6 of
Ref. [8]). Symmetries can also be used for structure-preserving
model reduction (see Sec. 10.5 and ch. 13 of Ref, [21]). As
the invariant-manifold method, which we have adopted as a
basis for our model-reduction procedure, does not lead to
additional entropy production or emerging irreversibility, it
has been enhanced by following Ehrenfest’s idea of coarse
graining in Refs. [39–41] (see also ch. 11 of Ref. [5]). Because
this alternative approach to coarse graining is still based on
an invariant manifold, the construction of a Poisson bracket
automatically satisfying the Jacobi identity can be achieved
in the same way as in model reduction. One could thus
circumvent the need for cumbersome checks of the Jacobi
identity [42] or the use of symbolic mathematical tools [43,44].

A seemingly unnatural mechanism for removing the log-
arithms resulting from entropy gradients has previously been
observed in the context of Boltzmann’s kinetic equation [45]
and other master equations [46]. For the Boltzmann equation,
thermodynamically consistent coarse graining based on a
Green-Kubo formula actually suggested a different cancel-
lation mechanism with a nonsymmetric friction matrix [47]. It
is hence interesting to realize how an unexpected cancellation
can arise from model reduction. A nonsymmetric friction
matrix has also been anticipated for two coupled nonlinear
chemical reactions [48], based on a study of activated transport
processes using mesoscopic nonequilibrium thermodynamics
[49]. It would hence be interesting to treat the example of two
coupled nonlinear chemical reactions by the model-reduction
procedure proposed here.

Further model reduction of Boltzmann’s kinetic equation
to the level of moments is an important problem in the theory
of rarefied gas flows [50,51]. The proposed model-reduction
procedure suggests that thermodynamic admissibility can
be achieved via corresponding invariant manifolds. For ten
moments, the manifold of Gaussian probability densities has
been considered in Sec. 7.4.3 of Ref. [8], but our results show
that the formula (7.149) of Ref. [8] for the Poisson matrix
needs to be corrected in the spirit of the Dirac bracket Eq. (12).
For 13 moments, the derivation of an entropy [52–54] has
actually been achieved by means of a suitable invariant
manifold, so that a corresponding Poisson bracket could be
constructed.

The invariant manifold for our example of diffusion in a
double-well potential consists of affine functions. By gener-
alizing to piecewise linear functions, spline interpolations, or
finite-element representations to define invariant manifolds,
one can employ the ideas of the present paper to develop
structure-preserving numerical methods for space discretiza-
tion.

The thermodynamically consistent model-reduction proce-
dure provides an explicit construction of the friction matrix for
the reduced model. According to the fluctuation-dissipation
rule (see Sec. 1.6 of Ref. [55]), the friction matrix then implies
the form of the fluctuations for the reduced model. In view
of the geometric nature of the construction of the reduced
dynamics in the invariant manifold one could also discuss
the resulting fluctuations in the manifold and thus check
the validity of the fluctuation-dissipation rule after model
reduction.
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Commun. 137, 325 (2001).
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