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Burgers-Kardar-Parisi-Zhang (KPZ) scaling has recently (re-) surfaced in a variety of physical contexts, ranging
from anharmonic chains to quantum systems such as open superfluids, in which a variety of random forces may
be encountered and/or engineered. Motivated by these developments, we here provide a generalization of the
KPZ universality class to situations with long-ranged temporal correlations in the noise, which purposefully
break the Galilean invariance that is central to the conventional KPZ solution. We compute the phase diagram
and critical exponents of the KPZ equation with 1/f noise (KPZ1/f ) in spatial dimensions 1 � d < 4 using the
dynamic renormalization group with a frequency cutoff technique in a one-loop truncation. Distinct features of
KPZ1/f are (i) a generically scale-invariant, rough phase at high noise levels that violates fluctuation-dissipation
relations and exhibits hyperthermal statistics even in d = 1, (ii) a fine-tuned roughening transition at which
the flow fulfills an emergent thermal-like fluctuation-dissipation relation, that separates the rough phase from
(iii) a massive phase in 1 < d < 4 (in d = 1 the interface is always rough). We point out potential connections
to nonlinear hydrodynamics with a reduced set of conservation laws and noisy quantum liquids.
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I. INTRODUCTION

Much effort across the physical sciences is currently being
directed at the derivation of the laws of statistical mechanics
far from (thermal) equilibrium [1]. A prototypical question
of interest begins with a many-particle system in a known
initial state, whose statistics for example in energy space
is known. Subsequently, the system is subjected to either
a rapid change of its parameters or a nonequilibrium drive
and/or dissipation. One then would like to understand how
the statistical distributions evolve in time, in particular with
regard to thermalization properties, that is, how quickly and
by which mechanisms, energy, and momenta are redistributed
in phase space and real space. The steady-state distributions in
the long-time limit t → ∞ are also interesting.

Roughly speaking, there are two extreme scenarios:
(i) integrable systems with a large number of conservation
laws whose thermalization is at least slow due to constraints
in phase space from these conservation laws (see Ref. [2]
and references therein); (ii) granular or soft matter systems
(such as hard spheres in a box), engineered liquids [3,4], or
randomly sputtered interfaces [5], in which the concept of
temperature, a priori, does not make sense, there are typically
fewer conserved quantities, and the dynamics is determined
by geometric constraints, dimensionality, and/or the amount
of disorder. Moreover, the amount of symmetry shapes the
phase structure and associated transitions despite the absence
of a well-defined free energy landscape far from equilibrium.

In order to broadly elucidate the role of conservation laws
in prototypical far-from-equilibrium phase transitions, the
present paper studies Burgers-Kardar-Parisi-Zhang systems
after explicitly breaking its key symmetry or conservation
law: the Galilean invariance of the randomly stirred Burgers
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fluid associated with seeing the same physics when looking
at the fluid in a moving frame [6]. Another motivation is the
possibility to learn about thermalization properties of quantum
systems by finding ways to deform the “KPZ-attractive Lieb-
Liniger bosons duality” [7–10] away from the integrable point
or with less conservation laws.

In this paper, we perform a dynamic renormalization group
analysis of the Burgers-Kardar-Parisi-Zhang equation subject
to 1/f noise developing a frequency rescaling technique on
the Keldysh contour.

A. Model: Cole-Hopf transformed KPZ1/ f equation

Our calculations are based on the Cole-Hopf transformed
KPZ equation (recapitulated below), when it becomes a
gapless diffusion equation with multiplicative noise

γ ∂tφ = ν0∇2φ + λ

2ν0
φη (1)

with φ = φ(t,x) a scalar field describing fluctuations in time
and space around a growing average height level, γ a friction
parameter, and ν0 the viscosity in the Burgers fluid picture.
The η field acts as nonlinear, multiplicative noise [11] with
coupling strength proportional to λ [12]. A simple way to
break the Galilean invariance is to endow the noise with 1/f

correlations in time such that in frequency representation

η(ω′,x′)η(ω,x) = D1/f (ω)δ(ω + ω′)δ(d)(x′ − x). (2)

with ubiquitous 1/f or pink noise temporal correlations [13]

D1/f (ω) = 1

|ω| . (3)

Several authors have considered temporally correlated noise in
the context of KPZ [12,14–16] and, more recently, the O(N )
model [17]. In particular, it was found that the conventional
KPZ exponents may change as a consequence of correlations in
the noise. However, within the dynamic renormalization group
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FIG. 1. (Color online) Phase diagram of the KPZ equation with
1/f noise (computed points are connected as a guide to the eye) as a
function of space dimensions (d) and strength of the bare noise vertex
λ̃
0 . The locators illustrate the roughening transition characterized by
an unstable fixed point whose exponents fulfill an emergent thermal
fluctuation-dissipation relation. In one dimension, the interface is
always rough, and any initial value of the noise vertex leads to the
hyperthermal fixed point in the rough or turbulent phase. In contrast
to conventional white noise KPZ phase diagram (e.g., Ref. [21]), here
the fluctuation-dissipation theorem breaks down even in d = 1, and
the smooth phase is manifestly massive.

approach of Medina et al. [12], the interesting 1/f case could
not be addressed due to the presence of infrared singularities
also in the frequency integrations. It is one objective of the
present paper to fill this gap.

Medina et al. [12] have mentioned impurities or charged
ions at the interface as a possibility to generate temporal long-
ranged correlations in the noise. In the context of quantum
systems, 1/f appears generically as charge noise in trapped
ions, for example [18,19], and other types of noise can appear
in the laser trapping potentials of ultracold atoms [20].

B. Key results

From the solution of our renormalization group equations,
we obtain Fig. 1 as the phase diagram from a one-loop flow
of Eq. (1) with 1/f noise integrating fluctuations from large
frequencies ω = 
0 to the lowest frequencies ω = 0. In spatial
dimensionality d = 2, d = 3, a massive phase for small λ̃
0

transits into a rough or turbulent phase at a critical value λ̃
0,c.
The roughening transition and generically scale-invariant

rough phase are distinguishable by different scaling forms of
the response correlator,

R(ω,k) = −2Im〈φ(−ω, − k)φ(ω,k)〉R
⇒ R(szω,sk) ∝ 1

s2−ζγ
R, (4)

and the independent Keldysh fluctuation correlator,

C(ω,k) = i 〈φ(−ω, − k)φ(ω,k)〉K
⇒ C(szω,sk) ∝ 1

s4−2ζγ +ζdK
C, (5)

where the overbar denotes the average over the random forces
or noise. ζγ is the anomalous exponent for the linear time
derivative in Eq. (1) and appears in the effective viscosity

ν̃ = ν0
γ

. ζdK is the exponent for the effective noise spectrum,
appearing in the statistical or Keldysh component defined
below. A finite value of the exponent ζhyper = ζdK − ζγ

indicates deviations from thermal occupation of low-energy
modes for which ζhyper = 0. This can be seen from the scaling
form of the statistical distribution function,

f (ω,k) = C(ω,k)

R(ω,k)
⇒ f (szω,sk) ⇒ 1

s2+(ζdK −ζγ )

C
R . (6)

These exponents are measurable in an interface experiment
via the roughness exponent,

χroughness = 1 − d

2
+ ζdK − ζγ

2
, (7)

which follows by comparison of Eq. (5) to the momentum
representation of the height-height correlator Chh(ω,q) =

1
|q|d+2χ+z C̃(ω/|q|z) [22] using further that in our case

zdynamical = 2 − ζγ . (8)

For larger noise vertex λ̃
0 > λ̃
0,c, in the rough or turbulent
phase, the flow is attracted toward a gapless fixed point
which breaks the fluctuation-dissipation relation of the KPZ
equation with white noise [5,22] as shown in Fig. 2. In
particular, for d = 1, the KPZ scaling relations χ + z = 2 and
χ = 1/2 are violated. The low-energy statistics in this phase
is “hyperthermal,” that is, the low-energy mode power-law
divergence is stronger than thermal with ζhyper = 6.23 in
d = 3. Such infrared enhanced population has been obtained at
nonthermal fixed points of other, typically more complicated,
field-theoretical models (see, e.g., Refs. [23,24] and references
therein). The response function exponent turns out to be
negative in the rough phase

ζγ = 2(d − 4)

d
, (9)

and the full set of critical exponents in the rough phase are
given in Table I. The large value of the exponents in d = 1,
d = 2 are due to the one-loop approximation and the relevance
of the noise vertex for d < 4. The one-loop computation is
perturbatively controlled only close to d = 4.

The rough or turbulent phase is generically scale-invariant
(sometimes also referred to as self-organized critical) in the
sense that it is does not require fine-tuning of the coupling
constants to reach it beyond a certain threshold [25,26]. Rather,
the same fixed point is reached for all λ̃
0 > λ̃
0,c as can be
seen from flows of the mass parameter in Fig. 3. Note that
the initial value of the mass 
0 is always zero as appropriate
for the gapless interface. Equation (1) yields generic scale
invariance with a relatively simple coupling to noise with a
ubiquitous 1/f spectrum [13]. A further appealing feature of
the simple model Eq. (1) with 1/f noise is that the rough phase
can be penetrated within a one-loop RG.

At the roughening transition (rt) in d = 2 and d = 3, the
asymptotically gapless dynamics fulfills an emergent thermal-
like fluctuation-dissipation relation (ζ rt

hyper = 0) with

ζ rt
γ = ζ rt

dK = 2d

8 + d
⇒ zrt = 2 − ζ rt

γ = 16

8 + d
, (10)
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FIG. 2. (Color online) Flow of the anomalous exponents slightly beyond the roughening transition in the rough phase in d = 3. The unstable
fixed point plateau in which both exponents take the same value becomes progressively shorter the deeper one goes into the rough phase. The
flow goes from the UV (left of plot) to IR (right of plot) via 
 = 
0 exp(−s). Left: λ̃
0 = 6.44294680824; right: λ̃
0 = 6.6443, both larger
than λ̃
0,c. The scaling plateaus of the roughening transition at which ζdK = ζγ = 0.54 for d = 3 from Eq. (10) become unstable (at s ≈ 10 in
the left plot), and there is a steep transit into the rough phase, breaking the fluctuation-dissipation relation, at which ζdK = 5.56 and ζγ = −0.66
from Table I in d = 3. Fine-tuned to 13 digits the critical noise vertex for the roughening transition is λ̃
0,c = 6.4429468082319 with 
0 = 10,

0 = ̃
0 = 0 [no mass in the bare model Eq. (1)].

where zrt is the dynamical exponent at one loop. Consequently,
the roughness exponent

χ rt
roughness = 1 − d

2
(11)

becomes negative for d > 2. In the massive phase, scaling
stops completely and none of the above exponents are defined.
The roughening transition scaling is also seen in the unstable
scaling plateaus of Fig. 2, and further numerical flows are
presented in the main text (Sec. IV C). At the roughening
transition, the effective viscosity ν̃
 = ν0

γ

∼ 
ζγ vanishes as

ζ rt
γ > 0 at one loop. This is in contrast to the rough phase where

the effective viscosity diverges as ζγ < 0 from Table I.

C. Organization of paper

In Sec. II, we recapitulate the relations between the Burg-
ers, KPZ, and diffusion equation with multiplicative noise.

TABLE I. One-loop values of critical exponents in the gener-
ically scale-invariant, rough phase. Explicit violation of a ther-
mal fluctuation-dissipation relation is observed for which instead
ζγ = ζdK and ζhyper = 0. The effective scale-dependent viscosity
ν̃
 = ν0

γ

∼ 
ζγ diverges in the entire rough phase as ζγ < 0. The

fixed-point value of the nonlinear noise coupling goes to zero as
ε = 4 − d → 0 leading to vanishing ζdK , ζγ and zdynamical = 2 in
d = 4. Within our one-loop RG, ε may be regarded as the small
parameter effectively controlling the flow; extrapolations to d = 1,2
should be regarded as qualitative estimates only.

d = 1 d = 2 d = 3

χroughness 11.34 5.15 2.61
zdynamical 8 4 2.66
ζdK 15.68 8.30 5.56
ζγ −6 −2 −2/3
ζhyper 21.68 10.30 6.23

Following Medina, Hwa, Kardar, and Zhang (MHKZ) [12],
we show how temporal correlations in the noise break the
Galilean invariance of the Burgers fluid. Then, we elevate the
equation to an action on the closed-time Keldysh action in
Sec. II B. In Sec. II C, we briefly survey simplifications arising
from the Galilean invariance such as exponent identities and a
fluctuation-dissipation relation.

In Sec. III, we present the dynamic RG framework, explain
the frequency cutoff technique, and derive the form of the flow
equations to one-loop order. In Sec. IV, we present analytical
and numerical solutions to the flow equations. In Sec. V, we
offer some conclusions, point toward physical systems where
our results may become relevant for, and outline potential
directions for future work.
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FIG. 3. (Color online) Generically scale-invariant flows of the
rescaled mass ̃
 in the rough phase in d = 3, which is attracted
to the same fixed point value for different values of the noise vertex.
λ̃
0 = 7,10,20,30 from green circles (7) to black squares (30). The
initially zero mass [no mass in bare model Eq. (1)] is generated.
The physical mass 
 = ̃

2γ vanishes at the end of the flow for
all couplings λ̃
0 � λ̃
0,c. No fine-tuning of parameters required to
reach this generically scale-invariant phase. The flow goes from the
UV (left of plot) to IR (right of plot) via 
 = 
0 exp(−s).
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II. BURGERS-KARDAR-PARISI-ZHANG EQUATION WITH
1/ f NOISE

According to Kardar, Parisi, and Zhang [5], coarse-grained
fluctuations in the growth of a d-dimensional interface subject
to random depositions can be described in terms a of scalar
height function,

γ
∂h

∂t
= ν0∇2h + λ

2
(∇h)2 + η, (12)

where both the height h = h(t,x) and the noise η = η(t,x) are
functions of time t and d-dimensional interface space spanned
by x.

Upon identifying the height with a vorticity-free velocity
field v = −∇h and the random deposition noise with a random
stirring force f = −∇η, Eq. (12) is equivalent to the Burgers
equation

γ ∂tv + λv · ∇v = ν0∇2v + f, (13)

where ν0 is the fluid viscosity, and the coefficient λ

parametrizes the relative strength of the nonlinear, convective
term [27]. In this paper, we will work with the repre-
sentation of Eq. (12) as a diffusion equation for φ(t,x) =
exp[ λ

2ν0γ
h(t,x)] [28] given in Eq. (1). Under the Cole-Hopf

transform the scaling behavior of the correlators for the
physical height variable h and φ are proportional to each other:

Chh = 〈h(x,t)h(x′,t ′)〉

= 4ν2
0γ 2

λ2
〈ln φ(x,t) ln φ(x′,t ′)〉 ∼ 4ν2

0γ 2

λ2
Cφφ. (14)

A. Broken Galilean invariance from 1/ f noise

The form of the noise correlator η(t ′,x′)η(t,x) in Eq. (3)
determines the physical context and shapes the solution space
of Eqs. (1), (12), and (13). Temporal correlations in the noise
break the Galilean invariance of the Burgers equation (13)
under

v(t,x) → v0 + v′(x − λv0t,t) (15)

associated with looking at the fluid in a moving frame [6,12].
To be self-contained, we now recapitulate why this
is so following Appendix B of Ref. [12]. For the interface
equation (12) the Galilean invariance translates into invariance
under infinitesimal tilts by a small angle ε:

h′ = h + ε · x,

x′ = x + λεt ′, (16)

t ′ = t.

It is easy to see that the deterministic part of Eq. (12) is
invariant under Eq. (16). It is also invariant under constant
height shifts h → h + const due to the absence of mass
term or pinning potential. The transformed equation for
h′ is subject to transformed noise η′(t ′,x′) = η(t ′,x + λεt ′)
implying for the noise correlator,

F ′ = η′(t ′1,x
′
1)η′(t ′2,x

′
2) = η(t1,x1 + λεt1)η(t2,x2 + λεt2)

= F (t1 − t2,x1 − x2 + λε(t1 − t2))

= δ(t1 − t2)F (x1 − x2 + λε(t1 − t2))

= δ(t1 − t2)F (x1 − x2) = F, (17)

where there the last two lines are only true if the noise has no
correlations in time, i.e., F (t,x) = δ(t)F (x). Our choice Eq. (3)
corresponds to power-law correlations in real time and violates
the invariance Eq. (17), as announced in the Introduction.

B. Keldysh path integral representation

In order to explore the large distance and long time physics
of the Burgers-Kardar-Parisi-Zhang systems subject to 1/f

noise, we elevate the stochastic differential equation problem
Eq. (1) plus Eq. (3) to a Keldysh path integral [28,29]
on the closed time contour.1 Wherever possible, we will
follow the notation of Frey and Täuber [22], who reviewed
and performed this procedure and have given Ward and
exponent identities for the related Janssen-De Dominicis
functional.

The random forces are taken to be Gaussian-distributed:

W [η] ∝ exp

{
−

∫
ddx

∫
dω

1

2
η(ω,x)|ω|η(ω,x)

}
. (18)

Then the fluctuations in η can be included on the same
footing as the fluctuations of φ in the Keldysh generating
functional:

Z =
∫

DηW [η]D(φ,φ̃)ei(Sφ [φ,φ̃]−∫
t,x ηφφ̃)

≡
∫

D(η,φ,φ̃)ei(Sφ [φ,φ̃]+Sη[η]+Sλ[φ,φ̃,η]). (19)

The momentum-independent noise propagator is now
complex-valued,

Sη[η] = 1

2

∫
ω,q

η(−ω, − q) [Gη(ω)]−1 η(ω,q), (20)

with

Gη(ω) = −i

|ω| . (21)

Note that the momentum integrations here is bounded in
the UV by some short-distance cutoff by virtue of a nec-
essary smallest physical distance, below which the noise
is spatially uncorrelated and the continuum description
must be replaced by a discrete theory of lattice sites or
grains.

The multiplicative noise term in Eq. (1) results in a trilinear
noise vertex:

Sλ[φ,φ̃,η] = −
∫

t

dt

∫
ddx

λ

2ν0
η(t,x)φ̃(t,x)φ(t,x). (22)

Finally, the dynamics, diffusion, and statistics (Keldysh
φ̃φ̃ component) of the φ fields are comprised in a matrix

1The main motivation for using Keldysh is to lay a basis for
generalizing our work to quantum systems. There one expects the
short-time, short-distance behavior still to be dominated by quantum
effects and then the KPZ scaling to emerge in the IR at long times and
large distances (see, e.g., Refs. [47,48]). To capture also the crossover
scales, one needs to use Keldysh.
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propagator

Sφ[φ,φ̃] = 1

2

∫
dω

∫
ddk(φ φ̃)

×
(

0 [GA(ω,k)]−1

[GR(ω,k))]−1 DK

) (
φ

φ̃

)
(23)

with the bare retarded and advanced Greens function given by

GR(ω,k) = 1

iγ ω − ν0k2
,

(24)

GA(ω,k) = 1

−iγ ω − ν0k2
.

The statistical Keldysh component DK contains the effective
noise spectrum and will later be determined by loop cor-
rections. Note that in absence of the initially zero DK , the
bare action [Eq. (22)] consists only of powers of φ̃φ, which
can also be traced to a kind of gauge transformation related
to Galilean invariance [30]. The bare action still describes
a gapless interface and is invariant under constant shifts of
φ → φ + const. As we discussed, without Galilean invariance,
the action is not protected against mass generation, and we will
allow for such terms to be generated in the renormalization
group (RG) flow in Sec. III.

C. Minirecap of known results without broken
Galilean invariance

We here briefly recollect some previous results of the
Burgers-KPZ field theories focusing in particular on the
simplifications due to Galilean invariance in the case of
temporally white noise. In spatial dimension d < 2 KPZ
interfaces are always rough for any value of the nonlinearity
λ; see, e.g., Ref. [21]. For d > 2, a smooth phase is stable
for small λ, and there is a line of nonequilibrium roughening
transitions separating the two. An important consequence of
the ability to phrase the KPZ problem in one dimension as an
“equilibrium” partition function of an elastic string in a random
potential [5,31] are fluctuation-dissipation relations [32] and
Ward identities [22]. In particular, these ensure that (i) the
noise vertex λ is not renormalized at all orders in perturbation
theory, (ii) the fluctuation spectrum D scales similarly to
the dissipative viscosity D/ν0 → const, and (iii) that the
roughness exponent χ and dynamical exponent z fulfill the
exact relation χ + z = 2 with z = 3/2 [5,12]. In absence of
Galilean invariance, (i)–(iii) do not hold anymore. In particular
also the continuous shift invariance h → h + const can now
be violated by loop corrections.

To explore the interface dynamics constrained by only a
reduced set conserved quantities (essentially only momentum
and parity), we next perform a dynamic renormalization group
analysis.

III. DYNAMIC RENORMALIZATION GROUP

We will compute the one-loop RG flow of the action
Eq. (19) employing a frequency cutoff, that is, rescaling
frequencies and integrating over all momenta at each RG step.

Our analysis will be framed in the context of the flow equation
for the effective Keldysh action �
[φ,η] as a function of a
continuous flow parameter 
 (see Refs. [33,34] for condensed
matter applications):

∂
�
[φ,η] = i

2
Tr

[ Ṙ
�

(2)

 [φ,η] + R

]
, (25)

where the trace stands for a frequency and momentum
integration and a simple matrix trace in field space over the
c and q components and the noise field η, respectively. R
is a matrix containing cutoff functions (specified below) as
convenient for the field basis (φc,φq,η):

R =
⎛
⎝ 0 R

φ

 0

R
φ

 0 0

0 0 R
η




⎞
⎠ .

�(2) is a matrix containing the second field derivatives of
� evaluated at zero field whose inverse contains the scale-
dependent Green’s functions that we define below.

Before proceeding, let us mention previous works that
employed the flow equation for the effective action, Eq. (25),
for the KPZ problem with white [35–37] and spatially
correlated noise [38]. These works highlighted the importance
of the frequency and momentum dependence of the running
couplings, especially to obtain quantitative estimates of critical
exponents. We will see below to capture the qualitative flow
for 1/f noise correlations, a one-loop truncation is sufficient.
Once the difficulty of rescaling frequencies is overcome, the
dynamical RG for the 1/f case is actually simpler than for the
white noise case where no propagator renormalization occur
to any order in the loop expansion [28].

A. Truncation of the effective action

We now specify which parameters we keep out of the
formally large set of coupling constants that can be generated
under the RG flow. In particular, it will be important to
introduce independent parameters for the response function
and the Keldysh spectrum. That allows the flow to break
equilibrium-like fluctuation-dissipation relations. We also
introduce a mass term. Note that φ, φ̃, and η all have bare
scaling dimension [ d

2 ] under bare ω ∼ 
2 power counting. As
discussed in the Introduction, this makes the trilinear noise
vertex λ
 formally relevant in d < 4.

Propagator renormalizations are captured by introducing
four flowing parameters γ
, A
, a mass term 
, and dK


 for
the (independent) Keldysh component. Together with the noise
vertex, this is also the minimal set of couplings that one would
have to renormalize, for example, within a field-theoretic RG
analysis [22]. Including the additive, scale-dependent cutoff
function R
 into Eq. (23) the quadratic part of the flowing
action is

�
(2)φ

 = 1

2

∫
k

(φ φ̃)

(
0

[
GA


(ω,k)
]−1[

GR

(ω,k)

]−1
DK


 (ω)

) (
φ

φ̃

)
(26)
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FIG. 4. Propagators and vertices appearing in the Keldysh action.

with the now scale-dependent, retarded, and advanced propa-
gators,

GR

(ω,k) = 1

iγ
ω − (A
k2 + 
) + RR

(ω)

,

(27)

GA

(ω,k) = 1

−iγ
ω − (A
k2 + 
) + RA

(ω)

,

where the frequency cutoffs are complex conjugates of one
another RA


(ω) = [RR

(ω)]∗ and defined below. In contrast to

the problem with full Galilean invariance, we will see that here
a mass term (as well as nontrivial propagator renormalization
via γ
 discussed further below) is generated at one loop; we
capture this flow by introducing 
.

The Keldysh propagator GK=−GRDKGA with DK

 (ω) =

2idK

 is

GK

(ω,k) = −2idK




|iγ
ω − (A
k2 + 
) + RR

(ω)|2 . (28)

At one loop, the momentum coefficient does not flow, and it
remains fixed at its initial value A
 = ν0 from Eq. (1).

The flowing trilinear noise vertex,

�
(3)

 = −

∫
t,x

λ
ηφ̃φ, (29)

is related to the bare vertex Eq. (22) at the beginning of the
flow via λ
=
0 = λ

2ν0
.

The quadratic noise part in the action,

�
(2)η

 = 1

2

∫
k

η
[
G

η


(ω)
]−1

η, (30)

is not renormalized, and the inverse propagator needs only be
supplemented by the cutoff (also defined below)

G
η


(ω) = −i

|ω| + R
η


(ω)
. (31)

By endowing the noise propagator with a cutoff, the noise
average is performed continuously along 
, which may be
viewed as flowing from the short time dynamics at large 


to the long time dynamics at 
 → 0. The Feynman graph
elements of the flowing action are shown in Fig. 4.

B. Frequency cutoff technique

As announced above, we will use frequency regulators with
Eq. (25), which in Wilsonian RG language corresponds to
rescaling frequencies and integrating over all momenta at each
RG step.

The specific form of the frequency regulator for the noise
field is

R
η


(ω) = (−|ω| + 
2)θ [
2 − |ω|],
(32)

∂
R
η


(ω) = 2
θ (
2 − |ω|),
and for the φ field we have

RR

(ω) = γ [−iω + isgn(ω]
2)θ [
2 − |ω|],

(33)
ṘR


(ω) ≡ ∂
RR

(ω) = 2
iγ sgn(ω)θ [
2 − |ω|],

and for its advanced complex conjugate

RA

(ω) = γ [+iω − isgn(ω)
2]θ [
2 − |ω|],

(34)
ṘA


(ω) ≡ ∂
RA

(ω) = −2
iγ sgn(ω)θ [
2 − |ω|].

We also dropped, as usual, the higher-order scale derivatives
∂
γ in these expressions. Hard (e.g., Ref. [39]) and soft (e.g.,
Ref. [40]) frequency cutoffs are frequently also being applied
in RG studies of strongly correlated fermionic systems.

It is well known that frequency regulators breaks the
analyticity of propagators in the complex plane. In particu-
lar, unphysical contributions could be generated from loop
integrations that would/should actually vanish: integrals with
all poles in one half-plane, for example,

∫
dω[GR/A(ω)]n,

which are identically zero upon closing the contour in the
“other” half plane, would give a finite contribution with a
frequency cutoff. In our flow equations below, such graphs
do not appear at the one-loop level. Instead, we encounter
only products of the noise propagator with the retarded
and advanced propagators ∼ ∫

dωGη(ω)GR/A(ω), which give
finite, and similar, contributions with or without frequency
cutoffs.2

Note that, as we discuss below, we also get around
performing the frequency derivative of the cutoff to extract
the flow of γ by using an exponent identity that equates the
flow of γ with that of the noise vertex λ.

With this cutoff choice, the frequency integrations over the
one-loop contractions [in Eq. (38)] become simple due the
cutoff choice and for the rotationally symmetric momentum
integrations it is convenient to use a rescaled momentum
variable k̃2 = A

γ
k2


2 such that the momentum integration
measure becomes

ddk → dd k̃ 
d

(
γ

A

)d/2

. (35)

2Even if “analytic” contributions do occur in the flow, one just has to
carefully remove them by hand, checking first if the loop integrations
are finite without any cutoff.
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FIG. 5. One-loop contractions for Eq. (38). As for the flow of γ
, the frequency derivative of the self-energy diagram for the retarded or
advanced component (top left), generates the identical contraction as that for the noise vertex (right). This cancellation seems to be one reason
for the generically scale-invariant nature of the rough phase as alluded to in the Introduction and observed in the numerics in Fig. 3.

As announced above, we expect the continuum description
to be valid only up to a short distance of the UV-momentum
cutoff, below which the the granular or lattice structure of the
interface becomes important. In order to regulate physically
unimportant UV divergences in the momentum integrations we
systematically include only “on-shell” and smaller momenta
into the flow

k2 � γ

A

2, k̃2 � 1. (36)

As 
 → 0, this is a shrinking ball around the origin in
momentum space, whose volume is continuously adapted as
γ flows too. This mimics the UV behavior from a Litim-type
cutoff in momentum space, which regulates both IR and UV
divergences [41]. We have checked that the findings and fixed
points reported below do not qualitatively seem to depend on
the regularization procedure and choice of cutoffs. We have
repeated the calculation for a different cutoff and different UV
regularization procedure and found similar results.3

C. One-loop flow equations

We now write the explicit form of the flow equations
following from expanding the master flow equation, Eq. (25),
with the truncation specified above. For brevity, we will use
an integration symbol that includes the cutoff derivatives:∫

=
∫

ddk
(2π )d

∫
dω

2π

[
Ṙη∂Rη

+ ṘR

∂RR



+ ṘA


∂RA


.
]
. (37)

We get the expressions

∂
(idK

 ) = −i

2

∫
λ2


G
η


(ω)GK

(ω,k),

∂
(−
) = −i

2

∫
λ2


G
η


(ω)
[
GA


(ω,k) + GR

(ω,k)

]
,

∂
(−λ
) = −i

2

∫
λ3


G
η


(ω)
[
GA


(ω,k)2 + GR

(ω,k)2

]
.

(38)

3For example, we tried momentum cutoffs of the form R
φ


(k) =
−A(
2 − k2)θ (
2 − k2) and for the noise propagator R

η


 = 
2

as well as R
η


(k) = 
2θ (
2 − k2). The last choice “entangles”
frequency of the noise with momenta of the φ field, but the flow
was qualitatively similar to the ones with the frequency cutoff. We
believe the using a frequency cutoff is cleaner and the ability to do so
a particular strength of the 1-PI functional flow equation (25).

The corresponding Feynman contractions are shown in
Fig. 5. At the one-loop level, there is no flow for the momentum
renormalization factor ∂
A = 0, and the flow of the frequency
renormalization factor γ
 is obtained via the diagrammatic
identity

ζγ = − 


γ


∂
γ
 = − 


λ


∂
λ
 = ζλ, (39)

also avoiding the necessity the perform frequency derivatives
on the cutoff.

Severe diagrammatic redundancies appear in gauge theories
(for example, QED or the CP N model), there as a conse-
quence of truly conserved global charges [42,43]. Here, the
cancellation is probably a leftover effect of the expansion of
the action in powers of φ̃φ, which can be traced back to a
gauge transformation related to the Galilean invariance for
temporally white noise [30].

In addition to the anomalous exponents in Eq. (39), we
define the rescaled variables for the mass variable and the
noise vertex:

̃ = 


γ

2
,

(40)

λ̃ = λ



(4−d)/2A
d/4

 γ

1−d/4



√
π

,

and the slope of the statistical Keldysh component,

ζdK = − 


dK



∂
dK

 . (41)

For completeness, we will write out the analogous exponent
for the momentum factor ζA = − 


A

∂
A
 in the equations

below, but it vanishes at the one-loop level.
The various β functions following from explicit evaluation

of Eqs. (38) take on the simple form:


∂
̃ =(−2 + ζγ )̃ + λ̃2Dλ2 [̃],
(42)


∂
λ̃ =
[
d − 4

2
+ d

4
ζA +

(
1 − d

4

)
ζγ − ζλ

]
λ̃,

together with the anomalous exponents

ζA = 0,

ζdK = λ̃2Sλ2 [̃], (43)

ζγ = λ̃2Gλ3 [̃] = ζλ.
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Invoking ζA = 0 and the identity ζγ = ζλ the flow equation for
the noise vertex simplifies to


∂
λ̃ =
(

d − 4

2
− d

4
ζγ

)
λ̃. (44)

Partial cancellations in β functions can be a reason for the
appearance of anomalous exponents that depend only on
dimensionality [44] and sometimes critical phases rather than
critical points.

The fixed point structure is determined by dimensionality
d and the properties of the three threshold functions Dλ2 [̃],
Sλ2 [̃], and Gλ3 [̃], which depend on the mass variable ̃

and dimensionality d = 1,2,3. The analytic expressions and
various limiting cases for the threshold functions are given in
the Appendix.

IV. SOLVING THE FLOW

In this section, we solve the flow equations (42) and (43),
first analytically in two limit cases complementary to the
numerical solutions exhibited in the key results (Sec. I B).
The initial value for the mass variable is zero 
0 = 0, having
in mind a gapless interface before turning on the coupling to
the noise. We will vary strength of the noise vertex λ
 to tune
through the phase diagram shown Sec. I B from the massive
phase (small initial λ̃
0 ) to the rough, but gapless phase (large
λ̃
0 ) via a critical point to the rough phase at λ̃
0,c.

A. Hyperthermal fixed point in the rough phase

In d < 4, Eqs. (43) and (44) admit a stable non-Gaussian
fixed point (
∂
λ̃ = 0) solution

ζγ = 2(d − 4)

d
,

(45)

λ̃2
∗ = 2(d − 4)

d Gλ3 [̃∗]
,

3 2 1 0 1 2 3

4

2

0

2

4

lh
sv

s.
rh

s

FIG. 6. (Color online) Fixed point for ̃∗ = −1.174 in the rough
phase in d = 2 from finding intersections of the left-hand side of
Eq. (46) (black line) with its right-hand side (blue, dashed line). As
at the Wilson-Fisher fixed point for the O(n) model [46], the rough
phase fixed point, (̃∗ = −1.396,λ̃∗ = 10.154) also in d = 3, lies at
negative mass in the plane of rescaled mass vs rescaled coupling. This
is true in all dimensions d = 1,2,3.

provided the equation for the mass (
∂
̃ = 0) has a solution

̃∗ = d − 4

4

Dλ2 [̃∗]

Gλ3 [̃∗]
, (46)

such that λ̃2
∗ > 0 with λ̃ a real-valued number. This is indeed

the case in d = 1,2,3 as is shown in Fig. 6 for d = 2.
Of course, a fixed point ̃∗ means that the physical mass

vanishes during the flow

 = ̃∗
2γ →

→0

0, (47)

implying that the entire rough phase is gapless. This fixed
point is accompanied by a set of critical exponents including
the dynamical exponent

z = 2 + ζA − ζγ = 2 − ζγ (48)

collected in Table I. In the rough phase, the strong coupling
between the “flat z = ∞ spectrum” (local in space) of the noise
propagator and the bare z = 2 overdamped φ-dynamics leads
to z values intermediating between the two values. Note that
the steep flow when the scaling of the roughening transition
changes to that of the rough phase in Fig. 2 is due to a change of
sign of the threshold function for ζγ . This function, Gλ3 [̃], is
plotted in the Appendix. Self-organized and generically scale-
invariant phases in open systems have of course been discussed
in a variety of contexts (see, e.g., Hwa and Kardar [44] for
a one-loop analysis of sandpile models and Ref. [45] for a
broader discussion on symmetries).

B. Fixed point at the roughening transition

The fixed point at the roughening transition (rt) is analyzed
in changed variables,

̃rt = ̃
2γ 2,
(49)

λ̃rt = λ̃
2γ 2,

which attain fixed points at the roughening transition, (̃∗
rt =

−5.81, λ̃∗
rt = 23.33) in d = 3, whose ratio turns out to be fixed

0 5 10 15s

0.0001

0.01

1

100

10000
- Δ

FIG. 7. (Color online) Flow of the physical (nonrescaled) mass
−
 in d = 3 upon approaching the roughening transition from
the massive phase for different values of the initial noise vertex in
double logarithmic graph [with s = − log[
/
0] the flow goes from
the UV (left of plot) to IR (right of plot)]. The mass is initially
numerically zero s=0 = 0. The red line is closest to the roughening
transition λ̃
0,c from below while the black line has a λ̃
0 furthest
away from λ̃
0,c. For infinite numerical accuracy the power-law
linear scaling with slope ζ rt

γ = 6/11 = 0.54 from Eq. (10) for the
roughening transition would extend longer and longer.
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0 5 10 15s

-2

0

2

4

0 5 10 15s

-2

0

2

4
ζdK

ζγ

ζdK

ζγ

FIG. 8. (Color online) Flow of the anomalous exponents when approaching the roughening transition from the massive phase. Left:
λ̃
0 = 6.43, Right: λ̃
0 = 6.442946808. The closer the noise vertex is tuned to the critical value, the longer for the scaling plateau at which
ζdK = ζγ = 0.54 for d = 3 from Eq. (10). The flow goes from the UV (left of plot) to IR (right of plot) via 
 = 
0 exp(−s). At some point
the scaling stops, both anomalous exponents become zero, because we are still in the massive phase.

to be | λ̃∗
rt

̃∗
rt
| = 3π

√
2

11 . This leads to an automatic fulfillment of
the vanishing of the β function indicative of an asymptotically
unstable fixed point. In the numerics, this is reflected by
shorter and somewhat more wobbly scaling plateaus of the
mass and vertex when compared to the stable fixed point of
the rough phase. This means that the physical mass vanishes

 = ̃rt/γ ∼ 
ζ rt

γ as can be seen in Fig. 7.
For the suitably rescaled noise vertex, we can write the flow

equation

∂t λ̃rt =
[
d

2
−

(
1 + d

4

)
ζγrt − ζλrt

]
λ̃rt, (50)

which implies Eq. (10) (with ζγrt = ζλrt ). The emergent thermal
fluctuation-dissipation relation is easily seen as follows. When
̃∗

rt attains a constant fixed point value, the “old” variable
̃ must diverge. Expanding the threshold functions in the
Appendix for the Keldysh component (in “old” variables and
for concreteness in d = 3):

ζdK = λ̃2Sλ̃2 [̃] →
̃→∞

≈ λ̃2 1

3π2̃2
= λ̃2Gλ3 [̃ → ∞] = ζγ .

(51)

0 5 10 15 20s

-2

0

2

4

6

8

ζdK

ζγ

FIG. 9. (Color online) Flows deep in the rough phase in which
no remnant of the roughening transition (as in Fig. 2) is visible and
the anomalous exponents very quickly attain their rough phase fixed
point values ζdK = 5.56 and ζγ = −0.66 from Table I in d = 3. Initial
value of the noise vertex is λ̃
0 = 30 � λ̃
0,c = 6.4429468082319.
The flow goes from the UV (left of plot) to IR (right of plot) via

 = 
0 exp(−s).

Note that the ratio λ̃2

̃2 is invariant under the variable change
Eq. (49), and consequently ζ rt

γ = ζ rt
dK as seen in the explicit

flows in Sec. I B and Sec. IV C.

C. Numerical flows

We briefly describe the numerical procedure and initial
conditions for the explicit flows in Subsec. I B. We also
show a few of more plots: Figs. 7 and 8 for flows in the
massive phase upon approaching the roughening transition
and Fig. 9 as an exemplary flow deep in the rough phase.
The coupled flow equations (42) and (43) are integrated using
a fourth order Runge-Kutta routine (results did not change
from using different routines) from high frequencies 
0 = 10
down to 
 = 0 using the momentum-integrated version of the
threshold functions given in the Appendix. We always begin
the flow with zero initial mass 
0 = ̃0 as appropriate for the
gapless interface. The initial value of the rescaled noise vertex
λ̃
0 is varied to obtain the phase diagram Fig. 1. The condition
for the phase boundary is the vanishing of the physical mass
in the infrared 
→0 → 0.

V. CONCLUSIONS

This paper pursued the strategy to (i) take an important
universality class for nonequilibrium statistical mechanics
(Burgers-Kardar-Parisi-Zhang equation), (ii) strip it from an
important conservation law(s) (Galilean invariance), and (iii)
compute the phase diagram and critical exponents using the
dynamic renormalization group.

We broke the Galilean invariance by accounting for
temporal correlations in the random driving force. The chief
consequence of this is the absence of a fluctuation-dissipation
relation even in d = 1 for any noise level, and in 2 � d < 4 for
sufficiently strong noise levels. We penetrated this strong noise
“rough or turbulent” phase within a dynamic RG flow using
frequency rescaling techniques that took care of long-time
correlations in the noise. We computed exponents to one-loop
order, essentially controlled close to four space dimensions
d = 4. We showed that the rough phase is an example
of generic scale invariance in the sense that its emergent
gaplessness does not require fine tuning and traced this back
to explicit cancellations in the one-loop β-functions. Higher
loop analysis and numerical simulations will be needed to
determine the fate of our theory beyond one loop.
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Intriguing extensions of this work are quantum liquids and
superfluids [47–49] (in which more exotic types of noise can
potentially be applied [19,20]) and waves in time-dependent
random media [50,51]. With regard to recent related works on
nonlinear fluctuating hydrodynamics [52,53], it will be inter-
esting to systematically explore the role of broken conservation
laws onto crossover time scales in dynamics and transport [54].
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APPENDIX: THRESHOLD FUNCTIONS

We here tabulate the threshold functions appearing in the
flow equations (42) and (43), Dλ2 [̃], Sλ2 [̃], and Gλ3 [̃]

4 2 0 2 4

0.3

0.2

0.1

0.0

G
Λ3
d

2

FIG. 11. Plot of the threshold functions for the noise ver-
tex/frequency renormalization factor in d = 2.

(Figs. 10 and 11). We will give the premomentum integrated
expression for general dimension d and the postmomentum
integrated expression only for d = 2; the other dimensions do
not qualitatively change their form.

The flow of the Keldysh component is determined by

S
(d)
λ2 [̃] =

∫
dd k̃

(2π )d
2([̃ + k̃2)2 + 3]

[(̃ + k̃2)2 + 1]2

∣∣∣∣
0�k̃2�1

d=2= −2(̃2 + 1)(̃(̃ + 2) + 2) tan−1(̃) + 2(̃2 + 1)[̃(̃ + 2) + 2] tan−1(̃ + 1) − ̃(̃ + 1) + 1

2π (̃2 + 1)[̃(̃ + 2) + 2]
. (A1)

The flow of the mass variable is determined by

D
(d)
λ2 [̃] =

∫
dd k̃

(2π )d
2(̃ + k̃2)[(̃ + k̃2)2 + 3]

[(̃ + k̃2)2 + 1]2

∣∣∣∣
0�k̃2�1

d=2=
4̃+2

(̃2+1)[̃(̃+2)+2]
+ log

(
2̃+1
̃2+1

+ 1
)

4π
. (A2)

The flow of the noise vertex (and the frequency renormalization factor) is determined by

G
(d)
λ3 [̃] = ∫

dd k̃
(2π)d

2{(̃+k̃2)2[(̃+k̃2)2+6]−3}
[(̃+k̃2)2+1]3

∣∣∣∣
0�k̃2�1

d=2= ̃(̃+1)(̃2+̃+1)(̃2+̃+6)−4
2π(̃2+1)2[̃(̃+2)+2]2 . (A3)
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FIG. 10. Plots of the threshold functions for the Keldysh component (left) and the mass (right) in d = 2.
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