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The thermodynamic curvature scalar R is evaluated for supercooled water with a two-state equation of state
correlated with the most recent available experimental data. This model assumes a liquid-liquid critical point.
Our investigation extends the understanding of the thermodynamic behavior of R considerably. We show that R

diverges to −∞ when approaching the assumed liquid-liquid critical point. This limit is consistent with all of the
fluid critical point models known so far. In addition, we demonstrate a sign change of R along the liquid-liquid
line from negative near the critical point to positive on moving away from the critical point in the low density
“ice-like” liquid phase. We also trace out the Widom line in phase space. In addition, we investigate increasing
correlation length in supercooled water and compare our results with recent published small angle x-ray scattering
measurements.
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I. INTRODUCTION

The thermodynamic Riemann scalar curvature R is an
element of thermodynamic metric geometry [1]. R reveals
information about intermolecular interactions [2] and the
size of organized mesoscopic structures [3]. By applying
thermodynamic fluctuation theory [4], R can be formulated
as an invariant for any thermodynamic coordinate system. In
the recent past, this geometric concept has been systematically
developed for atomic and molecular fluid systems using
thermodynamic data obtained from experiments and computer
simulations [5–10]. These studies take us a long way toward
completing the picture of R in fluid and solid systems.
Moreover, these investigations reveal interesting features that
may bear important information for the ongoing effort of
understanding the thermodynamic curvature scalar R in a
broader context of thermodynamic systems, including black
hole thermodynamics [3,11].

Recently, the analysis of thermodynamic curvature R in
the whole fluid phase was examined for four fluids based
on equations of state (EOS) obtained by correlation with
experimental data [10]. In this study, R diagrams were
constructed for argon, hydrogen, carbon dioxide, and water.
All four fluids exhibit significant regimes of positive R at
very high pressure in the supercritical regime similar to
the LJ fluid [9]. Water is special in having, in addition, a
slab-like feature of positive R in the stable liquid phase near
the triple point, and encompassing the density maximum at
4 ◦C and ambient pressure. Based on experimental findings
[12–14] the R > 0 slab can be associated with an onset of
hydrogen-bond (HB) clustering of open “ice-like” structures
within the HB network [10,15]. This connects to our work
since it was proposed [10] that solid-like properties reveal
themselves thermodynamically through positive values of the
thermodynamic curvature R.

Near the critical point, |R| is expected to be proportional to
the correlation volume ξd , where d is the spatial dimensionality

of the system. To evaluate the dimensionless proportionality
constant between |R| and ξd near the critical point, model
calculations in which both R and ξ are evaluated are required.
Several calculations of this type have been carried out in
critical regions: (1) four pure fluids near the critical point [1],
(2) the one-dimensional ferromagnetic Ising model [16], (3)
the one-dimensional Takahashi gas [17], and a decorated Ising
chain [18]. In all these cases, the same proportionality constant
was obtained:

ξd = |R|
2

, (1)

with R < 0 in each case. Based on these limited calculations,
the proportionality constant 1

2 would appear to be universal
but there is yet no general proof.

Water is unique among other pure fluids we have looked
at in having dramatically decreasing R, to negative values,
on cooling into the metastable liquid phase. This is of interest
because anomalies apparent in stable cold liquid water become
increasingly pronounced in the metastable supercooled state.
In this study, we extend our investigations of R [10] into
the metastable supercooled liquid water regime. In addition,
the application of Riemannian geometry on unusual phase
diagrams of the type here may critically test the findings made
for ordinary substances and may give additional insights into
the thermodynamic behavior of R.

Various scenarios have been proposed to explain the
anomalous behavior of supercooled water [19–21]. A scenario
that has attracted much attention employs the assumption of
a liquid-liquid phase transition (LLT) terminated at a liquid-
liquid critical point (LLCP) [20]. This scenario shows how
water anomalies could be linked to critical point fluctuations.
Figure 1 shows a schematic diagram [22] of metastable
supercooled liquid water with a LLCP.

The purpose of this article is the analysis of the thermody-
namic curvature R in the context of the LLCP scenario by using
a theoretical model (EOS) consistent with experimental data

1539-3755/2015/91(3)/032141(8) 032141-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.032141


HELGE-OTMAR MAY, PETER MAUSBACH, AND GEORGE RUPPEINER PHYSICAL REVIEW E 91, 032141 (2015)

Liquid

Gas

HDL

LDL

C

C’

HDA

LDA

Temperature

pr
es
su
re

Tx TH

FIG. 1. (Color online) A schematic diagram of the metastable,
supercooled liquid phase extending down to the limiting homoge-
neous nucleation temperature TH , where an amorphous solid must
form. We show the first-order liquid-liquid phase transition curve
between a high-density phase (HDL) and a low-density phase (LDL).
This curve terminates in a second critical point C′. This phase
transition is not directly accessible to measurements in the bulk,
since it falls below TH . However, the thermodynamic properties in the
liquid phase appear to be strongly affected by the critical properties
near C′. Further metastable and regular cooling brings us to the
cubic ice crystallization curve Tx , with amorphous high-density and
low-density amorphous phases HDA and LDA corresponding to the
HDL and LDL liquid phases. Also shown is the regular liquid-vapor
coexistence line, terminating in the regular critical point C.

[23]. We attempt no final conclusion concerning the existence
of a LLCP. Such a point must be demonstrated experimentally.
A detailed discussion of the pros and cons regarding the LLCP
scenario, and a review of currently available experimental data,
may be found elsewhere [24–27].

An important issue in this paper is the sign of R. In this
respect, a key early result [28,29] was the finding that for the
ideal Fermi (Bose) gasses, with the effective intermolecular
quantum statistical interaction being repulsive (attractive),
the sign of R is uniformly positive (negative). The midpoint
between these quantum cases is the classical ideal gas, with
R = 0 [1]. Our previous results in fluids [9,10] support this
correspondence between the sign of R and the basic character
of the intermolecular interactions, even for the condensed
liquid and solid regimes, where |R| is generally found to be
small, on the order of the molecular volume.

The liquid state in water has mostly negative R, because the
water molecules are mostly far enough apart that the attractive
interaction dominates. Likewise, if the LLCP is in the same
universality class as that of the 3D Ising model, as is generally
assumed, R should be negative everywhere in the critical
regime. There are some cases, however, where positive R in
liquid water might be expected. It is thought that the source of

a number of liquid water’s anomalies are tetragonal solid-like
structures mediated by hydrogen bonding. We have proposed
[10] that in the stable liquid, R identifies the presence of
these solid-like structures by becoming positive. We propose
here that this idea extends into the metastable water regime.
Tetragonal “ice-like” structures generally take up more space
than the more disorganized liquid structures. Hence, we would
look for positive R particularly in relatively low-density liquids
(LDL). We find a transition to positive R in the LDL phase
along the liquid-liquid coexistence curve.

Our paper is organized as follows. First, we analyze and
discuss the thermodynamic curvature scalar in the supercooled
water region, using in particular an R diagram. We strengthen
the motivation for the choice of the EOS used for this purpose.
Furthermore, we find consistency with R calculated from
earlier results obtained in the stable cold water state [10].
We follow with a discussion of the asymptotic behavior of
the thermodynamic curvature close to the LLCP. We key also
on the location of the Widom line corresponding to curves of
maximum |R| at either constant pressure or constant tempera-
ture. Furthermore, we investigate increasing correlation length
in supercooled water calculated from the thermodynamic
curvature and compare the results with those determined from
small angle x-ray scattering measurements [30].

II. ANALYSIS AND DISCUSSION

The anomalous behavior of several thermodynamic prop-
erties of metastable supercooled water has motivated various
attempts at theoretical explanation [19–21]. Almost all models
propose the existence of two different states of local molecular
order, namely a high-density liquid (HDL) and a low-density
liquid (LDL) structure. HDL configurations are favored at
higher temperatures and higher pressures, where the local
tetrahedrally coordinated HB network structure is not fully
developed. LDL structures are favored at lower temperatures
and lower pressures, where open “ice-like” HB network
configurations develop. It is believed that the competition be-
tween these two configurations generates the anomalies in the
thermodynamic response functions of cold and supercooled
water.

EOS’s based on the proposed existence of two different
states of local molecular order have provided significantly
improved accuracy for the thermodynamic properties of
supercooled water. In a series of papers, so-called two states
EOS (TSEOS) models were developed by Holten et al., and
correlated with both experimental [23,27,31–33] and computer
simulation [34,35] data. Holten et al. assumed that liquid
water at low temperatures can be described as a mixture
of two interconvertible structures, a HDL state and a LDL
state whose ratio is controlled by thermodynamic equilibrium.
Incorporating the LLCP, Holten et al. [33] developed an EOS
that allows the use of a curved LLT, in contrast to previous
models that worked with a straight LLT line [31,32]. A
refined equation [23] based on this correlation [33] represents
almost all the thermodynamic data of cold and supercooled
water. Because we are interested in connecting smoothly
the thermodynamic curvature obtained in the supercooled
metastable state to our findings of cold stable water [10] we
use the parameter set of Ref. [23] in our analysis. In a very
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FIG. 2. (Color online) R diagram (R contours measured in nm3) of supercooled water for temperatures ranging from T = 220 to 300 K
and for pressures ranging from p = −100 to 400 MPa. In the negative pressure region we omit a colored contour field in order to indicate the
extrapolated character of this region. The LLT line is marked by a red solid curve terminating at the LLCP marked by a red solid circle (C′).
Two lines R = 0 develop in the diagram, one in the stable cold water region close to the freezing line, and the other in the LDL region below
the LLT line. The triple point is marked by a blue solid box, and the solid-liquid coexistence line by a blue solid curve showing the melting
lines of ice I, III, and V. The liquid-vapor coexistence curve starting from the triple point is indicated as a dark red line.

recent study [27], the model of Ref. [23] has been evolved
further but this does not affect our conclusions.

A brief outline of the procedure of determining R in the two
cases of (T ,ρ) and (T ,p) coordinates is given in Appendix A.
Since R is a thermodynamic invariant, its value for a particular
thermodynamic state does not depend on the coordinates
employed to calculate it. In Appendix B, a brief outline of
the mathematical structure of the TSEOS model [23] is given.
Because this model is naturally expressed in terms of the Gibbs
energy G, the calculation of R differs from that in recent
studies [9,10], where (T ,ρ) coordinates were used. By using
the Gibbs energy as the decisive thermodynamic potential, the
metric elements have to be formulated in (T ,p) coordinates [6].

A. Thermodynamic curvature from the
Holten-Anisimov-Sengers EOS

The HAS-TSEOS model [23] of Holten, Anisimov, and
Sengers (HAS) was fit to experimental data ranging from the
homogeneous ice nucleation temperature up to 300 K and from
a pressure up to 400 MPa. Because our interest concentrates
on the qualitative behavior of R in the supercooled region
we use this equation to extrapolate data into regions around
the assumed LLCP, including negative pressures. We assume
that the HAS-TSEOS predicts this region at least qualitatively

with their choice of LLCP coordinates of TC = 228 K and
pC = 0 MPa.

In Fig. 2 we present the R diagram (R contours) of
supercooled water for temperatures ranging from T = 220 to
300 K and for pressures ranging from p = −100 to 400 MPa.
The LLT line is marked by a red solid curve terminating at the
LLCP marked by a red solid circle and denoted by C′. In the
negative pressure region of Fig. 2 we omitted a colored contour
field in order to indicate its extrapolated character. Starting in
the stable cold water phase the thermodynamic curvature R

is positive and consistent with our previous reported findings
[10]. Cooling the system isobarically into the supercooled state
leads to negative and decreasing R corresponding to increasing
isothermal compressibility kT . The sign change of R along the
line R = 0 occurs in the stable cold liquid phase close to the
freezing line, as shown in Ref. [10]. At the assumed LLCP, R

diverges to −∞ consistent with all of the fluid critical point
models known so far [3]. Furthermore, a general feature of
R contours found in other critical point models of fluids is
also fulfilled for the LLCP of supercooled water. Close to the
LLCP, the R contours begin and end on the LLT line (i.e., see
the R = −0.5 contour in Fig. 2), and loop around the LLCP,
establishing a distinct, self-contained, critical point regime.
More interestingly, the thermodynamic curvature R remains
negative for higher pressures above the LLT line consistent
with the HDL structure, whereas an additional line R = 0
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FIG. 3. (Color online) Cube root of the thermodynamic curvature
R1/3 along the LDL side (red curve) and the HDL side (blue curve)
of the LLT line as a function of temperature (a) and of density (b). On
the LDL side a point R = 0 occurs approximately at T = 223 K and
ρ = 900 kg/m3 (marked by arrows) indicating a change to organized
“ice-like” structures.

develops at lower pressures below the LLT line with large
regions of positive R, indicating the more ordered “ice-like”
structure of the LDL phase. This point becomes clearer if the
thermodynamic curvature R is plotted along the LLT line.

In Fig. 3 we show the cube root of thermodynamic curvature
R1/3 along the LDL side (red curve) and the HDL side (blue
curve) of the LLT line as a function of temperature (a) and
of density (b). We scale the thermodynamic curvature as
R1/3 because this quantity measures directly the correlation

length ξ (see Sec. II B). Both Figures show nicely strong
diverging R1/3 to −∞ at the LLCP with TC = 228 K and
ρC = 914.844 kg/m3. On the HDL side (blue curve) the
thermodynamic curvature remains negative characterizing
disorganized liquid structures, whereas on the LDL side (red
curve) a zero crossing point occurs approximately at T =
223 K and ρ = 900 kg/m3 (marked by arrows), indicating
a change to organized “ice-like” structures.

A good validation of our calculated R would be a smooth
connection to the thermodynamic curvature calculated in
the stable liquid phase above the melting curve [10] based
on the IAPWS-95 formulation [36,37]. In Fig. 4, we show
the temperature dependence of the thermodynamic curvature
R ranging from T = 240 to 330 K at different constant
pressures of p = 300, 200, 100, 60, 20, and 0.1 MPa. The
thermodynamic curvatures based on the IAPWS-95 formu-
lation are shown as green lines, whereas the red lines show
the thermodynamic curvatures based on the HAS-TSEOS.
Both curves exhibit a smooth connection without significant
discontinuities at the point of switching. Strictly speaking,
the boundary of the range of validity of IAPWS-95 is the
melting curve. However, when extrapolating the data from
the IAPWS-95 formulation into the supercooled region at
p = 0.1 MPa, the thermodynamic curvature follows closely
that of the HAS-TSEOS. An increase in pressure results in
decreasing compliance at low temperatures. At a pressure of
p = 300 MPa the two curves match only for temperatures
of roughly T > 300 K, where the thermodynamic curvature
obtained from the IAPWS-95 formula develops an unrealistic

(a) (b) (c)

(d) (e) (f)

FIG. 4. (Color online) Comparison between the thermodynamic curvature R (measured in nm3) obtained from the HAS-TSEOS (red lines)
[23] and the IAPWS-95 formulation (green lines) [36,37] for temperatures ranging from T = 240 to 330 K at different constant pressures of
p = 300, 200, 100, 60, 20, and 0.1 MPa. The blue dotted lines indicate the melting temperatures.
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extrema. Generally, the R data are pretty consistent down to the
melting temperature at low pressures, less so at high pressures.
This is consistent with the description of Holten et al. who
also find larger density deviations between HAS-TSEOS
and IAPWS-95 at higher pressures [23]. Nevertheless, both
formulations clearly confirm the findings of positive R in stable
cold water near the triple point and the disappearance of the
R > 0 slab for pressures p > 200 MPa [10]. We add that the
smooth connection of thermodynamic curvature is a strong
indication for the high precision of both EOSs in the range of
its applicability, especially because the calculation method for
the thermodynamic curvature is different for the two EOSs.
The Helmholtz free energy is the thermodynamic potential
used with (T ,ρ) coordinates in the stable cold water phase,
whereas the Gibbs free energy with (T ,p) coordinates is used
for the metastable supercooled region.

In summary, the overall behavior of the thermodynamic
curvature R nicely confirms the picture developed in the stable
fluid [10] in the supercooled water regime. The sign change
of R along the LLT line indeed corresponds to the two liquid
phases (HDL and LDL) along this separation line.

B. Asymptotic behavior of thermodynamic
curvature close to the LLCP

A problem that arises within the LLT hypothesis is finding
the Widom line [38]. The Widom line is characterized by
the locus of points with maximum correlation length ξ either
along constant-pressure or constant-temperature paths. Since
ξ can be difficult to determine, the Widom line is difficult
to find in practice. In place of ξ , extrema in the response
functions are regularly used to estimate the course of the
Widom line [39] since asymptotically close to critical points all
response functions can be expressed in terms of the correlation
length. However, our geometrical approach allows a direct
computation of the Widom line since the volume of the
correlation length is proportional to the Riemannian ther-
modynamic scalar curvature, |R| ∼ ξ 3 [5,7]. Investigations
for characterizing the Widom line were carried out in the
supercritical state of the van der Waals and the LJ system along
constant pressure and constant-temperature paths [5,7]. These
studies show clearly that response function extrema do not
always follow the Widom line and they vary considerably when
departing from the critical point. Under these circumstances,
it is of great interest to calculate the Widom line for the LLCP
in supercooled water based on the maximum of the scalar
curvature |R|max.

In Fig. 5, we show the development of negative curvature
R near the LLCP along constant pressure [Fig. 5(a)] and
constant temperature paths [Fig. 5(b)]. According to the
critical behavior of the correlation length ξ , the −R curves
diverges to ∞ when approaching the assumed LLCP at
pC = 0 MPa, TC = 228 K, and ρC = 914.844 kg/m3 and they
develop pronounced maxima when applying negative pressure
[Fig. 4(a)] or decreasing the temperature [Fig. 5(b)].

Points with maximum |R| determine the loci of correlation
length maxima, e.g., the Widom line. In Fig. 6, we show the
slope of |R|max at constant temperature and constant pressure
in the ρ − T [Fig. 6(a)] and the p − T [Fig. 6(b)] phase
projections. In Fig. 6(a), the lines of |R|max start at the LLCP

FIG. 5. (Color online) Development of the negative curvature R

near the LLCP along isobars (a) in a range from −15 to 10 MPa and
along isotherms (b) ranging from 227 to 230 K. LLCP coordinates
are pC = 0 MPa, TC = 228 K, and ρC = 914.844 kg/m3.

with different negative gradients. The course of both lines of
maximum curvature correspond to an increase in temperature
with density decrease, but |R|max at constant temperature
(red curve) passes through an extrema at ρ ≈ 909 kg/m3

followed by an increase in temperature with density increase.
In Fig. 6(b), the lines of |R|max start with roughly the same
negative gradient at the LLCP and both curves correspond to an
increase in temperature with negative pressure increase, where
the increase in temperature is stronger for |R|max at constant
temperature (red curve). For the LLCP of supercooled water
we confirm the findings made elsewhere [7] that the lines of
|R|max at constant temperature or constant pressure widens
rapidly upon departure from the LLCP that should be of some
importance in determining the position of the LLCP.

In a recent study, Huang et al. [30] demonstrated that
the correlation length ξ of bulk liquid water determined by
small angle x-ray scattering measurements rises rapidly upon
supercooling. The lowest accessible temperature in this study,
T = 252 K, was set by beam-induced crystallization. The
authors were able to fit the correlation length using a power
law as

ξ = ξ0 ε−ν, (2)

FIG. 6. (Color online) Points with maximum |R| along curves
with constant temperature or pressure determining the Widom
line. The slope of lines |R|max is shown at constant temperature
and constant pressure in the ρ − T (a) and the p − T (b) phase
projections. The lines of |R|max start at the LLCP with pC = 0 MPa,
TC = 228 K, and ρC = 914.844 kg/m3.
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FIG. 7. (Color online) Temperature-dependent behavior of the
correlation length ξ , at ambient pressure in the supercooled region
of water. Circles indicate small angle x-ray scattering measurements
[30] down to a temperature of 252 K. The brown curve represents their
power law [30] extrapolated to values close to the LLCP. The green
and the red curve show ξ calculated using the relation |R|/2 = ξ 3

obtained from the HAS-TSEOS [23] and the IAPWS-95 formula
[36], respectively.

where ε = T
TW

− 1, with ξ0 = 1.287 Å, ν = 0.32, and a Widom
line temperature of TW = 228 K at constant ambient pressure.
This form of the power law behavior has been used to
phenomenologically describe the thermodynamic anomalies
of supercooled water [40]. Since the reported measurements
[30] are far from the conjectured second critical point in water,
the exponent ν = 0.32 is thus not expected to coincide with
the critical exponent ν = 0.629 for the 3D Ising model, a value
confirmed for liquid-liquid critical points by recent computer
simulations, analyzed with finite-scaling theory [41].

It is of great interest to compare the postulated universal law
Eq. (1) in the vicinity of the LLCP of water with the power law
results according to Eq. (2). In Fig. 7, we show the temperature-
dependent behavior of ξ at ambient pressure in the supercooled
region of water. Circles indicate the measurements of Huang
et al. down to a temperature of 252 K, and the brown curve
represents their power law extrapolated to values close to the
LLCP. The green curve shows the calculated correlation length
from Eq. (1) obtained from the HAS-TSEOS, whereas the
red line is evaluated from the IAPWS-95 formula. The results
indicate that water anomalies can be attributed to an increasing
characteristic length scale of density fluctuation between HDL
and LDL regions. Within uncertainties of both, small angle
x-ray scattering measurements [30] and thermodynamic mea-
surements for fitting the HAS-TSEOS [23], the compliance in
Fig. 7 is acceptable when approaching the LLCP and supports
the universality of the relation |R|/2 = ξ 3.

III. CONCLUSION

In this study, we analyzed in detail the behavior of the
thermodynamic curvature scalar R in the supercooled water
region, using a TSEOS model [23] that presumes the LLCP
scenario. We used this equation to extrapolate data into regions
around the assumed LLCP expecting, at least, qualitative
validity of the equation in this region.

We showed that the basic behavior of R at the LLCP
is consistent with the fluid critical point models known so
far, including the divergence of R to −∞. Furthermore,
the sign change of R along the LLT line confirms findings
elsewhere [10], where solid-like fluid states were proposed as
corresponding to positive values of R. On the low-pressure
LDL side of the LLT line, organized “ice-like” structures
lead to positive R, whereas on the high-pressure side HDL
structures exhibit only negative curvature. Previously obtained
results of positive curvature in stable cold water near the triple
point [10] based the IAPWS-95 formula [36] was confirmed
on the basis of the TSEOS extended into this region.

Starting from the assumed LLCP we constructed Widom
lines corresponding to the locations of maximum |R| along
lines of constant pressure and temperature. The lines of |R|max

at constant temperature or constant pressure separate upon
departure from the LLCP, indicating that the path used for the
calculation of the Widom line is important for determining the
location of the LLCP.

Finally, we directly calculated the correlation length
from the relation |R|/2 = ξ 3 based on the HAS-TSEOS.
We compared the calculated correlation length with results
obtained from small angle x-ray-scattering measurements and
concluded that the postulated universality of Eq. (1) appears
to be valid in the context of measurement uncertainties on the
LLCP of water.

The LLCP scenario presumed in our study has recently
received another interesting point of view [42,43]. By using
molecular dynamics studies it was found that bulk water
crystallization occurs more rapidly than the equilibration
of LDL. Certainly, it is of great interest to investigate the
thermodynamic curvature under these circumstances. We are
in the process of making a detailed analysis of R for this
situation.
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APPENDIX A

The thermodynamic line element d� is given by the
thermodynamic entropy information metric [4]

d�2 =
∑
i,j

gij dqidqj .

d�2 is an invariant in the thermodynamic parameters qi , and
the coefficients gij are the components of the thermodynamic
metric tensor. For a one-component fluid there are two
independent state variables q1 and q2 and the Riemannian
curvature is calculated from [6,44]

R = − 1√
g

[
∂

∂q1

(
g12

g11
√

g

∂g11

∂q2
− 1√

g

∂g22

∂q1

)

+ ∂

∂q2

(
2√
g

∂g12

∂q1
− 1√

g

∂g11

∂q2
− g12

g11
√

g

∂g11

∂q1

)]
,
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with

g = g11 g22 − g2
12.

By the rules of Riemannian geometry, the value of the
thermodynamic curvature for any thermodynamic state is
independent of the coordinate system used to calculate it. If
we choose T and ρ as independent variables the basis of our
analysis for R is the Helmholtz free energy per volume a =
a(T ,ρ). (T ,ρ) coordinates are orthogonal and therefore [6]

g12 = gTρ = 0, g11 = gT T = − 1

kBT

∂2a

∂T 2
,

g22 = gρρ = 1

kBT

∂2a

∂ρ2
,

where kB is Boltzmann’s constant.
If we choose T and p as independent variables the basis

is the Gibbs free energy per volume ĝ = ĝ(T ,p). (T ,p)
coordinates are not orthogonal and the metric elements become
[6]

g12 = gTp = − 1

kBT

∂2ĝ

∂p ∂T
, g11 = gT T = − 1

kBT

∂2ĝ

∂T 2
,

g22 = gpp = − 1

kBT

∂2ĝ

∂p2
,

a = a(T ,ρ) and ĝ = ĝ(T ,p) are calculated from the EOSs
discussed in the previous sections and in Appendix B.

APPENDIX B

The HAS-TSEOS [23] assumes that liquid water is a
mixture of a HDL structure (index A) and a LDL structure
(index B). The model is a member of a large group of TS
models that have been applied to thermodynamic phenomena
in one-component liquids [45–50]. The fraction of water
molecules in state B is denoted by x, and is controlled by a
“reaction” A ↔ B. We start with the Gibbs energy per molecule

G and introduce dimensionless quantities:

Ĝ = G

RGTC

, T̂ = T

TC

, τ = T − TC

TC

, π = p − pC

RGTC ρC

,

where RG is the gas constant, and the LLCP parameters are
denoted by a subscript C. The equation of state is

Ĝ

T̂
= ĜA

T̂
+ xL + x ln x + (1 − x) ln(1 − x) + ωx(1 − x),

where the field L is given by

L = λ(τ + aπ + bτπ ),

with the interaction parameter ω = 2 + ω0π . λ, a, b, and ω0

are numerical constants. The dimensionless Gibbs energy of
the pure component A is given by

ĜA =
14∑
i=1

ciτ
ai πbi +

20∑
i=15

ciτ
ai πbi exp(−π ),

where ci , ai , and bi are suitable constants. The equilibrium
fraction xe is calculated from the condition(

∂Ĝ

∂x

)
T ,p

= 0 at x = xe,

which yields

L + ln
xe

1 − xe

+ ω(1 − 2xe) = 0.

This equation must be solved numerically for the fraction
xe and the Gibbs free energy is then given as an implicit
function from p and T . For the calculation of the Riemann
thermodynamic curvature, higher derivatives of the Gibbs free
energy have to be calculated, and therefore the derivatives of
the fraction xe = xe(T ,p) have to be calculated numerically
as well. This makes the procedure very different from the
calculation of the Wagner-Pruß equation, which starts from
the Helmholtz free energy in (T ,ρ) coordinates and which is
given as an explicit function.
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