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Bicritical universality of the anisotropic Heisenberg model in a crystal field
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The bicritical properties of the three-dimensional classical anisotropic Heisenberg model in a crystal field are
investigated through extensive Monte Carlo simulations on a simple cubic lattice, using Metropolis and Wolff
algorithms. Field-mixing and multidimensional histogram techniques were employed in order to compute the
probability distribution function of the extensive conjugate variables of interest and, using finite-size scaling
analysis, the first-order transition line of the model was precisely located. The fourth-order cumulant of the
order parameter was then calculated along this line and the bicritical point located with good precision from the
cumulant crossings. The bicritical properties of this point were further investigated through the measurement of
the universal probability distribution function of the order parameter. The results lead us to conclude that the
studied bicritical point belongs in fact to the three-dimensional Heisenberg universality class.
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I. INTRODUCTION

The three-dimensional classical anisotropic Heisenberg
model with competing anisotropies gives rise to multicrit-
ical phenomena which have recently raised the interest of
many researchers in systems as the XXZ antiferromagnetic
model with crystalline anisotropy [1], the Heisenberg model
with ferro-antiferromagnetic exchange interactions [2], and
exchange ferromagnetic and crystalline anisotropies [2,3]. In
particular, it has been recently shown [4] that the multicritical
point of the three-dimensional XXZ antiferromagnetic model
on a cubic lattice in an external field is, in fact, despite
previous debates, a bicritical point whose universality class is
the same as the three-dimensional Heisenberg model. On the
other hand, Andrade et al. [2] have located the bicritical point
on the three-dimensional anisotropic Heisenberg model in a
crystal field corroborating our previous preliminary location
at (D,T ) = [3.95(4),1.73(3)] [3], where D is the crystal field
in units of the exchange interaction and T is the temperature in
units of the ratio of the exchange interaction and the Boltzmann
constant. Those authors also claim that this point belongs to
the three-dimensional Heisenberg universality class.

In this work we have located the bicritical point of this
model with better precision and, in addition, investigated the
universal properties of this point, which, to the best of our
knowledge, have not been shown in the literature, specially the
universal bicritical probability distribution functions (PDFs).
Part of this work, concerning the location of the bicritical point,
has been recently published elsewhere [5].

The model, simulated on a simple cubic lattice of size L, is
defined by the Hamiltonian

H = −J
∑

〈i,j 〉
�Si · �Sj − A

∑

〈i,j 〉
Sz

i S
z
j + D

N∑

i

(
Sz

i

)2
, (1)

where �S stands for a classical three-dimensional spin and 〈i,j 〉
stands for a sum over first-neighbor spins on a lattice of size

N = L3 with periodic boundary conditions. The exchange
interaction parameter is J , A refers to the easy-axis exchange
anisotropy (A > 0), and D is related to the easy-plane
crystalline interaction (D > 0). In this work we used A = 1
and, for simplicity, J = 1 and kB = 1. The phase diagram of
this model is depicted in Fig. 1, as obtained in a previous
work [3] for L = 14.

The competition between crystalline and exchange
anisotropies gives rise to two ordered phases, one where spins
tend to align along the z axis (the Ising-like phase) and the other
where spins tend to lie on the xy plane (the XY -like phase).
These phases are separated by a first-order transition line,
whose terminus is at a bicritical point, from which two second-
order transition lines emerge (the reason for the nomenclature
bicritical) separating the disordered paramagnetic phase. In
order to locate this point, the fourth-order cumulant was
calculated along the first-order transition line, which was
precisely located through histogram reweighting and analysis
of probability distribution functions. The bicritical point was
located by the cumulant crossings. Once the bicritical point
was located, the universal PDFs for the conjugate extensive
variables were obtained and a set of critical exponents were
determined. More details about this procedure are given in the
subsequent sections.

It is well known that the analysis of probability dis-
tribution functions is a very powerful tool to investigate
the universality class of statistical physics systems. As the
set of critical and/or multicritical exponents, the probability
distribution functions are also characteristic of a given spe-
cific universality class [6–8]. This strategy was introduced,
independently, in 1981 by Binder [6] and Bruce [9] in
the study of magnetic systems. Later, in 1992, Wilding
and Bruce [10,11], studying the two-dimensional Lennard-
Jones fluid, developed further a clever strategy—the field-
mixing—which extended the analysis of the probability
distribution functions to a variety of statistical mechanics
systems [12].
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FIG. 1. Phase diagram for the anisotropic Heisenberg model in a
crystal field in a cubic lattice (L = 14). Lines are only guides to the
eyes. The continuous lines indicate second-order phase transitions
and the dashed line stands for first-order phase transitions. Error bars
are of the size or smaller than symbol sizes.

This technique has since been employed to locate mul-
ticritical points and also to determine the universality class
of different systems by comparing the PDF of the system
with another whose universality class is already known a
priori, as in the location of the double critical endpoint of
the two-dimensional spin-3/2 Blume-Capel model [13] or the
tricritical point and double critical endpoint of the vectorial
version of the BEG model [14]. On the other hand, when the
universality class is not known, this strategy can also be used
to locate multicritical points and subsequently characterize
the universal multicritical properties, as in the tricritical point
of a two-dimensional spin fluid [15]. We, in fact, employed
both approaches in this work to investigate bicriticality on the
anisotropic Heisenberg model in a crystal field.

Our paper is organized as follows: In Sec. II, we describe the
methods of analysis employed in the present work, namely the
probability distribution function analysis and the field-mixing
technique. In Sec. III, the results are presented along with the
finite-size scaling relations employed and, finally, in Sec. IV
we present our main conclusions. The Appendix is devoted to
discussing the determination of (spurious) critical exponents
of this model and its strong dependence on the lattice size.

II. BACKGROUND

A. Universal probability distribution functions

Based on finite-size scaling arguments, analogous to usual
finite-size scaling assumptions [6,16], it is expected that, at
criticality and large enough system sizes L, the order parameter
probability distribution P (m) should obey the following
scaling relation [6]:

P (m) = bLβ/νP ∗(bLβ/νm), (2)

where β and ν are the usual critical exponents and m is the
order parameter.

Bearing in mind that, near criticality, the singular part fs

of the free energy is a generalized homogeneous function of

its parameters [17] and Kadanoff’s seminal renormalization
group ideas[16,18], one can write for the d-dimensional Ising
model

fs(t,m) = L−dfs(L
−1/ν t,Lβ/νm), (3)

where t = (T − Tc)/Tc.
Considering that the probability distribution function of a

finite-size system with dimension L is a function of free energy,

PL(m) ∼ exp[−F (m,T ,L)], (4)

it is reasonable to assume that the probability function of the
order parameter should also obey an analogous scaling relation
as described above. Bruce has also demonstrated that the
PDF tends to a universal form, based on multispin correlation
analysis and renormalization group assumptions [9] and
theoretically obtained the universal form for one-, two-, and
three-dimensional Ising systems. Binder [6] also obtained the
universal PDF for two-, three-, and four-dimensional Ising
models.

We use the fourth-order cumulant of the order parameter
to locate the bicritical point and subsequently characterize
its universality properties by measuring the bicritical uni-
versal PDFs of the corresponding extensive thermodynamic
variables.

B. Field mixing

Owing to the asymmetry of the first-order transition line
(see, e.g., Fig. 1), the employment of field-mixing techniques
is necessary. The relevant scaling fields in this case will be
linear mixtures of the thermodynamic fields T and D:

η = q̃ − q̃c + r(t̃ − t̃c), (5)

τ = t̃ − t̃c − s(q̃ − q̃c), (6)

where t̃ = βJ and q̃ = βD and t̃c and q̃c are the values of these
thermodynamic fields at the bicritical point. The parameters r

and s are field-mixing parameters that determine the direction
of the axes of the relevant scaling fields in the D-T plane. The
new extensive variables associated with the scaling fields η

and τ are

E = E − rQ

1 − rs
, (7)

Q = Q − sE

1 − rs
, (8)

M = Mz, (9)

where, considering the model Hamiltonian given by Eq. (1),

Q = 1

L3

N∑

i

(
Sz

i

)2
, (10)

and

E = 1

L3

∑

〈i,j 〉
�Si · �Sj . (11)

These were the quantities measured during Monte Carlo
simulations, along with C = 1

L3

∑
〈i,j 〉 S

z
i S

z
j and the cartesian

components of the magnetization per site. These quantities
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were stored during each simulation for posterior analysis. The
choice of the z component of the magnetization as the order
parameter is related to the anisotropic character of the studied
model. The magnetization itself is another valid choice for the
order parameter and we in fact work with both quantities.

In analogy to the scaling relation obeyed by the order
parameter PDF, a similar scaling relation holds for the new
extensive variables at criticality:

P (Q) = 1

1 − rs
λQLyQP ∗(λQLyQQ), (12)

P (M) = λMLβ/νP ∗(λMLβ/νM), (13)

where β and ν are the usual critical exponents and P ∗ is
a universal, scale-invariant PDF characterizing the bicritical
point.

An analogous scaling relation holds for E . For our purposes,
though, the variables of interest were Q and M. Considering
that the universal probability distribution functions should
be normalized to unit variance, the scale-dependent term

1
1−rs

λQLyQ can be equated to 1/σ , σ being the standard
deviation of P (Q), calculated from Monte Carlo simulations.
The same relation holds for λMLβ/ν , σ now being the standard
deviation of P (M), so that the universal PDF can be obtained
by rescaling the PDF extracted from Monte Carlo simulations
by the respective standard deviation of the distribution. In this
case we get rid of the parameter r and we are left with just
s and T in order to recast the PDF into a desired symmetric
form. However, the value of r is determined by the slope of
the first-order transition line which is already known (for more
details see Ref. [7]).

The bicritical scale invariance of the distributions P (Q)
and P (M) implies that, at the bicritical point, the fourth-order
cumulant should be equal for different system sizes. So, the
cumulant was calculated along the first-order transition line
so as to locate the cumulant crossing and, consequently, the
bicritical point. In order to locate the first-order transition line,
we probed P (Q). For a fixed value of the parameter D, and
a given lattice size L, we varied the temperature T and the
mixing parameter s within the histogram reweighting scheme
so as to symmetrize the PDF for Q and locate the first-order
transition line.

In this work, we also investigated the fourth-order cumulant
of the total magnetization and of its z component. The fourth-
order cumulant of the magnetization is defined, in principle,
as

U = 1 − 〈(m − 〈m〉)4〉
3〈(m − 〈m〉)2〉2

. (14)

At the bicritical point, however, 〈mz〉 = 〈m〉 = 0, so that the
fourth-order cumulant is written

U = 1 − 〈m4〉
3〈m2〉2

. (15)

An analogous equation holds for the z component of the
magnetization.

III. RESULTS

Monte Carlo simulations were performed combining one
Metropolis [19] sweep and four Wolff [20] steps in a hybrid

scheme [21] in order to reduce the effects of critical slowing
down. The Wolff algorithm was adapted to take into account
the anisotropies of the model, according to the prescription
described by Ala-Nissila [22] and also the dimensionality
of the lattice. A simple cubic lattice with periodic boundary
conditions was used with system sizes L = 16, 18, 20, 22, 24,
30, 34, 40, 44, and very long runs were performed, ranging
from 280 million to 1.5 billion hybrid Monte Carlo steps
(HMCS) so as to achieve good precision, specially on the
calculation of cumulants. We also extended the analysis for
L = 60, 64, and 70 for reasons that will be clear below. We
used 100L2 HMCS for thermalization.

Owing to the asymmetry of the first-order transition line,
the field mixing technique was employed along with the
multidimensional histogram method [23–26] so that we could
probe the probability distribution of the extensive conjugate
variable Q and precisely locate the first-order transition line.
As we are investigating a first-order phase transition, the
occurrence of two symmetric wells in the free-energy land-
scape corresponds to a double-peak probability distribution
function of the conjugate extensive variable Q. Therefore,
in order to precisely locate the first-order transition line, the
symmetrization of the probability distribution function was
performed for several values of the parameter D and each
lattice size L. This was (initially) done varying the field-mixing
parameter s and the temperature T , obtaining the PDF for the
variable Q and evaluating visually the symmetrization. This
has been, however, a tedious and time-consuming task.

In order to improve precision and efficiency, we developed a
Fortran computational routine. The aim of this automatization
was to (1) locate both peaks of the first-order probability
distribution function, (2) minimize the difference between
heights of these peaks and, once the peaks were equalized,
(3) minimize the difference in area under both peaks. From
our study we observed that the difference in height of the
peaks as a function of temperature for a given value of s is
a smooth, well-behaved function, with a single minimum,
so that we could write a computational routine to locate
this minimum up to a very good precision. In other words,
the peak height difference could be minimized down to a
very low tolerance (of the order of 10−10). This process was
triggered with an initial guess to the location of the minimum in
temperature and an initial temperature step �T , for a definite
value of the parameter s. Once the probability distribution
is constructed for the initial temperature, the temperature is
incremented by �T and the probability distribution is again
obtained for this new temperature. Histogram reweighting is
employed to obtain this distribution within the temperature
range. A subroutine is used to precisely locate the peaks of the
distribution (essentially comparing the probability intensity
for each abscissa value on the probability distribution) along
with the peak height difference. The variation of this peak
difference for the used �T is then calculated and, if this
variation is positive, the sign of �T is reversed in order
to guarantee that the routine is consistently heading toward
the single minimum of the peak height difference versus
temperature curve. The routine also keeps track of the product
of the inclination of this curve for two subsequent temperature
steps so that when the minimum is surpassed the change in
sign of this product is followed by a sign reversal in �T ,
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FIG. 2. (Color online) Area under each of the peaks as a function
of the parameter s (L = 20). This plot is obtained once the peak
heights are equalized, so that the symmetrization of the probability
distribution is related to value of s where the area for both peaks
coincide.

which is also rescaled to half its value. This step ensures that
the algorithm progressively approaches the minimum and the
overall procedure is repeated until the peak height difference
falls into the desired tolerance. This process is performed for
a range of values of the parameter s.

Once the peak height difference was minimized, the
difference in area under both peaks as a function of s should
also be minimized so as to obtain the values of s and T for
symmetrization. The routine also measures, after the peaks are
equalized in height, the area under each peak, and although
it is also possible to visually identify a single minimum, the
area difference curve as a function of s, calculated through the
trapezoidal rule, displays noise (despite our efforts to suppress
it) to an extent that the computational routine could be trapped
in shallow, spurious troughs, precluding the location of the real
minimum. Therefore, the area symmetrization was performed
visually, plotting the area under the right and left peaks as a
function of the parameter s (see Fig. 2 for a clear illustration). A
similar plot was obtained as a function of T so as to determine
the temperature value for symmetrization. The probability
curves displayed in Fig. 3 were obtained through this method.

Having obtained, for a given value of the parameter
D, the pseudotransition temperature for each lattice size,
we determined the transition temperature through finite-size
scaling analysis. Repeating this process for several values of
D, we finally obtained the first-order transition line. In Fig. 4,
the finite-size scaling analysis is shown for two different values
of the parameter D along the first-order line. We have noted
that for this part of the work the smaller lattice sizes were
enough to locate the transition line. However, as will be seen
below, larger lattices and quite longer simulations needed to
be taken in order to get the multicritical point.

The cumulant, defined in Eq. (15), was calculated at the
transition temperature for each lattice size. At the bicritical
point, the fourth-order cumulant should coincide for suffi-
ciently large system sizes. Using this crucial fact, we were
able to locate the bicritical point. All points in the cumulant
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FIG. 3. (Color online) Probability distribution function for the
field-mixing extensive conjugate variable Q − sE (L = 20). The
distributions displayed refer to two different points along the first-
order line. Error bars are of the size or smaller than symbol sizes.
Distributions normalized to unit norm.

curves for all lattice sizes were initially calculated with no
extrapolation through the histogram method (Figs. 5 and 6).
Histogram reweighting was then performed in the vicinity of
the crossing point initially obtained for better precision. The
cumulant crossing for the magnetization reveals a bicritical
point located at Dbc = 4.0022(6), which corresponds to a
bicritical temperature Tbc = 1.7365(6) (Fig. 7). On the other
hand, the analysis of the fourth-order cumulant of the z compo-
nent of the magnetization (Fig. 8) yields Dbc = 4.0099(9) and
Tbc = 1.7448(9). It is worth noting, however, that despite this
discrepancy, as the lattice size increases, the cumulant crossing
for the magnetization (z component of the magnetization)
tends to occur at slightly higher (lower) temperatures (compare
Figs. 7 and 8). This behavior suggests that this discrepancy
should fade away for large enough lattice sizes. Taking both
locations into account yields a mean value of Dbc = 4.006(5)
and Tbc = 1.741(5).
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FIG. 4. (Color online) Finite-size scaling analysis for two differ-
ent points along the first-order line. The line is the best fit to the data
points. Error bars are smaller than symbol sizes.
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FIG. 5. (Color online) Fourth-order magnetization cumulant for
the three-dimensional anisotropic Heisenberg model in a crystal field.
Lines are only guides to the eyes. Error bars are of the size or smaller
than symbol sizes.

In Fig. 9, the first-order transition line is depicted, along
with its terminus at the bicritical point. We were not able
to probe its subsequent analytical extension owing to the
fact that at such high values of D in the vicinity of the
bicritical point, the two symmetric wells in the free-energy
landscape were already too shallow for the lattice sizes used.
Therefore, the double-peaked probability distribution function
for the field mixing extensive conjugate variable Q − sE were
not observed so that the symmetrization process previously
described could not be performed. The first-order transition
temperature for 3.98 � D � 4.02 were obtained using the
regression line T (D) computed from the points along the
first-order line obtained for D � 3.97. On the other hand,
the cumulant crossing itself reveals that such an extrapolation
was good enough for the range used, since the unique point
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FIG. 6. (Color online) Fourth-order cumulant for the z compo-
nent of the magnetization for the three-dimensional anisotropic
Heisenberg model in a crystal field. Lines are only guides to the
eyes. Error bars not shown are of the size or smaller than symbol
sizes. Only some points are depicted for L = 40 and L = 44 in order
to show that the crossing at the vicinity of D = 3.9555 is in fact
spurious.

3.997 3.998 3.999 4.000 4.001 4.002 4.003 4.004 4.005 4.006
Parameter D

0.596

0.600

0.604

0.608

0.612

0.616

0.620

0.624

0.628

0.632

U

L=16
L=18
L=20
L=22
L=24
L=30
L=34
L=40

FIG. 7. (Color online) Fourth-order magnetization cumulant for
the three-dimensional anisotropic Heisenberg model in a crystal field.
Data obtained through histogram reweighting from a simulation in
the vicinity of the bicritical point.

where the cumulants for different lattice sizes cross could be
achieved from this extrapolation with good precision.

It is important to note, however, that the updated location
of the bicritical point presented here is apart from the one
reported in a previous work [5] [Dbc = 3.9555(4) and Tbc =
1.6868(4)]. The extended and more thorough investigation of
the fourth-order cumulant along with the bicritical universal
probability distributions lead us to conclude that the bicritical
point location is in fact ahead, as previously presented. This
behavior was revealed, however, only extending the analysis
up to larger lattice sizes. As shown in Fig. 6, the cumulant
crossing in the vicinity of D = 3.9555 is in fact spurious, and
does not occur for L � 40. The fourth-order cumulant of the
magnetization has revealed itself a much more well-behaved
quantity in comparison to the its z component counterpart,
which also demanded more extensive simulations and very
long runs for better accuracy.
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FIG. 8. (Color online) Fourth-order cumulant for the z compo-
nent of the magnetization for the three-dimensional anisotropic
Heisenberg model in a crystal field. Data obtained through histogram
reweighting from a simulation in the vicinity of the bicritical point.
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FIG. 9. (Color online) First-order transition line on the D-T
plane, obtained through the procedure described in the text. The
bicritical point is represented by a full circle with error bars. The line
is the best fit to the data. Error bars when not shown are smaller than
symbol sizes.

In order to characterize the universality class of the
bicritical point, the universal PDF of the magnetization was
obtained for each lattice size. As expected, the universal
PDFs reasonably coincide for sufficiently large system sizes
(Fig. 10). Histogram reweighting was used to screen the
universal PDFs within the error bars in order to achieve the
best collapse. All PDFs are normalized to unit norm and
variance. It is noteworthy that, for the lattice sizes used, namely
L � 40, the universal PDF for the order parameter analyzed
is similar but does not match the respective universal PDF,
which characterizes the three-dimensional Heisenberg model
(shown on Fig. 10 for comparison). The universal PDF for the
Heisenberg model was obtained for L = 40, averaging over
one billion HMCS. In addition, if one desires to compute the
bicritical exponents from these lattice sizes one achieves a
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x=bLβ/νm
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FIG. 10. (Color online) Bicritical universal probability distribu-
tion function for the magnetization (L � 40). The distribution is
scaled to unit norm and variance. Lines are only guides to the
eyes. Error bars are smaller than symbol sizes. Note the discrepancy
with the universal PDF for the three-dimensional Heisenberg model.
Compare this graph with Fig. 11.
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FIG. 11. (Color online) Bicritical universal probability distribu-
tion function for the magnetization (L � 60). The distribution is
scaled to unit norm and variance. Error bars are smaller than symbol
sizes. Observe, for system sizes large enough, the collapse with the
universal PDF for the three-dimensional Heisenberg model. Compare
this graph with Fig. 10.

spurious result. Some details of what happens in this case are
given in the Appendix.

Owing to the similarity of the distribution functions de-
picted in Fig. 10 and the universal Heisenberg distribution, we
extended the PDF analysis to even larger system sizes, namely,
L = 60, 64, and 70. Considering limited computing time, sim-
ulations ranging from 180 million to 234 million HMCS were
now performed. The smoothness of the PDFs obtained with
small error bars suggests, however, that such statistics were
already satisfactory. Using histogram reweighting, we were
able indeed to show that the probability distribution function of
the anisotropic Heisenberg model reasonably matches the PDF
of the three-dimensional Heisenberg model, thus revealing
that the model studied belongs to the Heisenberg universality
class (Fig. 11). The collapse occurs, for all lattice sizes, at
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FIG. 12. (Color online) Individual collapse of the PDF for a
given lattice size over the universal PDF for the three-dimensional
Heisenberg model. The collapse for each lattice size occurs at a
different value of T and D. Lines are only guides to the eyes.
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FIG. 13. Finite-size scaling analysis for the bicritical tempera-
ture. The line is the best fit to the data.

D = 4.0036 and T = 1.7392, which agrees, within error bars
with our previous result, at (Dbc,Tbc) = [4.006(5),1.741(5)].

In order to verify our results, we employed yet another
method to locate the bicritical point. Considering that the
universality class of the model in study is known a priori, we
sought the collapse of the PDF for a given lattice size over the
universal PDF of the Heisenberg model, tuning the parameters
D and T and generating the probability distribution using the
multidimensional histogram method (Fig. 12).

The bicritical temperature was thus determined through
finite-size scaling analysis of the temperatures Tbc(L) obtained
above:

Tbc(L) = Tbc + aL−(1+θ)/ν, (16)

being θ = 0.179 the correction to scaling exponent and ν =
0.7036, the expected value for the three-dimensional Heisen-
berg model [27]. The value of θ was the one that minimized
χ2 on the regression of the linearized function above. From
the analysis (Fig. 13), we obtained Tbc = 1.7377(1), which
corresponds to Dbc = 4.0033(1) on the first-order transition
line previously located. This value also agrees with our
previous result obtained from the crossing of cumulants. This
method proved to be in fact more efficient, since the collapse
of the probability distribution function of a given lattice size
over the PDF of the Heisenberg model is enough to prove
that both models belong to the same universality class, while
the crossing of the cumulants demanded larger lattice sizes.
Considering the wide range of lattice sizes used and the good
quality of the regression analysis, we take this result as the
best estimate we have obtained for the location of the bicritical
point. In addition, it becomes clear from the small value of the
correction to scaling exponent θ = 0.179 the need to extend
the analysis to lattice sizes large enough in order to achieve the
real finite-size scaling behavior (which is discussed in more
detail in the Appendix).

IV. CONCLUSIONS

In summary, we have thoroughly investigated the bicritical
properties of the anisotropic Heisenberg model in a crystal
field on a simple cubic lattice for A = 1. The bicritical

point was located with better precision at D = 4.0033(1)
and T = 1.7377(1). The universal probability distribution
function of the order parameter was obtained, leading us
to conclude that the bicritical point belongs to the three-
dimensional Heisenberg universality class. Since the Ising-
and XY -like phases must be equal at the bicritical point, the xy

magnetization vector turns equal to the z magnetization vector,
which is accomplished only when the magnetization is zero.
Thus, the model regains in a certain way its isotropic character
at the bicritical point and therefore it is reasonable to expect
that the bicritical point should belong to the isotropic three-
dimensional Heisenberg universality class. It is interesting to
note that the presence of symmetry-breaking fields may change
the universality class [23], but such effect does not occur in
the anisotropic Heisenberg model studied.
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APPENDIX

It is worth noting that the size of the system studied was in
fact crucial for the determination of the universality class of the
model when we used the crossing of the fourth-order cumulant.
As shown in Fig. 10, finite-size effects are still manifest for
systems as large as L = 40 so that the universal probability
function of the anisotropic model does not match the universal
PDF for the Heisenberg three-dimensional model, which
would lead to the incorrect conclusion that the anisotropic
model belongs to a distinct universality class. One could think
(as we did) of determining the bicritical exponents so as
to investigate this assertion. This approach, however, poses
the same problem, as shown below, as we determine critical
exponents at Dbc = 4.006(5) and Tbc = 1.741(5), the location
of the bicritical point obtained from the crossing of cumulants
for L � 40.

The normalization of the universal probability distribution
(in order to obtain unit variance) yields a scaling relation for
the standard deviation σ =

√
〈m2〉 (considering 〈m〉 = 0 at

criticality) as function of system size:

σ = 1

b
L−β/ν, (A1)

through which β/ν = 0.65(1) was obtained (see finite-size
scaling analysis in Fig. 14). This ratio was also obtained from
the scaling analysis of the magnetization,

〈m〉 ∼ L−β/ν, (A2)

from which β/ν = 0.66(1) (Fig. 15). Both values agree within
error bars and yield an average of β/ν = 0.66(2).
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FIG. 14. Finite-size scaling analysis of the standard deviation of
the magnetization PDF at the bicritical point. The line is the best fit
to the data. Error bars are smaller than symbol sizes.

The maximum of the true (considering 〈m〉 = 0 at critical-
ity) magnetic susceptibility,

χ = L3

T
(〈m2〉), (A3)

scales as

χ ∼ Lγ/ν (A4)

at the bicritical point, from which we obtained γ /ν = 1.69(2)
(Fig. 16).

The value of the exponent ν was obtained through finite-size
scaling analysis of the logarithmic derivative of 〈m〉 and 〈m2〉,
whose scaling behavior is given by [23]

∂

∂K
ln〈mn〉 = aL−1/ν, (A5)
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FIG. 15. Finite-size scaling analysis for the magnetization at the
bicritical point. The line is the best fit to the data. Error bars are
smaller than symbol sizes.
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FIG. 16. Finite-size scaling analysis for the true (〈m〉 = 0)
magnetic susceptibility at the bicritical point. The line is the best
fit to the data. Error bars are smaller than symbol sizes.

at criticality, where

∂

∂K
ln〈mn〉 = 〈mnE〉

〈mn〉 − 〈E〉. (A6)

This analysis yields ν = 0.74(2) for the logarithmic deriva-
tive of 〈m〉 and ν = 0.73(2) from 〈m2〉, which agree within
error bars and yield a mean value ν = 0.74(2); see Fig. 17.
Considering this result, the bicritical exponents obtained were
β = 0.49(3) and γ = 1.25(5).

It is worth noting that the bicritical exponent ratios obtained
even obey the scaling relation d = 2β/ν + γ /ν = 3.01(6), d

being the spatial dimensionality of the lattice, which, along
with the good quality of the regression analysis, corroborates
our determination of critical exponents.

The values of the bicritical exponents therefore lead us
to (erroneously) conclude that the bicritical point of the
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FIG. 17. Finite-size scaling analysis for the logarithmic derivative
of 〈m〉 and 〈m2〉. The line is the best fit to the data. Error bars are
smaller than symbol sizes.
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FIG. 18. Finite-size scaling analysis for the magnetization at the
bicritical point (two different estimates used). The line is the best fit
to the data. Error bars are smaller than symbol sizes. Notice that only
larger lattice sizes were used for this analysis.

model studied does not belong to the three-dimensional
Heisenberg universality class. For comparison the critical
exponents for the three-dimensional Heisenberg model on a
cubic lattice are [27] β = 0.3616(31), γ = 1.3896(70), and
ν = 0.7036(23).

On the other hand, extending our analysis to lattices as
large as L = 70, the scenario sensitively changes. As a matter
of illustration, we consider here the finite-size scaling analysis
of the magnetization at the bicritical point (Fig. 18) for L =
60, 64, and 70, from which we obtain an average value of
β/ν = 0.546(4), a value far apart from the one obtained for
L � 40 [β/ν = 0.66(1)] and much closer—albeit not equal—
to the expected β/ν = 0.514(7) for the three-dimensional
Heisenberg model. In order to obtain the expected exponent
ratio, it would be necessary to extend the analysis to even
larger lattice sizes, an unnecessary task here, as we could
determine the universality class of the model by other means.
Finite-size effects may, however, be a serious problem when
the universality class of the system studied is not known a
priori.
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