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In this paper, we extend the studies on the emergent thermodynamics in a quenched quantum Ising chain (QIC)
[R. Dorner, J. Goold, C. Cormick, M. Paternostro, and V. Vedral, Phys. Rev. Lett. 109, 160601 (2012)] to a more
general quantum spin chain with asymmetrical excitation spectra. We verify that the Jarzynski and Tasaki-Crooks
relations are still tenable in this system. As an example, we discuss the behaviors of the work done and irreversible
entropy production induced by a sudden quenching in the anisotropic XY chain in a transverse field with the
XZY-YZX type of three-site interactions. Different from the QIC, this system has the phase transitions not only
between two gapped phases, but also between gapped (or gapless) and gapless phases at zero temperature. We
discuss the effects of quantum phase transitions on the work done and irreversible entropy production at low
temperature.
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I. INTRODUCTION

It is well known that if a system is driven far away
from thermal equilibrium its behavior cannot be described by
near-equilibrium approximations. Thus fluctuation theorems
may be used to discuss the evolution of the system [1–3]. In
1997, Jarzynski presented a relation [4] that shows how to
determine free energy changes by measuring only the work
performed on the system, without the need that the processes
be quasistatic. By comparing probability distributions for the
work spent in the original process with the time-reversed
one, Crooks found a refinement of the Jarzynski relation,
which is referred to as the Tasaki-Crooks relation [5]. Both
these two relations became particularly useful for determining
free energy differences. In other words, important equilibrium
information can be extracted by studying the fluctuations in
nonequilibrium work. In recent years, these relations, initially
derived for classical systems, have been extended to quantum
systems [2,6–13].

The simplest protocol to take a quantum system out of
equilibrium is to change one of the system parameters, which
is usually mentioned as quantum quenching. There is much
work on the probability distribution function of the work
done [8,10,13–16], the thermalization [17], and the quantum
entanglement [11,18–24] of quantum systems following a
quenching. Among them, it is particularly interesting when the
change takes the system through a quantum phase transition
(QPT) involving macroscopic changes in the state of the
system at the initial and final points.

Recently, Dorner et al. gave an analytic demonstration
of the fluctuation relations in a sudden quenched transverse
quantum Ising chain (QIC) and found that near criticality a
small change in the transverse field reflected in a sharp increase
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in irreversible entropy production [6]. Their derivation was
based on the symmetrical excitation spectra. In this paper,
we will extend the discussion about QIC to a comparatively
general quantum spin chain with asymmetrical excitation
spectra in order to find out whether the fluctuation relations
depend on the symmetry of the excitation spectra and how
the different QPTs affect the behaviors of the work done and
irreversible entropy production. As an example, we discuss the
behaviors of the work done and irreversible entropy production
in the anisotropic XY chain in a transverse field with the
XZY-YZX type of three-site interactions. Different from the
QIC, this system has gapped and gapless phases [25,26], so
that it may undergo three different QPTs at zero temperature:
the QPT between two gapped phases, the QPT between gapped
and gapless phases, and the QPT between two gapless phases.
We discuss the effects of QPTs on the the work done and
irreversible entropy production at low temperature.

This paper is organized as follows. In Sec. II, we give a
brief description of the quantum Jarzynski and Tasaki-Crooks
relations. In Sec. III, we extend the demonstration to the
quantum spin chain with asymmetrical excitation spectra. In
Sec. IV, we discuss the behaviors of the work done and
irreversible entropy production in the anisotropic XY chain
in a transverse field with the XZY-YZX type of three-site
interactions. Section V gives a brief conclusion.

II. THE QUANTUM JARZYNSKI AND
TASAKI-CROOKS RELATIONS

We consider a quantum system, whose state depends on
some parameter λ, if the system equilibrates with the reservoir
at the temperature β−1. The partition function is

Z(λ) = Tr[e−βH (λ)]. (1)
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At time t = 0, the system is in equilibrium with λ at an initial
value λ0. Then we take the parameter from its initial value λ0

to a final value λτ at a later time t = τ and record the work
done once λτ is reached. The initial and final Hamiltonians
have the spectral decompositions H (λ0) = ∑

n En(λ0)|n〉〈n|
and H (λτ ) = ∑

m Em(λτ )|m̃〉〈m̃| with eigenvalues En(λ0)
[Em(λτ )] and eigenvectors |n〉 (|m̃〉), respectively. Following
a sudden quenching (τ → 0), the transition probabilities
are p0

np
τ
m|n = e−βEn(λ0)|〈n|m̃〉|2/Z(λ0). Accordingly, the work

distribution is [7]

PF (W ) =
∑
n,m

p0
np

τ
m|nδ{W − [Em(λτ ) − En(λ0)]}. (2)

The Fourier transform of the work distribution is [8]

χF (u) =
∫

dWeiuWP (W )

= Tr[eiuH (λτ )e−iuH (λ0)e−βH (λ0)/Z(λ0)], (3)

which is also referred to as the characteristic function in the
forward process.

The Tasaki-Crooks relation is written in terms of the
characteristic function as [5]

χF (u)

χB(−u + iβ)
= Z(λτ )

Z(λ0)
. (4)

χB , here, is the characteristic function in the backward process.
The Jarzynski relation [4] is given as

χF (iβ) = 〈e−βW 〉 = Z(λτ )

Z(λ0)
= e−β�F . (5)

These two fluctuation relations are demonstrated by Dorner
et al. in a sudden quenched transverse QIC [6] by treating
the quenching as a thermodynamic transformation. The two
relations allow one to access the free energy difference �F

between two states via nonequilibrium measurements, such as
the work done, no matter how far the system is driven out of
equilibrium. For the isothermal case, the average work 〈W 〉
will exceed the free energy difference �F between initial and
final states: 〈W 〉 � �F . The deficit between the average work
and the variation in free energy is the average irreversible work,
〈Wirr〉. The irreversible entropy production is defined as

�Sirr = β〈Wirr〉 = β(〈W 〉 − �F ) (6)

with

〈W 〉 = −i
dχF (u)

du

∣∣∣∣
u=0

= Tr

[
H (λτ )e−βH (λ0)

Z(λ0)

]
− Tr

[
H (λ0)e−βH (λ0)

Z(λ0)

]
. (7)

In the following, we will extend the discussion to a more
general quantum spin chain.

III. A QUANTUM SPIN CHAIN WITH ASYMMETRICAL
EXCITATION SPECTRA

Now we discuss a general quantum spin chain, whose
Hamiltonian can be diagonalized to a quadratic form as

H =
∑

k

�k

(
η
†
kηk − 1

2

)
, (8)

where k are the waves vectors, �k are the quasiparticle
excitation spectra, and ηk and η

†
k are fermionic annihilation

and creation operators.
The quasiparticle excitation spectra �k can always be

written as �k = εk + ak . Here, εk are symmetrical while ak

are antisymmetrical in the momentum space, that is, εk = ε−k

and ak = −a−k . Obviously, QIC is corresponding to the case
of ak = 0.

Therefore, the Hamiltonian H can be written as

H =
∑
k>0

εk(η†
kηk + η

†
−kη−k − 1) +

∑
k>0

ak(η†
kηk − η

†
−kη−k)

=
∑
k>0

[εk(nk + n−k − 1) + ak(nk − n−k)]

=
∑
k>0

Hk. (9)

Here, nk and n−k are particle number operators and |nk,n−k〉
(nk = 0,1) are energy eigenstates of Hk .

From Eqs. (1) and (9), the partition function is

Z = 2N
∏
k

cosh

(
β�k

2

)

=
∏
k>0

(e−βεk + eβεk + e−βak + eβak ). (10)

In the case of a sudden quenching, H changes to

H (λτ ) =
∑

k

�̃k

(
η̃
†
kη̃k − 1

2

)
=

∑
k

(̃εk + ãk)

(
η̃
†
kη̃k − 1

2

)
.

(11)

η̃k (̃η†
k) and ηk( η

†
k) are related by the Bogoliubov transforma-

tions [25]:

ηk = cos ϕkη̃k + i sin ϕkη̃
†
−k,

η
†
k = cos ϕkη̃

†
k − i sin ϕkη̃−k. (12)

Here, ϕk are the Bogoliubov angles.
Therefore, the relations of the eigenstates of Hk(λ0) and

Hk(λτ ) are

|0k,0−k〉 = i cos ϕk |̃0k ,̃0−k〉 + sin ϕk |̃1k ,̃1−k〉,
|0k,1−k〉 = |̃0k ,̃1−k〉,
|1k,0−k〉 = |̃1k ,̃0−k〉,
|1k,1−k〉 = −i sin ϕk |̃0k ,̃0−k〉 + cos ϕk |̃1k ,̃1−k〉. (13)

In the above, |̃nk,̃n−k〉 (̃nk = 0,1) are energy eigenstates of the
final Hamiltonian Hk(λτ ).

The characteristic function Eq. (3) takes the form

χF (u)

= 1

Z(λ0)

∏
k>0

∑
n=0,1

e−(iu+β)[εk (nk+n−k−1)+ak (nk−n−k)]

×〈nk,n−k|eiu[̃εk (̃nk+ñ−k−1)+ãk (̃nk−ñ−k)]|nk,n−k〉
=

∏
k>0

{e(iu+β)εk [e−iũεk cos2 ϕk + eiũεk sin2 ϕk]

+ e−(iu+β)εk [e−iũεk sin2 ϕk + eiũεk cos2 ϕk]

+ e(iu+β)ak e−iũak + e−(iu+β)ak eiũak }/Z(λ0). (14)
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Under the mapping λ0 ↔ λτ , εk ↔ ε̃k , ak ↔ ãk ,
ϕk ↔ −ϕk , the backward characteristic function is easily
obtained as

χB(v) =
∏
k>0

{e(iv+β )̃εk [e−ivεk cos2 ϕk + eivεk sin2 ϕk]

+ e−(iv+β )̃εk [e−ivεk sin2 ϕk + eivεk cos2 ϕk]

+ e(iv+β )̃ak e−ivak + e−(iv+β )̃ak eivak }/Z(λτ ). (15)

After a simple algebra calculation, the Tasaki-Crooks relation
can be derived as

χB(−u + iβ) = Z(λ0)

Z(λτ )
χF (u). (16)

Moreover,

χF (iβ) = Z(λτ )

Z(λ0)
(17)

for χB(0) = 1. Hence, the two relations are also tenable
in this system although the excitation spectra of which are
asymmetrical.

Furthermore, the analytic forms of the work done and
irreversible entropy production for this spin chain are as
follows:

〈W 〉 =
∑
k>0

{[εk − ε̃k cos 2ϕk][eβεk − e−βεk ]

+ (ak − ãk)(eβak − e−βak )}
× 1

e−βεk + eβεk + e−βak + eβak
, (18)

and

�Sirr = β〈W 〉 +
∑

k

ln
cosh

[
β�k(λτ )

2

]
cosh

[
β�k(λ0)

2

] . (19)

IV. THE ANISOTROPIC XY CHAIN IN A TRANSVERSE
FIELD WITH THE XZY-YZX TYPE OF THREE-SITE

INTERACTIONS

As an example, we discuss the behaviors of the work
done and irreversible entropy production induced by a sudden
quenching in the anisotropic XY chain in a transverse field
with the XZY-YZX type of three-site interactions, whose
Hamiltonian is [26]

H = −
N∑

n=1

(
1 + γ

2
σx

n σ x
n+1 + 1 − γ

2
σy

n σ
y

n+1 + hσ z
n

)

−
N∑

n=1

[
α

2

(
σx

n−1σ
z
nσ

y

n+1 − σ
y

n−1σ
z
nσ x

n+1

)]
. (20)

Here, N is the number of spins in the chain, γ (−1 � γ � 1)
is the anisotropy parameter of the system, σx,y,z are the Pauli
matrices, h (h � 0) is a uniform external transverse field, and
α(α > 0) is the XZY-YZX type of three-spin coupling constant.

By using the Jordan-Wigner transformation [27]

σx
n =

n−1∏
i=1

(1 − 2c
†
i ci)(c

†
n + cn),

σ y
n = 1

i

n−1∏
i=1

(1 − 2c
†
i ci)(c

†
n − cn), (21)

σ z
n = 2c†ncn − 1,

the Hamiltonian (20) can be written by spinless fermion
operators c

†
n and cn. Then, through Fourier transform cn =

1√
N

∑
k cke

−ikn and the Bogoliubov transformation of the
fermionic operators [25]

ck = cos θkηk + i sin θkη
†
−k, (22)

the Hamiltonian (20) can be written in the momentum space
and be reduced to the diagonal form of Eq. (8) with

�k = −α sin 2k + 2
√

(cos k + h)2 + γ 2 sin2 k. (23)

Here,

cos θk = h + cos k − √
bk√

2[bk − (h + cos k)
√

bk]
,

sin θk = γ sin k√
2[bk − (h + cos k)

√
bk]

, (24)

with bk = ε2
k/4. Accordingly, εk =

2
√

(cos k + h)2 + γ 2 sin2 k, and ak = −α sin 2k. It is
easy to obtain that in Eq. (12) the Bogoliubov angles
ϕk = θ̃k − θk , where θ̃k corresponds to Hk(λτ ).

There are three parameters in this system: h, γ , and α, so we
study the behaviors of the work done and irreversible entropy
production in the following three cases:

(a) α and γ are fixed, and thus λ = h, ak = ãk , and

〈W 〉 =
∑
k>0

�h cos 2θkgk(h0); (25)

(b) α and h are fixed, and thus λ = γ , ak = ãk , and

〈W 〉 =
∑
k>0

�γ sin k sin 2θkgk(γ0); (26)

(c) h and γ are fixed, and thus λ = α, εk = ε̃k , and

〈W 〉 =
∑
k>0

�α sin 2kg′
k(α0). (27)

Here, �h = hτ − h0, �γ = γτ − γ0, �α=ατ − α0, gk(λ0) =
2(eβεk −e−βεk )

e−βεk +eβεk +e−βak +eβak
, and g′

k(λ0) = eβak −e−βak

e−βεk +eβεk +e−βak +eβak
with hτ ,

γτ , and ατ the parameters of H (λτ ).
It is thus clear that 〈W 〉 is proportional to �λ whether

λ = h, γ , or α. In other words, the value of 〈W 〉
�λ

is entirely due
to the properties of the initial state. In contrast, the relation
between the irreversible entropy production �Sirr and �λ is not
linear. If �λ → 0, �F = �λ∂F

∂λ
|λ=λ0 = 〈W 〉, which means

�Sirr = 0. If �λ is not small enough, �Sirr
�λ

depends on not
only the properties of the initial state but also the difference
between the initial state and the final state.
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FIG. 1. The phase diagram at zero temperature for the XY chain
with the XZY-YZX type of three-site interaction in a transverse field
for α = 0.5. The horizontal dashed line corresponds to γ = 0.7 and
the vertical dashed line corresponds to h = 0.5.

From the spectra (23), we get the phase diagrams at zero
temperature shown as Fig. 1 for α = 0.5 and h � 0 and Fig. 4
for h = 0 and α � 0. In these diagrams, there are gapped
and gapless phases [26]. Between gapped phases, the QPT
is referred to as the Ising transition [28]. Between gapless
and gapped phases, the QPT is similar to the anisotropy
transition [27].

In the following, we show some numerical results of the
work done and the irreversible entropy production. After
numerical calculation, we find that 〈W 〉

N
and �Sirr

N
do not change

as N is changing when N is large enough, so we only discuss
the quantities per site, that is, 〈w〉 = 〈W 〉

N
and �sirr = �Sirr

N
, and

only show the results corresponding to N = 1000 without loss
of generality.

First, we study the case of a small change. Figure 2 shows
〈w〉
�h

and �sirr
�h

as functions of h for �h = 0.01. As h is changing,
the system undergoes a QPT between two gapped phases at
hc = 1 with α = 0.5 and γ = 0.7 (see the horizontal dashed
line in Fig. 1). Figure 3 shows 〈w〉

�γ
and �sirr

�γ
as functions of

γ for �γ = 0.01. As γ is changing, the system undergoes a

(a) (b)

FIG. 2. (a) 〈w〉
�h

and (b) �sirr
�h

as functions of h for �h = 0.01,
γ = 0.7, α = 0.5, and N = 1000. The solid, dashed, and dotted lines
correspond to β = 100,50,10, respectively.

(a) (b)

FIG. 3. (a) 〈w〉
�γ

and (b) �sirr
�γ

as functions of γ for �γ = 0.01,
h = 0.5, α = 0.5, and N = 1000. The solid, dashed, and dotted lines
correspond to β = 100,50,10, respectively.

QPT between gapped and gapless phases at γc1,2 ≈ ±0.274
with α = 0.5 and h = 0.5 (see the vertical dashed line in
Fig. 1). It is easy to be concerned that when the parameter
λ (λ = h or γ ) changes through the critical lines 〈w〉

�λ
and

�sirr
�λ

are both continuous in the vicinity of the critical points,
particularly where �sirr

�λ
achieves its extreme value. It can be

understood that near the critical point the equilibrium state
changes dramatically for small changes of λ, so that to drive
the system across the critical point is difficult, and this is
reflected in a sharp increase in irreversible entropy production.
Besides, as h is changed, �sirr

�h
tends to diverge symmetrically

at the critical point, while �sirr
�γ

changes more rapidly in one
side of the critical points as γ is changed. We believe that this
results from the different QPTs, even if they are both second
order.

Now, we turn to discuss another interesting case. Figure 4
gives the phase diagram of this system for h = 0 at zero
temperature. There is a special point (α,γ ) = (1,0) (see the
horizontal dashed line in Fig. 4). The two phases for α < 1 and
α > 1 are both gapless. However, at zero temperature when

FIG. 4. The phase diagram at zero temperature for the XY chain
with the XZY-YZX type of three-site interaction in a transverse field
for h = 0. The horizontal dashed line corresponds to γ = 0.
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(a) (b)

FIG. 5. (a) 〈w〉
�α

and (b) �sirr
�α

as functions of α for �α = 0.01,
γ = 0, h = 0, and N = 1000. The solid, dashed, and dotted lines
correspond to β = 100,50,10, respectively.

α < 1 the energy spectra have only two Fermi points, whereas
when α > 1 the energy spectra also have two additional
Fermi points [29]. Figure 5 shows the variations of 〈w〉

�α
and

�sirr
�α

as α is changing for γ = 0 and h = 0. In the vicinity
of the point α = 1, 〈w〉

�α
and �sirr

�α
are both continuous and

�sirr
�α

achieves its extreme value as well. This indicates that
although the two phases are both gapless their properties
are different. In addition, when β → ∞, 〈w〉 = 0 for α < 1,
which means in this region the energy of the system is
irrelevant to α and the system is in a neutral equilibrium
state.

Second, when the sudden change is large, 〈w〉
�λ

is the same as
that for a small �λ, but the properties of �sirr

�λ
are different. For

instance, Fig. 6 shows �sirr
�γ

varying as a function of γ for �γ =
0.3, whose value is much larger than that for �γ = 0.01,
respectively. The reason is that the sudden quenching coincides
with the distance between the states of the initial and final
Hamiltonians. The more λ is changed, the more the irreversible
entropy production is needed. Moreover, instead of being near
the critical points, the sudden quenching between gapped and
gapless phases occurs in the interval γ ∈ (γc2 − �γ,γc2 ) ∪
(γc1 − �γ,γc1 ) approximately. γc1 and γc2 at zero temperature
for α = 0.5 and h = 0.5 are shown in Fig. 1. As the result,
the irreversible entropy production is asymmetrical on either
side of the critical points and changes no more sharply near
the critical points, which is different from that for �γ = 0.01.

Certainly, we notice that in the above cases the signature of
quantum criticality decreases at higher temperatures with the

FIG. 6. �sirr
�γ

as a function of γ for �γ = 0.3, h = 0.5, α = 0.5,
and N = 1000. The solid, dashed, and dotted lines correspond to
β = 100,50,10, respectively.

emergence of thermal fluctuations, and the differences between
different QPTs are also eliminated by thermal effects.

V. CONCLUSION

We have studied the statistics of the fluctuation relations,
work done, and irreversible entropy production in a sudden
quenched quantum chain, whose Hamiltonian can be diag-
onalized to a reduced form as H = ∑

k �k(η†
kηk − 1

2 ), with
asymmetrical excitation spectra. We verify that the Jarzynski
and Tasaki-Crooks relations are still tenable in this system.

The anisotropic XY chain in a transverse field with the
XZY-YZX type of three-site interactions is taken as an example
to discuss the effects of the quenching, especially between
different phases, on the work done and irreversible entropy
production. It is found that, different from the irreversible
entropy production, the average work 〈W 〉 is proportional to
�λ so that the essential characteristics of 〈W 〉

�λ
are entirely

due to the properties of the initial state. The work done and the
irreversible entropy production are both continuous. Moreover,
the latter achieves its extreme value in the vicinity of the critical
points between different phases and shows some difference for
different QPTs at low temperature.

ACKNOWLEDGMENTS

The research is supported by the National Natural Sci-
ence Foundation of China (Grants No. 11205090 and No.
11175087).

[1] M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys. 81,
1665 (2009).

[2] M. Campisi, P. Haänggi, and P. Talkner, Rev. Mod. Phys. 83,
771 (2011).

[3] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
[4] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
[5] G. E. Crooks, Phys. Rev. E 60, 2721 (1999).

[6] R. Dorner, J. Goold, C. Cormick, M. Paternostro, and V. Vedral,
Phys. Rev. Lett. 109, 160601 (2012).

[7] S. Mukamel, Phys. Rev. Lett. 90, 170604 (2003).
[8] P. Talkner, E. Lutz, and P. Hänggi, Phys. Rev. E 75, 050102(R)

(2007).
[9] J. Teifel and G. Mahler, Phys. Rev. E 76, 051126

(2007).

032137-5

http://dx.doi.org/10.1103/RevModPhys.81.1665
http://dx.doi.org/10.1103/RevModPhys.81.1665
http://dx.doi.org/10.1103/RevModPhys.81.1665
http://dx.doi.org/10.1103/RevModPhys.81.1665
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/PhysRevLett.109.160601
http://dx.doi.org/10.1103/PhysRevLett.109.160601
http://dx.doi.org/10.1103/PhysRevLett.109.160601
http://dx.doi.org/10.1103/PhysRevLett.109.160601
http://dx.doi.org/10.1103/PhysRevLett.90.170604
http://dx.doi.org/10.1103/PhysRevLett.90.170604
http://dx.doi.org/10.1103/PhysRevLett.90.170604
http://dx.doi.org/10.1103/PhysRevLett.90.170604
http://dx.doi.org/10.1103/PhysRevE.75.050102
http://dx.doi.org/10.1103/PhysRevE.75.050102
http://dx.doi.org/10.1103/PhysRevE.75.050102
http://dx.doi.org/10.1103/PhysRevE.75.050102
http://dx.doi.org/10.1103/PhysRevE.76.051126
http://dx.doi.org/10.1103/PhysRevE.76.051126
http://dx.doi.org/10.1103/PhysRevE.76.051126
http://dx.doi.org/10.1103/PhysRevE.76.051126


MING ZHONG AND PEIQING TONG PHYSICAL REVIEW E 91, 032137 (2015)

[10] S. Dorosz, T. Platini, and D. Karevski, Phys. Rev. E 77, 051120
(2008).

[11] J. Hide and V. Vedral, Phys. Rev. A 81, 062303 (2010).
[12] T. Albash, D. A. Lidar, M. Marvian, and P. Zanardi, Phys. Rev.

E 88, 032146 (2013).
[13] R. Dorner, S. R. Clark, L. Heaney, R. Fazio, J. Goold, and

V. Vedral, Phys. Rev. Lett. 110, 230601 (2013).
[14] A. Silva, Phys. Rev. Lett. 101, 120603 (2008); F. N. C. Paraan

and A. Silva, Phys. Rev. E 80, 061130 (2009).
[15] M. Heyl, A. Polkovnikov, and S. Kehrein, Phys. Rev. Lett. 110,

135704 (2013).
[16] P. Smacchia and A. Silva, Phys. Rev. E 88, 042109

(2013).
[17] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattorek,

Rev. Mod. Phys. 83, 863 (2011).
[18] L. Cincio, J. Dziarmaga, M. M. Rams, and W. H. Zurek,

Phys. Rev. A 75, 052321 (2007).
[19] V. Eisler, and I. Peschel, Ann. Phys. (Berlin) 17, 410

(2008).

[20] G. B. Furman, V. M. Meerovich, and V. L. Sokolovsky,
Phys. Rev. A 77, 062330 (2008).

[21] F. Galve, D. Zueco, S. Kohler, E. Lutz, and P. Hänggi,
Phys. Rev. A 79, 032332 (2009).

[22] B. Alkurtass, G. Sadiek, and S. Kais, Phys. Rev. A 84, 022314
(2011).

[23] B. Basu, P. Bandyopadhyay, and P. Majumdar, Phys. Rev. A 83,
032312 (2011); ,86, 022303 (2012).

[24] B. Alkurtass, H. Wichterich, and S. Bose, Phys. Rev. A 88,
062325 (2013)

[25] S. Sachdev, Quantum Phase Transitions (Cambridge University,
Cambridge, Cambridge, UK, 1999).

[26] X. Liu, M. Zhong, H. Xu, and P. Tong, J. Stat. Mech.: Theor.
Exp. (2012) P01003.

[27] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (NY) 16, 407
(1961).

[28] P. Pfeuty, Ann. Phys. (NY) 57, 79 (1970).
[29] M. Topilko, T. Krokhmalskii, O. Derzhko, and V. Ohanyan,

Eur. Phys. J. B 85, 278 (2012).

032137-6

http://dx.doi.org/10.1103/PhysRevE.77.051120
http://dx.doi.org/10.1103/PhysRevE.77.051120
http://dx.doi.org/10.1103/PhysRevE.77.051120
http://dx.doi.org/10.1103/PhysRevE.77.051120
http://dx.doi.org/10.1103/PhysRevA.81.062303
http://dx.doi.org/10.1103/PhysRevA.81.062303
http://dx.doi.org/10.1103/PhysRevA.81.062303
http://dx.doi.org/10.1103/PhysRevA.81.062303
http://dx.doi.org/10.1103/PhysRevE.88.032146
http://dx.doi.org/10.1103/PhysRevE.88.032146
http://dx.doi.org/10.1103/PhysRevE.88.032146
http://dx.doi.org/10.1103/PhysRevE.88.032146
http://dx.doi.org/10.1103/PhysRevLett.110.230601
http://dx.doi.org/10.1103/PhysRevLett.110.230601
http://dx.doi.org/10.1103/PhysRevLett.110.230601
http://dx.doi.org/10.1103/PhysRevLett.110.230601
http://dx.doi.org/10.1103/PhysRevLett.101.120603
http://dx.doi.org/10.1103/PhysRevLett.101.120603
http://dx.doi.org/10.1103/PhysRevLett.101.120603
http://dx.doi.org/10.1103/PhysRevLett.101.120603
http://dx.doi.org/10.1103/PhysRevE.80.061130
http://dx.doi.org/10.1103/PhysRevE.80.061130
http://dx.doi.org/10.1103/PhysRevE.80.061130
http://dx.doi.org/10.1103/PhysRevE.80.061130
http://dx.doi.org/10.1103/PhysRevLett.110.135704
http://dx.doi.org/10.1103/PhysRevLett.110.135704
http://dx.doi.org/10.1103/PhysRevLett.110.135704
http://dx.doi.org/10.1103/PhysRevLett.110.135704
http://dx.doi.org/10.1103/PhysRevE.88.042109
http://dx.doi.org/10.1103/PhysRevE.88.042109
http://dx.doi.org/10.1103/PhysRevE.88.042109
http://dx.doi.org/10.1103/PhysRevE.88.042109
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1103/PhysRevA.75.052321
http://dx.doi.org/10.1103/PhysRevA.75.052321
http://dx.doi.org/10.1103/PhysRevA.75.052321
http://dx.doi.org/10.1103/PhysRevA.75.052321
http://dx.doi.org/10.1002/andp.200810299
http://dx.doi.org/10.1002/andp.200810299
http://dx.doi.org/10.1002/andp.200810299
http://dx.doi.org/10.1002/andp.200810299
http://dx.doi.org/10.1103/PhysRevA.77.062330
http://dx.doi.org/10.1103/PhysRevA.77.062330
http://dx.doi.org/10.1103/PhysRevA.77.062330
http://dx.doi.org/10.1103/PhysRevA.77.062330
http://dx.doi.org/10.1103/PhysRevA.79.032332
http://dx.doi.org/10.1103/PhysRevA.79.032332
http://dx.doi.org/10.1103/PhysRevA.79.032332
http://dx.doi.org/10.1103/PhysRevA.79.032332
http://dx.doi.org/10.1103/PhysRevA.84.022314
http://dx.doi.org/10.1103/PhysRevA.84.022314
http://dx.doi.org/10.1103/PhysRevA.84.022314
http://dx.doi.org/10.1103/PhysRevA.84.022314
http://dx.doi.org/10.1103/PhysRevA.83.032312
http://dx.doi.org/10.1103/PhysRevA.83.032312
http://dx.doi.org/10.1103/PhysRevA.83.032312
http://dx.doi.org/10.1103/PhysRevA.83.032312
http://dx.doi.org/10.1103/PhysRevA.86.022303
http://dx.doi.org/10.1103/PhysRevA.86.022303
http://dx.doi.org/10.1103/PhysRevA.86.022303
http://dx.doi.org/10.1103/PhysRevA.88.062325
http://dx.doi.org/10.1103/PhysRevA.88.062325
http://dx.doi.org/10.1103/PhysRevA.88.062325
http://dx.doi.org/10.1103/PhysRevA.88.062325
http://dx.doi.org/10.1088/1742-5468/2012/01/P01003
http://dx.doi.org/10.1088/1742-5468/2012/01/P01003
http://dx.doi.org/10.1088/1742-5468/2012/01/P01003
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1016/0003-4916(70)90270-8
http://dx.doi.org/10.1016/0003-4916(70)90270-8
http://dx.doi.org/10.1016/0003-4916(70)90270-8
http://dx.doi.org/10.1016/0003-4916(70)90270-8
http://dx.doi.org/10.1140/epjb/e2012-30359-8
http://dx.doi.org/10.1140/epjb/e2012-30359-8
http://dx.doi.org/10.1140/epjb/e2012-30359-8
http://dx.doi.org/10.1140/epjb/e2012-30359-8



