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Slicing the three-dimensional Ising model: Critical equilibrium and coarsening dynamics
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We study the evolution of spin clusters on two-dimensional slices of the three-dimensional Ising model in
contact with a heat bath after a sudden quench to a subcritical temperature. We analyze the evolution of some
simple initial configurations, such as a sphere and a torus, of one phase embedded into the other, to confirm
that their area disappears linearly with time and to establish the temperature dependence of the prefactor in each
case. Two generic kinds of initial states are later used: equilibrium configurations either at infinite temperature
or at the paramagnetic-ferromagnetic phase transition. We investigate the morphological domain structure of
the coarsening configurations on two-dimensional slices of the three-dimensional system, compared with the
behavior of the bidimensional model.
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I. INTRODUCTION

Phase ordering kinetics is a phenomenon often encountered
in nature. Systems with this kind of dynamics provide, possi-
bly, the simplest realization of cooperative out-of-equilibrium
dynamics at macroscopic scales. For such systems, the
mechanisms whereby the relaxation takes place are usually
well understood [1–3], but quantitative predictions of relevant
observables are hard to derive analytically. Coarsening systems
are important from a fundamental point of view, as they
pose many technical questions that are also encountered in
other macroscopic systems out of equilibrium that are not
as well understood, such as glasses and active matter. They
are also important from the standpoint of applications, as the
macroscopic properties of many materials depend upon their
domain morphology.

The hallmark of coarsening systems is dynamic scaling, that
is, the fact that the morphological pattern of domains at earlier
times looks statistically similar to the pattern at later times
apart from the global change of scale [1–3]. Dynamic scaling
has been successfully used to describe the dynamic structure
factor measured with scattering methods, and the space-time
correlations computed numerically in many models. It has also
been shown in a few exactly solvable cases and within analytic
approximations to coarse-grained models.

New experimental techniques now make possible the direct
visualization of the domain structure of three-dimensional
(3D) coarsening systems. In earlier studies, the domain
structure was usually observed postmortem, and only on
exposed two-dimensional (2D) slices of the samples, with
optic or electronic microscopy. Nowadays, it has become
possible to observe the full 3D microstructure in situ and
in the course of evolution. These methods open the way to
observation of microscopic processes that were far out of
experimental reach. For instance, in the context of soft-matter
systems, laser scanning confocal microscopy was applied to
phase-separating binary liquids [4] and polymer blends [5–7],
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while x-ray tomography was used to observe phase-separating,
glass-forming liquid mixtures [8] and the time evolution of
foams towards the scaling state [9]. In the realm of magnetic
systems the method presented in [10] looks very promising.

Three-dimensional images give, in principle, access to the
complete topological characterization of interfaces via the
calculation of quantities such as the Euler characteristics and
the local mean and Gaussian curvatures. In addition to these
very detailed analyses, one can also extract the evolution of
the morphological domain structure on different planes across
the samples and investigate to what extent the third dimension
affects what occurs in strictly two dimensions. These in-plane
studies are also relevant per se since in some case (e.g., metallic
grains) there is an exposed surface to which experimental
access is easy, even with simple optical techniques.

In this paper the focus is on the dynamic universality class of
nonconserved scalar order parameter, as realized by Ising-like
magnetic samples taken into the ferromagnetic phase across
their second-order phase transition. An important question is
to what extent the results for the morphological properties of
strictly 2D coarsening apply to the 2D slices of 3D coarsening.
In the theoretical study of phase ordering kinetics, a continuous
coarse-grained description of the domain growth process, in
the form of a time-dependent Ginzburg-Landau equation, is
used. Within this approach, at zero temperature, the local
velocity of any interface is proportional to its local mean
curvature. Accordingly, in two dimensions the domains can
neither merge nor disconnect in two (or more) components.
In two dimensions one can further exploit the fact that the
dynamics are curvature driven and use the Gauss-Bonnet theo-
rem to find approximate expressions for several statistical and
geometric properties that characterize the domain structure.
In this way, expressions for the number density of domain
areas, number density of perimeter lengths, relation between
the area and the length of a domain, etc., were found [11,12].
In three dimensions, instead, the curvature-driven dynamics do
not prohibit breaking a domain in two or merging two domains,
and the Gauss-Bonnet theorem, which involves the Gaussian
curvature instead of the mean curvature, cannot be used to de-
rive expressions for the statistical and geometric properties of
volumes and areas. Moreover, merging can occur in 2D slices
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of a 3D system, for example, via the escape of the opposite
phase in-between into the perpendicular direction to the plane.

Two previous studies of 3D domain growth are worth
mentioning here, although their focus was different from
ours as we explain below. The morphology of the 3D zero-
temperature nonconserved scalar order parameter coarsening
was addressed in [13,14]. From the numerical solution of the
time-dependent Ginzburg-Landau equation, results on the time
dependence of the topological properties of the interfaces were
obtained.

The late-time dynamics of the 3D Ising model evolving
at zero temperature was analyzed in [15–18]. It was shown
in these papers that the 3D Ising model (IM) does not reach
the ground state or a frozen state at vanishing temperature.
Instead, it continues to wander around an isoenergy subspace
of phase space made of metastable states that differ from one
another by the state of blinking spins that flip at no energy cost
[15]. At very low temperatures the relaxation proceeds in two
steps: first, with the formation of a metastable state similar to
those of zero temperature and, next, with the actual approach
to equilibrium [16]. The sponge-like nature of the metastable
states was examined in [16–18].

In our study we use Monte Carlo simulations of the 3D
IM on a cubic lattice with periodic boundary conditions, and
we focus on the statistical and geometrical properties of the
geometric domains and hull-enclosed areas on planes of the
cubic lattice. A number of equilibrium critical properties,
necessary to better understand our study of the coarsening
dynamics in Sec. III, are first revisited in Sec. II. We start
the study of the dynamics by comparing the contraction
of a spherical domain immersed in the background of the
opposite phase in d = 2 and d = 3, at both zero and finite
temperature. This study, even though for a symmetric and
isolated domain, allows us to evaluate the dynamic growing
length and its temperature dependence. When the domains
are not isolated, as is the case, for instance, of two circular
slices lying on the same plane but being associated with the
same 3D torus, merging may occur along evolution, and this
process contributes to the complexity of the problem. We also
study the dynamic scaling of the space-time correlation on the
2D slices. Following these introductory parts, the statistical
and morphological properties of the areas and perimeters of
geometric domains and hull-enclosed areas on 2D slices of the
3D IM are presented. We end by summarizing our results and
by discussing some lines for future research in Sec. IV.

II. THE MODEL AND ITS EQUILIBRIUM PROPERTIES

Before approaching the dynamic problem we need to define
the model and establish some of its equilibrium properties.
This is the purpose of this section. The system sizes used in
the equilibrium simulations range from L = 40 to L = 800 in
d = 2 and from L = 40 to L = 400 in d = 3. The samples
at the critical point were equilibrated with the usual cluster
algorithms [19].

A. The model

The IM

HJ = −J
∑
〈ij〉

sisj , (1)

with si ± 1, J > 0 and the sum running over nearest neighbors
on a d > 1 lattice, undergoes an equilibrium second-order
phase transition at the Curie temperature Tc > 0. The upper
critical phase is paramagnetic and the lower critical phase is
ferromagnetic.

In two dimensions the critical temperature Tc coincides
with the temperature at which the geometric clusters (a set
of nearest-neighbor equally oriented spins) of the two phases
percolate [20,21]. This is not the case in three dimensions:
the percolation temperature, Tp, at which a geometric cluster
of the minority phase percolates, is lower than the Curie
temperature Tc [22]. On the cubic lattice, which we use in
this work, Tc � 4.5115 [23] and Tp � 0.92 Tc [22] (a more
recent determination yields Tp � 0.95Tc [24]). The random-
site percolation threshold on the cubic lattice is pc � 0.312
[25]. The boundary conditions in the simulations are periodic.

B. Equilibrium domain area distribution at Tc

As already stated, the spin clusters in the 3D IM are not
critical at the magnetic second-order phase transition [22].
Still, the 2D spin clusters on a slice, defined by taking all
the spins in a 3D lattice (x,y,z) with either x, y, or z fixed,
are critical with properties of a new universality class [26].
In particular, the distribution of the length of the surrounding
interfaces, N (�), and the area as a function of this length, A(�),
satisfy

N (�) � �−τ� , A(�) � �δ, (2)

with τ� � 2.23(1) and δ � 1.23(1). Similar measurements
were performed in Ref. [27], where a consistent value of
the fractal dimension df = 2/δ was obtained. For the sake
of comparison, the values of the exponents τ� and δ for
the critical spin clusters in two dimensions [12,28,29] are
τ

(2D)
� = 27/11 � 2.454 55 and δ(2D) = 16/11 � 1.454 55 =

τ
(2D)
� − 1.

As the main purpose of this paper is to characterize the
out-of-equilibrium dynamics of the 3D IM by focusing on
the behavior of the statistical and geometrical properties
of the cluster areas on 2D slices, we further investigated
the equilibrium properties of the same objects at the phase
transition in two and three dimensions, with the purpose of
checking whether the theoretical expectations are realized
numerically for the system sizes we can simulate.

We consider the number density of cluster areas on a 2D
plane. The area is defined as the number of spins in a geometric
cluster that are connected (as first neighbors on the square
lattice) to its border. With this definition one excludes the spins
in the holes inside a cluster, that is, one considers the proper
domain areas. At criticality, the number density of finite areas,
excluding the percolating cluster, is given by the power law

N (A) � A−τA . (3)

The contribution of the percolating clusters can be included as
an extra term that takes into account that these clusters should
scale as L2−(β/ν)s , where (β/ν)s is the “magnetic exponent”
associated with the spin clusters [25]. Thus, for a system of
linear size L, the full distribution is

N (A) = L2N (A) + aδ(A − bL2−(β/ν)s ), (4)
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and by construction, the normalization condition is∫
dA A N (A) = L2. (5)

If the distribution N (A) has a bounded support, with a
maximum cluster of size ML, then∫

dA A N (A) � L2

τA − 2

(
A

2−τA

0 − M
2−τA

L

) + abL2−(β/ν)s ,

(6)

where A0 is a microscopic area. The normalization condition
can be satisfied only if

ML � L
− (β/ν)s

2−τA , (7)

which, using a standard relation between exponents from
percolation theory [25],

(β/ν)s = d

(
τA − 2

τA − 1

)
, (8)

yields

ML � L2/(τA−1) � L2−(β/ν)s . (9)

This implies that the largest size contributing to the distribution
N (A) has the same fractal dimension of the percolating
cluster, thus scaling with the same power as the “magnetic
term.” The distribution of finite areas extends its support to
a size-dependent size such that it matches the weight of the
percolating clusters. In other words, there is no gap between
the two contributions to Eq. (4). In the following, we first
examine these relations in the 2D IM at its critical point and
later come back to the slicing of the 3D systems.

1. The critical 2D IM

We first check the predictions listed above in the 2D IM
at its critical point. In this case (β/ν)s coincides with the
magnetic exponent of the tricritical Potts model with q = 1
[30]. Therefore,

(β/ν)(2D)
s = 5

96
, τ

(2d)
A = 379

187
, (10)

implying

ML � L187/96. (11)

In Fig. 1 (inset) we present AτAN (A) against A/ML, with
N (A) the distribution of finite spin clusters, i.e., excluding the
percolating cluster from each configuration. In this plot we
used ML � L2−(β/ν)(2D)

s with the exact value of (β/ν)(2D)
s , and

we determined the value of τ
(2D)
A for each size L, finding that

its dependence on L is rather strong. It is only for the largest
simulated system (L = 800) that τ

(2D)
A becomes larger than 2,

converging, in the thermodynamical limit, to the right value,
379/187, as shown in the inset in Fig. 2. Note, in the inset
in Fig. 1, that N (A) has a maximum for large clusters. These
clusters are nonpercolating: in the overwhelming majority of
cases, if the largest cluster percolates, thus contributing to the
second term in N (A), the second largest does not and goes to
N (A). With the above exponents we obtain a nice scaling of
this maximum in N (A) as well as of the peak in N (A) (Fig. 1).
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FIG. 1. (Color online) Distribution of the spin cluster sizes in the
2D IM at its critical temperature. Scaling of the number density of
finite areas, AτAN (A) (inset), and full distribution of all areas (main
panel) vs A/ML, with ML given by Eq. (11), for various system sizes
L given in the legend, together with the values of τA used. Inset: The
dashed horizontal line is cd � 0.025 [12], to which the plateau should
asymptotically converge.

The latter feature can be magnified by subtracting the support
of finite clusters to leave only the areas of the percolating
clusters. Indeed, by plotting AτA[N (A)/L2 − N (A)] as a
function of A/ML (see Fig. 2), we obtain a perfect scaling.
Note that the δ function appearing in Eq. (4) is for a single
configuration. Different configurations differ in the value of
b, originating the horizontal spread shown in the averaged
distribution plotted in Fig. 2. Moreover, the plateau shown
in the rescaled plot in the inset in Fig. 1 (dashed horizontal
line), although smaller than the estimated value in Ref. [12],
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FIG. 2. (Color online) Distribution of the percolating spin cluster
areas in the 2D IM at its critical temperature. Scaling of the number
density of percolating areas, AτA [N (A)/L2 − N (A)], vs A/ML, with
ML given by Eq. (11), for various system sizes L given in the legend.
Inset: Values of τA from Fig. 1 as a function of 1/L showing the
convergence to the asymptotic value τ

(2D)
A = 379/187.
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cd � 0.025, when extrapolated to very large sizes, is consistent
with this value.

2. Slicing the 3D IM

Next we turn to the analysis of the domain areas on 2D slices
of the critical 3D IM. The values of the exponents (β/ν)s and
τA, and therefore the scaling of ML with L, are not known
for these objects and we study them here. In Fig. 3 (inset) we
show the distribution of the finite-size spin clusters, N (A), and
we determine τA for each size L. The measured values, shown
in the legend, are much smaller than 2 even for the largest
simulated system, and they seem to converge to a value of
τA � 1.94 < 2. This fact is clearly disturbing since it implies
that ML would decrease to 0 with increasing L. In Fig. 3 we
rescale A as A/Lx and we obtain a good collapse of data for
large A with x = 1.86. This implies that ML � L1.86. In this
figure, we also note that while the scaling of N (A) is good
for small values of the scaling variable, this is not the case for
large ones. This fact is even clearer in Fig. 4, where we see
that the part of the distribution that corresponds to the largest
spin clusters does not scale. We observed that in some con-
figurations the largest cluster does not percolate on the slice.
The lack of scaling in Fig. 4 is probably related to the
inconsistent value τA < 2 that we obtained from the analysis
of N (A).

There are two remarkable differences in N (A) measured
in the 2D system versus the sliced 3D one. The first is that
the height of the plateau (dashed horizontal line in the inset in
Fig. 3) seems to converge to a value that is about twice that
found in the 2D case, that is, 2cd � 0.05 [12]. The second
difference is that, in the slices, N (A) does not present the
maximum observed in two dimensions. This may explain why
the distribution in this case is higher: the absence of a second,
large cluster creates a large amount of space that will be filled
by smaller ones.
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FIG. 3. (Color online) Distribution of spin cluster sizes for slices
of the 3D IM at its critical temperature. Scaling of the number density
of finite areas, AτAN (A) (inset), and full distribution of all areas (main
panel) vs A/ML, with ML � L1.86, for various system sizes L given
in the legend, together with the values of τA used. Inset: The dashed
horizontal line is 2cd � 0.05 [12], twice the value for the 2D IM.
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FIG. 4. (Color online) Distribution of the size of the largest
cluster, AτA

[
N (A)/L2 − N (A)

]
, vs A/ML, with ML ∼ L1.86 for

spin cluster areas on slices of the 3D IM at its critical temperature.
Differently from Fig. 2, the curves here do not scale.

We thus conclude that the small spin clusters living in slices
of the 3D IM scale at the critical point, while the weight of the
percolating clusters does not seem to. In order to clarify this
issue we used the expected scaling of the largest cluster with
the system size, ML � L2−(β/ν)s , Eq. (9), to determine (β/ν)s .
In Fig. 5, we show the values of the effective exponent (β/ν)s
obtained from a two-point fit,(

β

ν

)
s

(L,L′) = 2 − ln(ML/ML′)

ln(L/L′)
, (12)

with ML the average size of the largest spin cluster. This
quantity is expected to converge to a fixed value in the large
size limit. However, for the sizes that we can simulate, it
does not converge at the critical point. For the smallest sizes,
(β/ν)s(L,L′) is close to a constant for β = 1/T slightly
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FIG. 5. (Color online) Effective value of (β/ν)s(L,L′) vs (L +
L′)/2 for the 3D IM at its critical temperature as extracted from the
analysis of the averaged size of the largest spin cluster on 2D slices;
see Eq. (12).
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larger than βc. Upon increasing the lattice size, we see that
beyond some size, (β/ν)s(L,L′) drops. In the range βc � β <

0.221 665 we do not reach an asymptotic regime and much
larger sizes are needed to conclude the actual value of (β/ν)s .
This also means that the values of τA that we computed can
still increase and eventually become larger than 2, as should
happen. It is interesting to point out that we checked that the
same analysis carried out on the Fortuin-Kasteleyn clusters
obtained from the same data yield a value of (β/ν)s in perfect
agreement with the theoretical expectation.

We conclude that it is very hard to reach the asymptotic,
large size limit in which the values of the exponents (β/ν)s
and τA for the areas of the geometric clusters on 2D slices of
the 3D system should reach a stable limit.

III. COARSENING PROPERTIES

Once the system is prepared (equilibrated) at a specific
temperature, it will be subcritically quenched and the out-
of-equilibrium subsequent dynamics studied. We start by
presenting some background material on the 2D dynamics.
We next describe the evolution of artificially designed single-
domain initial states (circular or spherical in two or three
dimensions, respectively, and a torus). After having analyzed
these simple situations, the richer dynamics ensuing from
an equilibrated state at T0 → ∞ (noncritical) and T0 = Tc

(critical on the slices) are studied.

A. Background

With the coarse-grained approach, in two dimensions and
in the absence of thermal fluctuations, one proves that the
number of hull-enclosed areas per unit area, nh(A,t) dA, with
enclosed area in the interval (A,A + dA), is [11,12]

nh(A,t) = (2)ch

(A + λ2d t)2
, (13)

where ch = 1/(8π
√

3) is a universal constant [31]. This result
follows from the independent curvature-driven evolution of
the individual hull-enclosed areas from initial values taken
from a probability distribution determined by the initial state
of the system. The statistics of the initial state is inherited in
Eq. (13) by the factor in the numerator. Indeed, the factor 2
in parentheses is present when the initial state is prepared at
T > Tc. It is due to the fact that the subcritical dynamics reach,
after a time that grows with the system size as tp � Lαp , critical
percolation [32]. Instead, it is absent if the initial state is one
of the critical Ising point.

Temperature fluctuations have a double effect. On the one
hand, their effect is incorporated in the factor λ2D, which
becomes λ2D(T ) and takes into account the modification of the
typical growing length (see below). On the other hand, small
clusters are created by these fluctuations and the distribution
Eq. (13) has to be complemented with an exponentially
decaying term that takes into account the additional weight
of thermal equilibrium domains.

The number density of the areas of the geometric domains
cannot be derived exactly. Under some reasonable assump-

tions, one argues [12] that at zero working temperature

nd (A,t) = (2)cd (λ2Dt)τ−2

(A + λ2Dt)τ
, (14)

with the constant cd � 0.025 being very close to, albeit
different from, ch, and τ an exponent that takes the critical
percolation or the critical Ising value, depending on whether
the initial state is a high-temperature or a critical one.

The time dependence of these two number densities
complies with dynamic scaling [1], with the typical length
scaling as

R(t) � (λ2Dt)1/2. (15)

As already said, the parameter λ2D is temperature, and material
or model, dependent.

B. Evolution of a single domain

The coarse-grained domain growth process with
nonconserved order parameter dynamics is described with a
scalar field that follows a time-dependent Ginzburg-Landau
equation [1]. From this equation, in the absence of thermal
fluctuations, Allen and Cahn obtained a generic law that
relates the local velocity of a point on an interface and the
local mean curvature [33]

v = − λ

2π
κ, (16)

with λ a material-dependent parameter. The effect of temper-
ature is usually incorporated into the prefactor [34–36], λ(T ).

In two dimensions, the area enclosed by a circle evolves
in time as Ȧ = 2πRṘ. Under curvature-driven dynamics, the
domain wall velocity, v = Ṙ, is given by the Allen-Cahn law,
(16). For the chosen geometry κ = 1/R and the area of the
disk decreases linearly in time, Ȧ = −λ2D, with a rate that is
independent of A.

In three dimensions, the volume of a sphere evolves in
time as V̇ = 4πR2Ṙ, the mean curvature is κ = 2/R, and the
time variation of the volume is no longer independent of its
size, V̇ = −4λ3DR. In three dimensions one can follow the
surface area of the sphere, A = 4πR2, and find Ȧ = −8λ3D,
or the area of the equatorial slice, A = πR2, and find Ȧ =
−2λ3D ≡ −λsl.

We wish to check whether, and to what extent, these results
remain valid on a cubic lattice with single-spin-flip dynamics.
The fact that the area of an initial square or circular droplet in
the 2D IM model with zero-temperature Glauber dynamics
decreases to 0 linearly in time was proven in [34,37,38].
A rigorous bound, compatible with this time dependence,
was derived in [39,40] for the 3D IM with the same T = 0
dynamics. In the rest of this section we analyze other initial
states evolving at nonvanishing subcritical temperature.

1. Single disk/sphere

Here we simulate the IM starting from a configuration
in which all spins that lie inside a circle in two dimensions
or a spherical shell in three dimensions point up, while all
other spins point down. This configuration is then allowed to
evolve with Monte Carlo single-spin-flip dynamics. Figure 6
shows some snapshots at different times, with and without
temperature fluctuations.
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2d, T = 0 2d, T = 0.5Tc

3d, T = 0 3d, T = 0.5Tc

FIG. 6. (Color online) Time evolution of a 2D circular domain
(top row) and an equatorial slice of a 3D spherical domain (bottom
row) at T = 0 (left column) and T = Tc/2 (right column). In both
cases the initial radius is R0 = 40 (for finite temperatures, the box
length must be large enough to prevent the circle from growing
and percolating). Different colors correspond to different times (in
Monte Carlo steps, starting from the background: 0, 500, . . . , 2500).
Although at zero temperature both areas decrease at the same rate,
λsl(0) = λ2D(0) � 2, in three dimensions the domains stay closer to
their circular initial shape at all times.

By measuring how the size of the original bubble changes
in time from the data gathered at zero temperature and shown
in the left column, one verifies that the above relations for both
Ȧ and V̇ are satisfied at all times, with λ2D(0) � 2 (consistent
with Ref. [34]) and λ3D(0) � 1, respectively. Note that, with
these values, the product λκ is the same in two and three
dimensions and v = −(πR)−1. As a consequence, whatever
the dimensionality, the radius behaves as

R2(t) = R2
0 − 2

π
t. (17)

Therefore, an equatorial slice of the 3D sphere and the 2D disk
should show the same behavior. Indeed, the area of the disk
also decreases linearly in time with the same T = 0 coefficient,
λsl(0) = 2λ3D(0) = λ2D(0) = 2.

Interestingly, this value λsl = λ2D = 2 is consistent with the
average change, 〈Ȧ〉, for a coarsening Ising system after having
being quenched from an equilibrium state at either T0 → ∞
or T0 = Tc into the low-temperature phase, in which case the
initial domains were no longer circular [41,42]. We conjecture
that the fitting value λ2D(0) � 2.1, obtained in Refs. [11,12],
is indeed exactly 2.

Now turning the temperature on (data shown in the right
column), we checked that

λsl(T ) � 2λ3D(T ) (18)

at all temperatures.

0

1

2

0  0.2  0.4  0.6  0.8 1

λ
(T

)

T/Tc

λ2d

λsl

FIG. 7. (Color online) The parameter λ(T ), obtained from the
shrinking of a single disk, λ2D, or an equatorial slice of a single
sphere, λsl, as a function of the temperature.

A striking difference between the 2D and the 3D cases, both
at zero and at nonvanishing temperature, is that the surface of
the sliced 3D system stays closer to its original circular shape
at all times, while the 2D system becomes more irregular.
These surface fluctuations, stronger in two dimensions, are
quite suppressed in three dimensions because of the extra
surface tension along the direction orthogonal to the slice.

When the dynamics are affected by thermal noise, the
behavior of λ depends on the dimensionality, as shown in
Fig. 7. Although λ2D(T ), within our numerical precision,
monotonically decreases as the temperature increases towards
Tc [34,43], this is not the case in three dimensions. Since the
3D system presents a large number of metastable states at
T = 0 [16–18], a small amount of noise may increase the wall
velocity. Indeed, we find that λsl(T ) has a maximum at inter-
mediate temperatures. Nevertheless, although the temperature
increases the roughness of the surface, the sliced disk still
collapses more isotropically than the 2d one, the fluctuations
away from the circular shape being smaller. As the temperature
approaches the critical value, λ(T ) tends to decrease to 0 in
both cases. It is, however, very hard to conclude the exact
T dependence in this range by tracking the evolution of a
single initial volume. Some of the sources of difficulties are
the fragmentation and merging processes that occur because of
the thermal fluctuations. Analogously, for the 3D case, isolated
domains in the slice may belong to the same 3D cluster.

2. Single toroidal domain

In the continuous description of 2D coarsening the areas
evolve independently of each other. Lattice effects do not
affect this result at sufficiently large scales. However, although
the dynamic mechanism in 2D slices of a 3D system is still
curvature driven, the evolution of the areas on the slice may
no longer be independent when, for instance, two areas on a
slice do belong to the same 3D domain.

A simple initial configuration that illustrates the importance
of the third dimension and the new mechanism that may
arise on the slice is a toroidal structure. In Fig. 8 we show the
time evolution of an initial toroidal domain observed on a plane
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(a)

(b) 2R

r

FIG. 8. (Color online) Evolution of a toroidal domain of one
phase immersed in a sea of the opposite phase at T = Tc/2 for two
initial conditions. The snapshots of the cross section of a single-ring
torus are shown with different colors at times t = 0, 150, 500, and
1000 Monte Carlo steps (from back to front). Due to the shrinkage of
the torus, there appears to be a small attraction between the domains
as their centers get slightly closer with time. In both cases the minor
radius is r = 20 and, depending on the value of the major radius,
R = 40 (a) and R = 30 (b), the two initially separated circles may
merge. This merging mechanism, which slows down the change in
area, is only present in the slices of a 3D system because the domains
are connected along the orthogonal direction.

that contains its axis of revolution; that is, the initial state has
two circular domains whose radii are the minor radius r of the
ring torus. The separation between their centers is twice the
major radius R. In the two cases shown in the figure, the minor
radius is the same, r = 20, but the major radius is different:
R = 40 in Fig. 8(a) and R = 30 in Fig. 8(b). The simulation
is performed at Tc/2. In both cases the whole toroid shrinks,
and this can be seen as an effective attraction between the
disks as they move towards each other. However, in the second
case, the two initial disks change shape, and after some time,
they merge and form an elongated domain in the plane. In the
first case, the two disks do not merge on the observed time
scale. Thus, differently from the pure 2D case where such
a mechanism is absent, this merging process decreases the
number of domains, increases the average area, and thus slows
down the rate at which the average area decreases.

Whether or not the results for λ, shown in this section for
the evolution of a single domain, transpose to the coarsening
problem is analyzed below. Moreover, to what extent the above
merging mechanism has an important role in this case is an
open problem.

C. Coarsening slices

When the initial state, instead of being prepared as a single
sphere immersed in a sea of opposite spins, is taken from the
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FIG. 9. (Color online) Collapsed equal time correlation C(r,t),
for several times after the quench from T0 → ∞, indicated in the
legend, as a function of the rescaled distance, r/

√
t . As expected,

dynamical scaling is observed. Inset: length scale R(t) obtained from
C(R,t) = 1/2. The straight line has exponent 0.5.

equilibrium distribution at a given temperature above or at the
critical point, much larger systems must be used in order to
improve the statistics. Nonetheless, in three dimensions severe
restrictions on the total size of the system are imposed. We
here consider systems with a linear size up to L = 400, and
finite-size effects may still be important.

In two dimensions, the Ising model can be quenched to
T = 0 and yet evolve for a certain time before approaching
either the ground state or a stripe state [15,44], time that, in
many cases, is enough to study coarsening phenomena [11,12].
In d = 3, however, the T = 0 dynamics get easily stuck in a
sort of sponge state [16–18,45]. To avoid this halting of the
configuration evolution, after the system is equilibrated either
at T0 → ∞ or at T0 = Tc � 4.51, the quench is performed to
a finite working temperature, T = 2, well below Tp < Tc.

1. T0 → ∞
We start the analysis by checking that dynamic scaling

applies to correlation functions measured on the slices in the
usual way. In Fig. 9 we display the equal-time correlation
between spins at a distance r on the slice, C(r,t), as a function
of the rescaled distance r/t1/2, for several times given in
the legend. The scaling is very satisfactory. In the inset we
show the evaluation of the growing length scale R(t) using
the criteria C(R,t) = 1/2; the straight line is the t1/2 growth
law of curvature-driven dynamics with a nonconserved order
parameter. Note that although they could be taken into account,
we neglect the corrections to scaling linked to the time scale
tp discussed in Ref. [32], as they are not necessary for our
purposes here.

At T0 → ∞, the 2D slices of the 3D system are uncorrelated
and any plane is statistically equivalent to a pure 2D system.
Since both species of spins have, on average, the same density,
no domain percolates along the slices (on the square lattice,
pc � 0.59 [25]) and the distributions of areas and perimeters
do not behave critically at t = 0 [11,12] (see the corresponding
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FIG. 10. (Color online) The number density of geometric domain
areas (inset) and its rescaled form (main panel), in a 2D slice of the
3D IM (including the spanning clusters), per unit area of the system
after a quench from T0 → ∞ to T = 2. Averages are over 7000
configurations (700 samples with 10 slices each) of an N = 2003

system. Note that since the linear system size is much smaller than the
ones used in Ref. [11], the distributions have smaller cutoffs. Albeit
the 3D system is far from the percolation threshold, the distributions
on the slice soon approach a power-law distribution with an exponent
that is compatible, asymptotically and for large systems, with τp =
187/91 � 2.055 (we use, indeed, the value obtained in Sec. II for
L = 200: τA � 1.93). The lines are the 2D result, Eq. (14), with cd �
0.02, λ3D(2) � 1.04, obtained from the single sphere, and the slope τp

above. For small areas with respect to the typical one, A/t < 10, the
inset shows that the distribution of thermal fluctuations approaches
its equilibrium form.

curve in the inset in Fig. 10). However, once quenched to
a subcritical temperature, the critical state of the 2D site
percolation is approached after a time that scales with the
system size as tp ∼ Lαp . The exponent αp is 0.5 on the square
lattice [32] but we have not analyzed the scaling of tp for
the 2D slices of the 3D system, which would constitute a
project on its own. Nonetheless, since the phenomenology of
both 2D and 3D slices is similar (the area distribution soon
develops a power-law tail after the quench, as shown for t = 2
and 4 in the inset in Fig. 10), we expect that tp will behave
accordingly. In the whole 3D volume, on the other hand, since
the random-site percolation threshold for the cubic lattice is
pc = 0.312, there are percolating clusters of both species of
spins at t = 0. After the subcritical quench, the slices become
correlated and the question we want to ask is to what extent
the geometric properties, measured on a slice, resemble those
of a 2D system.

As shown in both Figs. 10 and 11, the exponent of the
power-law tail increases with time. Its asymptotic value, for
geometric domains (Fig. 10), is consistent with the critical
percolation value, τp = 187/91 � 2.055 [25], although deter-
mining it precisely is a very hard task, as already discussed
in Sec. II for the equilibrium data. For hull-enclosed areas
(Fig. 11), on the other hand, the convergence to the asymptotic
exponent (2) is fast. The distributions for geometric domains
contain all clusters, even percolating ones, and present an
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FIG. 11. (Color online) The same as Fig. 10, but for the hull-
enclosed areas. Differently from the geometric domains whose
exponent τA has a strong size dependence, the power-law exponent
here is 2 and is attained much more rapidly. The lines are the 2D result,
Eq. (13), with λ3D(2) � 1.04, obtained from the single sphere. Note
that for long times, the distribution develops a bump, even though the
contribution from percolating clusters has been removed.

overshoot region that does not change position as the system
evolves (and thus moves to the left when we rescale the areas by
time, as shown in the figure). For the hull-enclosed areas there
is no peak associated with the percolating domains (which
are excluded by definition), but at later times the system
develops a maximum anyway. The curves in these figures
(inset) present, in the course of time, two other regimes. They
all display a plateau, which crosses over to the power-law
tail, and a first, very rapid decay in very small areas. The
former is the actual curvature-driven regime. The latter are
static and due to equilibrium temperature fluctuations. In
Fig. 10 (inset) solid black lines represent the analytic law,
Eq. (14), with cd � 0.02 and λ(2) � 1.04. The constant cd

takes the value used in Ref. [12] for the 2D case. The factor
2 in the numerator is associated with the high-temperature
initial condition. The parameter λ is very close in value to
the one measured for the collapsing volume of a single sphere
(see Sec. III B), evaluated at the working temperature T = 2.
Note that even though the measurements are done on a slice, the
relevant coefficient is the one obtained for the whole volume
of the sphere. Analogously, in Fig. 11 (inset) the lines are
Eq. (13) with the same coefficient λ3D and ch = 1/(8π

√
3),

again closely following the 2D results [11]. Upon rescaling
the areas by time, as required by dynamic scale invariance,
a rather good collapse of all curves onto a universal curve is
found (see Figs. 10 and 11). As time increases, the power-law
tail of the distributions is less visible (for these small system
sizes).

Areas and perimeters are also correlated [12,42]. As an
example, we present the collapsed curves (rescaling the area
A by t and the perimeter � by t1/2) in Fig. 12 for the
hull-enclosed areas and the corresponding perimeters (for
geometric domains, the perimeter would also include the
internal perimeters). Small domains are compact and round,
thus A ∼ �2. Large domains are reminiscent of the large
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FIG. 12. (Color online) Rescaled hull-enclosed areas against the
corresponding rescaled perimeters for slices of a 3D system quenched
from T0 → ∞ to T = 2. For small sizes with respect to the typical
one, since domains get round, the rescaled areas are simply the square
of the rescaled lengths, y � x2. For large sizes, the rescaled quantities
are linked by an exponent that is close to the one of critical 2D
percolation, 8/7 � 1.14 [12,46]. Numerically we find y � x1.2. Both
behaviors, for small and large rescaled areas, are shown by straight
dotted lines. The times at which the data are gathered are shown in
the legend.

domains created soon after the quench, when the power law
developed, and one expects that the area and perimeter are
related as in critical percolation, A ∼ �8/7 [46]. Numerically,
we find an exponent close to 1.2, compatible with the 2D
system value [12,42] and with the results in Ref. [26] for
the equilibrium clusters. In summary, within the numerical
precision of our simulation, the dynamical behavior on a
slice of a 3D system is essentially equivalent to an actual
2D system when the initial state is prepared at T0 → ∞. The
surprise is that instead of using the value of λ obtained from
the measurements on a slice of the 3D sphere, λsl(T ), the
time-evolving distribution of geometric domains uses λ3D(T )
related to the whole volume of the sphere, which is half of the
previous one [see Eq. (18)].

2. T0 = Tc

As in the T0 → ∞ case, we start the analysis by checking
that dynamic scaling applies to correlation functions measured
on the slices also in the case in which the quench is performed
from T0 = Tc. We show in Fig. 13 the equal-time correlation
between spins at a distance r on the slice, C(r,t), as a function
of the rescaled distance r/t1/2, for several times given in the
legend. Once again, the scaling is good. Note also that the de-
cay of the correlation keeps memory of the power-law present
at the equilibrium state at t = 0, r2−d−η. Since the correlation
is isotropic, measuring C(r,t) on a slice or in the whole volume
would give the same behavior, thus, in the power-law exponent,
d = 3 and η = 0.354 (the value for the 3D Ising model). We
present in the inset in Fig. 13 the growing length scale R(t)
extracted from C(R,t) = 1/2 and the straight line t1/2.

When prepared in an equilibrium state at the critical
temperature T0 = Tc, several geometric distributions of the
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FIG. 13. (Color online) Collapsed equal time correlation C(r,t)
for several times after the quench from T0 = Tc, indicated in the
legend, as a function of the rescaled distance, r/

√
t . As expected,

dynamical scaling is observed. Inset: Length scale R(t) obtained
from C(R,t) = 1/2. The straight line has exponent 0.5.

2D system present power-law behavior since, in this case, the
thermodynamical and the percolation transitions coincide. Al-
though this is no longer the case in three dimensions, in which
the percolation critical temperature associated with geometric
domains is lower than the thermodynamical one, a 2D slice
presents critical behavior at Tc, and as a consequence, one
should find power-law behavior for several size distributions.

We saw in Sec. II that these distributions present strong
finite-size effects, and in particular, the exponents are smaller
than expected. For example, the known exponent for the
distribution of geometric domain areas in the critical 2D
IM is τ

(2D)
A = 379/187 but this value is only approached

asymptotically, for very large system sizes. For smaller
rescaled sizes, the apparent exponent is even smaller than 2,
which would cause normalization issues. These effects are
even stronger in a sliced 3D system, for which the data do
not allow even a clear extrapolation of the exponent. Besides
differing in the behavior of the exponent, the coefficient of
the power-law distribution for a slice seems to have twice the
value of the corresponding 2D distribution. It is thus interesting
to see how these differences occurring at t = 0 evolve after
the system is quenched to a temperature lower than the
critical one.

After the quench, there seems to be a very fast crossover
to a distribution without the extra factor 2 in the coefficient
[see Fig. 14 (inset)]. This is shown in the behavior of the
distribution for small areas, as it approaches a constant value
that does not depend on the exponent, only on the coefficient
and the measuring time. Indeed, the curves in Fig. 14 (inset)
are well fitted using Eq. (14) without the factor 2 in the
coefficient. However, for large areas, the tail of the distribution
is not well described, as one would expect, by Eq. (14) and
the exponent measured at t = 0, τA � 1.93. We must note,
however, that the slices are small, thus the range of possible
areas is rather limited. As time increases, the almost-flat part
of the distribution gets wider and the power-law regime is
hardly observed. In addition, the system suffers from finite-size
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FIG. 14. (Color online) Number density of geometric domains
per unit area after a quench to T = 2 in a 2D slice of a 3D IM
evolving from a T0 = Tc � 4.5115 initial condition. Averages are
over more than 7000 configurations. The solid line on top of the
t = 0 data (inset; open symbols) is 2cd/A

1.93, while for t > 0 we
use Eq. (14) without the factor 2 in the coefficient. The main panel
shows the collapsed version after proper rescaling of both axes. The
solid line has the same exponent as the t = 0 distribution but half the
coefficient, cd/A

1.93. Although the data could be well enveloped by
a power law with an exponent slightly smaller than 1.93, we remark
that at later times, due to the small size of the slice, the power-law
regime is barely observed in the simulation.

effects, even more severe than those for the 2D case as
discussed in the previous section, and the observed τA does
not even extrapolate to the right value. Nevertheless, we still
observe the correct scaling as shown in Fig. 14. A similar
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FIG. 15. (Color online) The same as Fig. 14, but for hull-
enclosed areas. The solid line on top of the t = 0 data (inset; open
symbols) is 2c/A1.92, while for t > 0 the distribution no longer has
the factor 2 in the coefficient. The main panel shows the collapsed
version after proper rescaling of both axes. Again, the solid line has
the same exponent as the t = 0 distribution but half the coefficient,
cd/A

1.92.
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FIG. 16. (Color online) Rescaled hull-enclosed areas against the
corresponding rescaled perimeters for slices of a 3D system quenched
from T0 = Tc to T = 2. For small rescaled domains y ∼ x2 (dotted
red line), while for larger ones y ∼ x1.3 (straight dotted blue line).
This exponent is compatible with that for the geometric domains on
2D slices of the 3D IM at equilibrium and Tc, δ � 1.23 [26], while
it is well below the critical 2D exponent, δ(2d) � 1.45 [25] (dotted
green line).

behavior, but with a slightly smaller exponent, is shown in
Fig. 15 for hull-enclosed areas.

Areas and perimeters present, again, a two-regime relation.
Small domains are round and A ∼ �2. This first regime can be
observed in the small-A part of Fig. 16, in which we relate the
size of a hull with the area that it encloses. Larger domains, on
the other hand, still encode some information on its original
shape and deviate from the circular format. Indeed, roughly
above A/t � 10, the exponent decreases to 1.3. This value
is compatible with previous estimates [26] yet well below the
critical 2d exponent [29], 16/11 � 1.454. Again, the origin for
this discrepancy may be the strong finite-size effects previously
discussed.

IV. CONCLUSIONS

We have addressed the differences between clusters of a
2D slice of a 3D IM and culsters of an actual 2D system,
both at equilibrium and while coarsening. We recall that the
clusters on 2D slices of the 3D IM are critical at equilibrium
at Tc (contrary to the 3D structures). We have found that the
distribution of finite clusters, N (A), has a larger weight in the
2D slices than in the truly 2D model, whereas a second, very
large (though still finite) cluster is mostly absent in the former
while present in the latter. We have shown that, although we
work with rather large system sizes, the measured exponents
are still far from their asymptotic values when working on 2D
slices.

Next we move to analysis of the geometric clusters and hull-
enclosed areas that develop after instantaneous quenches from
equilibrium at the infinite and the critical temperatures. We
found striking differences between the case with long-range
correlations in the initial state (T0 = Tc) and the case in which
these do not exist (T0 = ∞). In the absence of correlations,
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neighboring layers are independent, and even though strong
correlations are built after a sudden subcritical quench, the
subsequent behavior does not essentially differ (within our
numerical precision) from that found in the strictly 2D case.
On the other hand, for critical initial states, distant slices
are correlated initially and this effect introduces differences
between properties of the slices and properties of the actual
2D system. These differences already exist in the initial state,
as explained in the previous paragraph. The extra weight in
the finite-size areas (a factor of 2) seems to be washed out
very rapidly after the quench and the small rescaled areas in
the 2D slices soon become very similar (identical within our
numerical accuracy) to those in the 2D system. Instead, the
distribution and geometric properties of the large objects are
much harder to characterize numerically in the 2D slices, as
they are affected by strong finite-size effects. Although we find

that the data satisfy dynamic scaling we cannot draw precise
conclusions about the exponent characterizing the tail of the
distribution or the area-perimeter law, as these are hard to
determine numerically with good precision.

Work is in progress to extend these results to the 3D IM
with order-parameter-conserving dynamics and to the Potts
model.

ACKNOWLEDGMENTS

J.J.A. acknowledges the warm hospitality of the LPTHE
(UPMC) in Paris during his stay where part of this work was
done. J.J.A. was partially supported by the INCT-Sistemas
Complexos and the Brazilian agencies CNPq, CAPES, and
FAPERGS. L.F.C. is a member of Institut Universitaire de
France.

[1] A. J. Bray, Adv. Phys. 43, 357 (1994).
[2] A. Onuki, Phase Transition Dynamics (Cambridge University

Press, Cambridge, UK, 2004).
[3] S. Puri and V. Wadhawan (eds.), Kinetics of Phase Transitions

(Taylor and Francis Group, London, 2009).
[4] W. R. White and P. Wiltzius, Phys. Rev. Lett. 75, 3012 (1995).
[5] H. Jinnai, Y. Nishikawa, T. Koga, and T. Hashimoto,

Macromolecules 28, 4782 (1995).
[6] H. Jinnai, T. Koga, Y. Nishikawa, T. Hashimoto, and S. T. Hyde,

Phys. Rev. Lett. 78, 2248 (1997).
[7] H. Jinnai, Y. Nishikawa, and T. Hashimoto, Phys. Rev. E 59,

R2554 (1999).
[8] D. Bouttes, E. Gouillart, E. Boller, D. Dalmas, and D.

Vandembroucq, Phys. Rev. Lett. 112, 245701 (2014).
[9] J. Lambert, R. Mokso, I. Cantat, P. Cloetens, J. A. Glazier,

F. Graner, and R. Delannay, Phys. Rev. Lett. 104, 248304 (2010).
[10] I. Manke, N. Kardjilov, R. Schäfer, A. Hilger, M. Strobl,
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