
PHYSICAL REVIEW E 91, 032130 (2015)

Fixation properties of subdivided populations with balancing selection

Pierangelo Lombardo,1 Andrea Gambassi,1 and Luca Dall’Asta2,3

1SISSA–International School for Advanced Studies and INFN, via Bonomea 265, 34136 Trieste, Italy
2Department of Applied Science and Technology–DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

3Collegio Carlo Alberto, Via Real Collegio 30, 10024 Moncalieri, Italy
(Received 17 July 2014; published 20 March 2015)

In subdivided populations, migration acts together with selection and genetic drift and determines their
evolution. Building upon a recently proposed method, which hinges on the emergence of a time scale separation
between local and global dynamics, we study the fixation properties of subdivided populations in the presence of
balancing selection. The approximation implied by the method is accurate when the effective selection strength
is small and the number of subpopulations is large. In particular, it predicts a phase transition between species
coexistence and biodiversity loss in the infinite-size limit and, in finite populations, a nonmonotonic dependence
of the mean fixation time on the migration rate. In order to investigate the fixation properties of the subdivided
population for stronger selection, we introduce an effective coarser description of the dynamics in terms of a
voter model with intermediate states, which highlights the basic mechanisms driving the evolutionary process.
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I. INTRODUCTION

In a natural population without any structure or subdivision,
usually referred to as a well-mixed population, the temporal
evolution results from the competition between the determin-
istic evolutionary forces (selection) and the stochastic effects
generated by the death and reproduction of individuals (genetic
drift). Because of stochasticity, every finite population in the
absence of mutations eventually reaches an absorbing state
(fixation) in which all individuals have a unique trait (e.g.,
species or language or opinion) and biodiversity, defined as
the coexistence of various traits, is lost. When a popula-
tion presents an internal structure, e.g., it is subdivided in
subpopulations, the individuals can move between different
subpopulations and migration acts together with selection
and genetic drift, influencing relevant long-time properties
of the dynamics, such as the mean fixation time (MFT). It
is widely observed that habitat fragmentation and population
subdivision play a major role in the process of ecological
change and biodiversity loss. Understanding and predicting the
effects of migration on the collective behavior of a subdivided
population is therefore of primary importance in order to
preserve ecosystems and species abundance.

Depending on the specific landscape into which the
natural population is embedded, its spatial structure can
be conveniently modeled by means of either one-, two-,
three-dimensional regular lattices or, more generally, by a
network with certain connections. If the degree of connectivity
of each node of this network is sufficiently large and the
connected subpopulations have constant and equal sizes,
the effects of subdivision typically amount to a rescaling
of the relevant parameters of the population, such as the
effective population size Ne and the effective strength se of
selection [1,2]. However, both Ne and se are functions of the
rate with which individuals migrate between subpopulations,
therefore, both the fixation probability and the MFT depend
on it. In the absence of selection or when it is constant, the
MFT monotonically decreases upon increasing the migration
rate [3–5]. When evolutionary forces which favor biodiversity
are present, instead, it was recently shown that the MFT can

display a nonmonotonic dependence on the migration rate [6].
Even in the absence of mutation, this kind of evolutionary
forces is common to natural populations. In particular, the
balancing selection [7,8] associated with them is an umbrella
concept, encompassing mechanisms such as overdominance
or heterozygote advantage, which act for the maintenance of
biodiversity in several contexts, most notably mammalian [9]
and plants [10]. For example, it has been proposed that some
genetic diseases in humans, such as sickle-cell anemia [11],
cystic fibrosis [12], and thalassemia [13], actually persist as a
consequence of balancing selection. Analogous mechanisms
are responsible for the emergence of bilingualism in language
competition [14] or for cooperative behaviors in ecology
and coevolutionary dynamics [15,16], such as those recently
observed in microbial communities [17].

This work builds on the approach introduced in Ref. [6] and
extends the investigation reported therein in several respects.
We consider a group of equally sized subpopulations (i.e.,
a metapopulation) which balancing selection acts on, while
migration takes place between any pair of subpopulations, such
as to form a fully connected graph with each subpopulation
occupying one of its vertices. For concreteness, we adopt
in the following the terminology and notation specific of
population genetics. In Sec. I, we review the details of the
model and the approximation proposed in Ref. [6], which
hinges on the emergence of a separation between the time
scale of the local dynamics occurring at each vertex of the
network and that of the global dynamics at the level of the
whole network. The resulting approximation turns out to be
accurate when the effective selection strength is sufficiently
small and the number N of subpopulations is sufficiently
large in the sense specified further below. In Sec. III, we
show that in this case a phase transition takes place between
species coexistence and biodiversity loss. In order to be able
to investigate the fixation properties of the system for larger
values of the selection strength, which are not immediately
accessible with the previous approach, we propose in Sec. IV A
an effective description in terms of a voter model, which is
generically accurate for small values of the migration rate. This
coarser description applies to a generic metapopulation model,
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independently of the specific form of the natural selection; in
addition, in the presence of balancing selection, the range of
values of migration rate for which the effective voter model
provides accurate predictions can be extended by introducing
an additional intermediate state in the voter model, as we
discuss in Sec. IV B. In contrast to the standard voter model,
the one with the additional state is actually able to repro-
duce the distinctive nonmonotonic dependence of the MFT
on the migration rate found in Ref. [6]. Moreover, it provides
a semiquantitative explanation of a nonmonotonic behavior
observed in the MFT as a function of the selection coefficient
s, which appears for small migration rate m in addition to the
one discussed in Ref. [6]. A summary of our findings and the
conclusions are then presented in Sec. V.

II. METAPOPULATION MODEL

A. From microscopic to mesoscopic dynamics

The evolution of finite well-mixed populations is conve-
niently described at the microscopic level by the Wright-Fisher
model [18,19], which consists of a (haploid) population of �

individuals, each one carrying one of two possible alleles A or
B. At each time step of the dynamics, the original population
is substituted by a new generation obtained by a binomial
random sampling determined by the features of the previous
one: the allele of each new individual is randomly drawn with
a probability which depends on the frequency of occurrence
of A (or, equivalently B) in the parent generation. The time
interval τg between two consecutive steps of this dynamics
represents the duration of a generation. In a neutral model, i.e.,
in the absence of selection, each new individual carries allele
A (respectively B) with probability x = �A/� (respectively
1 − x), where �A is the number of individuals carrying allele
A in the preceding generation. In order to mimic the effects
of natural selection, one introduces different allele fitnesses
wA = 1 + s̃ and wB = 1 for alleles A and B, respectively,
which affect the probability pr(x) that a new individual carries
allele A after reproduction as

pr(x) = wA�A

wA�A + wB�B

= (1 + s̃)x

1 + s̃x
. (1)

Alternatively, the dynamics of the same population can be
described by the Moran model [20]. At each time step
of the dynamics, two individuals (not necessarily distinct)
are randomly selected in the population. In the absence of
selection, an exact copy of the first one is introduced in order
to replace the second one, which is therefore removed from
the population. Since individuals are randomly chosen, the
probability dA = �A/� = x of removing an individual with
allele A from the population equals the probability rA of repro-
ducing one of them. Analogously, for an individual carrying
allele B these probabilities are dB = rB = 1 − x. Within the
Moran model, a selective advantage can be accounted for by
modifying the reproduction probability rA,B of the alleles
with the fitnesses wA and wB specified above, according
to rA(x) = (1 + s̃)x/(1 + s̃x) and rB(x) = x/(1 + s̃x). With
these probabilities, the number of individuals carrying allele
A increases (decreases) by one at each step of the dynamics

with rates W+1 (W−1), respectively, with

W+1δt = rAdB = (1 + s̃)x(1 − x)/(1 + s̃x),
(2)

W−1δt = rBdA = x(1 − x)/(1 + s̃x),

where δt is the duration of the time step [21].
Although the Wright-Fisher and Moran models are im-

plemented with different rules at the microscopic level, for
a wide range of values of the parameters and sufficiently
large populations, they turn out to be effectively described
by the same Langevin equation (with Itô prescription, see
Appendix A)

ẋ = μ(x) +
√

v(x) η(t), (3)

where the evolution of the frequency x of allele A in the
population is driven by the sum of a deterministic force
μ(x) = s̃x(1 − x) generated by selection and of a stochastic
term, referred to as genetic drift in the literature, which is a
delta-correlated Gaussian noise with zero mean and variance
v(x) = x(1 − x)/(�τg). This noise is conveniently expressed
as

√
v(x) η(t) in terms of the normalized Gaussian noise η with

〈η〉 = 0 and 〈η(t)η(t ′)〉 = δ(t − t ′). Note that Eq. (3) provides
an approximate description of the dynamics in terms of an
effective diffusion process. While this approximation turns
out to be accurate for the Wright-Fisher and Moran models, at
least within a suitable parameter range (see Refs. [6,22]), it is
known to fail in other cases, e.g., in the susceptible-infected-
susceptible (SIS) model of epidemiology [23].

Without loss of generality, time can be measured in units of
generations, so that τg = 1 and the rates become dimensionless
quantities. Balancing selection is characterized by a selective
advantage s̃ which favors the evolution towards a state of
the population characterized by an optimal frequency x∗
of allele A; in the simplest case, one can assume a linear
dependence s̃ = s(x∗ − x), with a constant s > 0. Note that in
an infinitely large population (with � → ∞), the fluctuation
effects represented by η in Eq. (3) are suppressed, and the
resulting deterministic dynamics due to the selection term
μ drives the population towards the optimal frequency x∗
of allele A. In a finite population, instead, the presence of
fluctuations due to the random genetic drift eventually drives
x towards one of the two possible absorbing states x = 0 and 1,
corresponding to the fixation of alleles B and A, respectively.
The mean fixation time and the fixation probability of a
population described by Eq. (3) can be evaluated within the
diffusion approximation by the standard methods introduced
in Ref. [24]. A summary of the relevant results and expressions
is provided in Appendix B.

In the absence of spatial embedding, a celebrated prototype
model of subdivided populations is the so-called “island
model,” originally proposed by Wright [25] for neutral
evolution. It consists of N interacting subpopulations (demes)
of identical size �, labeled by an integer i = 1, . . . ,N

and characterized by the frequencies {x1,x2, . . . ,xN } for
the occurrence of allele A, with xi ∈ [0,1]. Within each
deme, the internal dynamics (assumed to be identical in
the absence of migration) proceeds as in either Moran’s
or Wright-Fisher’s stochastic models, while different demes
interact by exchanging randomly selected individuals, such
that the sizes � of the demes involved in the exchange are not
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affected. The rate m with which migration occurs is defined as
m = ni↔jN/�, where ni↔j is the mean number of individuals
exchanged between the deme i and j in one generation. As
a consequence of this exchange, the transition rates which
define the Moran and Wright-Fisher models are modified as
described in Appendix A. For sufficiently large � and small m

and s (see Appendix A), the evolution of the allele frequency
xi in the ith deme can be described, both within the Moran
and Wright-Fisher models by the following Langevin equation
with Itô prescription:

ẋi = μ(xi) + m(x̄ − xi) +
√

v(xi) ηi, (4)

where ηi are the independent Gaussian noises with corre-
lation 〈ηi(t)ηj (t ′)〉 = δi,j δ(t − t ′), while the term m(x̄ − xi)
accounts for the migration of individuals between the demes
and it depends on xj �=i only through the interdeme mean
frequency x̄ = ∑N

i=1 xi/N .
In the presence of migration, each deme exchanges in-

dividuals with the others, a process that effectively acts as
a source of biodiversity inside each deme, preventing them
from achieving independent fixation. In fact, the single-deme
states xi = 0 and 1 are no longer per se absorbing for
m �= 0 and global fixation requires a coordinate evolution
towards the two global absorbing states X0 ≡ {xi = 0}i=1,...,N

or X1 ≡ {xi = 1}i=1,...,N in which all demes fixate the same
allele. In this case, the dynamics of the population can be
conveniently described via the exact evolution equation for
the mean frequency x̄, which can be obtained directly from
Eq. (4) [see, e.g., Eq. (S10) in the Supplemental Material of
Ref. [6]]:

ẋ = s[x∗x − (1 + x∗)x2 + x3] +
√

(x − x2)/(�N ) η, (5)

where η is a Gaussian noise with 〈η(t)η(t ′)〉 = δ(t − t ′) and
xk = ∑N

i=1 xk
i /N . Due to the nonlinear nature of Eq. (4), the

evolution equation for x̄ involves higher-order moments x2

and x3 which in principle could be determined by solving a
whole hierarchy of coupled differential equations.

B. Disentangling time scales

As recently discussed in Ref. [6], for a large number
of demes N and small selection strength s (see [26] for a
precise statements of these conditions), a time scale separation
emerges between the local dynamics and the global one, i.e.,
between the dynamics of xi and that of x̄: this allows one
to express the moments xk in Eq. (5) in terms of x̄. In fact,
on the typical time scale of variation of the interdeme mean
frequency x̄, the local frequencies {xi}i=1,...,N are rapidly
fluctuating and their statistics can be described by a quasis-
tationary distribution Pqs(xi |x̄). Conversely, on the time scale
which characterizes the fast fluctuations of each single local
frequency xi , the mean frequency x̄ is practically constant.
In passing, we mention that an analogous separation of time
scales occurs in nonhomogeneous metapopulations [27]. In the
present case, it suggests that the quasistationary distribution
could be accurately approximated by the stationary solution of
the Fokker-Planck equation associated with Eq. (4) with fixed
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FIG. 1. (Color online) Single-deme frequency distribution in a
metapopulation of N = 100 demes with � = 100 individuals each,
with s ′ = m′ = 1 and x∗ = 0.3, conditioned to having a mean
frequency x̄ = 0.5 ± 10−3. The histogram has been obtained by
simulating the Wright-Fisher model (WF) with migration (see
Appendix A). The dashed line corresponds to the quasistationary
distribution Pqs(xi |x̄ = 0.5) in Eq. (7), while the solid line indicates
Pqs(xi |y(x̄ = 0.5)) with y(x̄ = 0.5) 
 0.53 determined by solving
numerically the consistency equation (8). The histogram refers to
the set of single-deme frequencies {xi} recorded during the evolution
of the population after an initial transient but much before fixation
occurs and such that the corresponding fluctuating mean x̄(t) is close
to 0.5, i.e., with |x̄(t) − 0.5| < 10−3. In order to avoid correlations
between successive recordings, we assumed a minimal time lag of
10 Tcorr where Tcorr = 1/m is the time scale associated with a change
of xi of the same order as xi , due to migration.

x̄, which is

Pqs(xi |x̄) ∝ x2m′x̄−1(1 − x)2m′(1−x̄)−1es ′x(2x∗−x), (6)

where m′ = �m and s ′ = �s are a conveniently rescaled
migration rate and selection coefficient. Figure 1 shows the
histogram of the single-deme frequencies xi in a certain
metapopulation with a mean x̄ = 0.5, as obtained from the
numerical simulation of the Wright-Fisher model. The dashed
line in the figure indicates the theoretical prediction given
by the quasistationary distribution Pqs(xi |x̄ = 0.5) in Eq. (7)
and it clearly shows significant discrepancies with the actual
histogram. According to Ref. [6], this discrepancy can be
resolved by considering a quasistationary distribution of the
same functional form as Eq. (6) but in which an effective
parameter y(x̄) replaces x̄ in order to account for the fact that
the latter actually varies in time:

Pqs(x|y) ∝ x2m′y−1(1 − x)2m′(1−y)−1es ′x(2x∗−x). (7)

In turn, y(x̄) is determined in such a way to satisfy the
consistency condition

x̄ =
∫ 1

0
dx x Pqs(x|y(x̄)). (8)

When the selection coefficient s vanishes, the time scale
separation is very pronounced and this equation gives y(x̄) =
x̄. In the presence of a nonvanishing selection strength, one
can either solve Eq. (8) numerically or do an expansion in the
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small parameter se/m, with

se = s(
1 + 1

m′
)(

1 + 1
2m′

) , (9)

which renders

y(x̄) = x̄ − (se/m)x̄(1 − x̄)(xe
∗ − x̄) + O((se/m)2), (10)

where

xe
∗ = x∗ + (x∗ − 1/2)/m′ (11)

is another effective parameter that will be discussed further in
the following. By solving Eq. (8) for the choice of parameters
in Fig. 1, one obtains y(x̄ = 0.5) 
 0.53; the corresponding
distribution Pqs(xi |y(x̄ = 0.5)) is reported as a solid line in
Fig. 1 and, in fact, it turns out to describe the actual distribution
significantly better than Pqs(xi |x̄ = 0.5). We emphasize the
fact that in this comparison there are no fitting parameters. A
similar improvement is found also for different values of x̄ and
of the parameters which characterize the population.

When the time scales separation holds, the moments xk

on the right-hand side of Eq. (5) can be approximated by the
corresponding moments 〈xk〉 = ∫ 1

0 dx xkPqs(x|y(x̄)), leading
to the effective Langevin equation

˙̄x = M(x̄) +
√

V (x̄) η(t), (12)

where the deterministic term and the variance of the noise are,
respectively, given by

M(x̄) = s

∫ 1

0
dx x(1 − x)(x∗ − x)Pqs(x|y(x̄)) (13a)

and

V (x̄) = (�N )−1
∫ 1

0
dx x(1 − x)Pqs(x|y(x̄)). (13b)

At the lowest nontrivial order in small se/m, the population
behaves as a well-mixed one with effective parameters which
are rescaled due to the finite migration rate m, in agreement
with the results of Refs. [1,2,4]. In particular, the deterministic
force and the variance of the stochastic term turn out to be

M (0)(x̄) = sex̄(1 − x̄)(xe
∗ − x̄), (14a)

V (0)(x̄) = x̄(1 − x̄)/Ne, (14b)

where the effective selection strength se and the effective opti-
mal frequency xe

∗ are given in Eqs. (9) and (11), respectively,
while

Ne = N�

(
1 + 1

2m′

)
(15)

is the effective population size. [In Eqs. (14) and in what
follows, the superscript (0) indicates that the corresponding
quantity has been calculated at the lowest order in an expansion
in se/m.] It is worth noting that as the migration rate m′
increases, the effective parameters se and x∗

e approach the
values they have for the isolated demes, while the effective
size Ne tends to the total number N� of individuals in the
metapopulation; accordingly, in the limit m′ → ∞, the internal
structure of the metapopulation does not affect its dynamics
and subdivision plays no actual role. (This might not be the case
in nonhomogeneous populations, as discussed in Ref. [27].)

If balancing selection is not symmetric, i.e., x∗ �= 1/2, the
effective drift M (0)(x̄) in Eq. (14a) can be written as the sum
of a symmetric term

M (0)
symm(x̄) = sex̄(1 − x̄)(1/2 − x̄) (16)

and a directional selection term [28]

M
(0)
dir (x̄) = σex̄(1 − x̄), (17)

where

σe = se(xe
∗ − 1/2) (18)

is an effective directional selection coefficient. M (0)
symm pro-

motes coexistence of the two alleles and therefore it increases
the biodiversity of the system, slowing down fixation; M

(0)
dir ,

instead, favors fixation of one of the alleles (depending on
the sign of σe). The competition between these two terms
determines whether balancing selection actually slows down
or speeds up fixation of the population as a whole. One
can therefore expect that, depending on the ratio |σe/se|
being larger than some threshold θ , M

(0)
dir prevails over M (0)

symm
such that balancing selection eventually accelerates fixation.
According to Eq. (11), this occurs for

|x∗ − 1/2| >
m′θ

m′ + 1
, (19)

which provides a heuristic estimate of the region of the
parameter space within which balancing selection should
facilitate fixation. The fact that balancing selection slows down
fixation only if the optimal frequency x∗ is far enough from the
absorbing boundaries (i.e., if it is close enough to x∗ = 1/2)
was first noticed in Ref. [29] for the case of balancing selection
in well-mixed populations, by analyzing the eigenvalues of
the transition matrix of the Moran-type dynamics. In the next
section, we argue that this change of behavior becomes an
actual phase transition in the limit N → ∞ of subdivided
populations.

III. PHASE TRANSITION IN THE INFINITE
ISLAND MODEL (N = ∞)

In the limit of an infinite number of demes, Eq. (12)
becomes deterministic because the variance V (x̄) of the noise
vanishes; this is not the case for the noise in the single-deme
equation (4), which is finite as long as � is finite and
therefore determines a nontrivial quasistationary distribution
Pqs(x|y(x̄)) which, in turn, affects Eq. (12). Depending on
the values of the parameters s ′, m′, and x∗, the internal
stochasticity of the demes might be sufficiently strong to drive
the metapopulation to fixation even in the infinite-size limit
N → ∞. In fact, the deterministic part of Eq. (12) might
drive x̄ towards one of the two absorbing states X0 and X1

corresponding to x̄ = 0 and 1, respectively. In addition to these
latter solutions, Eq. (12) admits also a stationary state with
x̄ = x∞, which can be determined by requiring that M(x∞)
vanishes, i.e., by solving the equation [see Eq. (13a)]∫ 1

0
dx x(1 − x)(x∗ − x)Pqs(x|y) = 0, (20)

where y = y(x∞) is defined by the consistency condition
in Eq. (8). Figure 2 shows the numerical determination of
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FIG. 2. (Color online) Drift M(x̄) as a function of x̄, as obtained
from the numerical solution of Eq. (13a) for m′ = 2, s ′ = 1 (cor-
responding to se/m 
 0.3), and for various values of x∗. It can be
noticed that, depending on the value of x∗, a nontrivial zero x∞
emerges, which is always an attractive state for the deterministic
evolution of x̄.

M(x̄) [based on Eqs. (8) and (13a)] as a function of x̄ for
various values of x∗ in a population characterized by the
parameters reported in the caption. Figure 3, instead, shows
the comparison between M(x̄)/s calculated as in Fig. 2 (solid
line) for x∗ = 0.35 (indicated by the crossed circle) and the
one inferred from the numerical simulations (symbols with
error bars) of a population with N = 100 demes of � = 100
individuals each and the same values of parameters as in Fig. 2.
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FIG. 3. (Color online) Deterministic term M(x̄) as a function of
the mean frequency x̄ in a population of N = 100 demes with � =
100 individuals each and parameters m′ = 2, s ′ = 1, and x∗ = 0.35
(this latter value is indicated by the crossed circle). The solid line
corresponds to the numerical solution of Eq. (13a), from which we
can read the estimate of x∞ (empty circle). Symbols with error
bars, instead, are the results of the numerical simulations of this
metapopulation, based on the Moran model (see Appendix A for
the definition of the rates). In order to estimate M(x0) from the
numerical data, the increment δx̄(t) is recorded at each Moran step of
the dynamics such that, correspondingly, |x̄(t) − x0| < 10−3, where
x̄(t) is the fluctuating mean value of xi(t) within the population. These
increments are recorded from a time 5 Tcorr after the beginning of the
evolution to well before the eventual fixation occurs, and their mean
gives M(x0). This figure can be compared with Fig. 2 corresponding
to different values of x∗.

The evolution was performed according to the Moran model,
as the latter turns out to be numerically more efficient for the
determination of M than the Wright-Fisher model considered
in Fig. 1. This comparison shows that the effective description
introduced in Sec. I captures also the quantitative aspects of the
actual dynamics of the subdivided population, at least within
the range of parameters investigated here. In particular, x∞
computed from Eq. (20) provides an accurate estimate of the
one inferred from numerical simulations (circle in the figure).
This nontrivial zero x∞ of M in Figs. 2 and 3 corresponds to
an attracting stable state for the deterministic part of Eq. (12),
which is asymptotically reached for t → ∞ unless the initial
conditions are exactly on a boundary. The stability of the point
x∞ follows from the fact that M ′(x∞) < 0. When x∞ ∈ (0,1),
it represents a stable “active” state for the infinite population
and it corresponds to the infinite-size limit (N → ∞) of the
metastable state in which a finite system (N < ∞) would
spend a long time before reaching fixation [6]. However,
x∞ might coincide with one of the two boundaries 0 and
1, depending on the values of the parameters x∗, m′, and s ′
and correspondingly M(x̄) has the same sign within the whole
interval (0,1): when this happens, the deterministic part of
the dynamics drives the system towards fixation. Note that
this fixation process is deterministic in nature and the system
always reaches (asymptotically in time) the absorbing state
determined by x∞, differently from the case with finite N in
which fixation is a stochastic process and both boundaries are
attainable.

When computing the stationary value x∞ as a function
of the optimal frequency x∗ for fixed s ′ and m′, there exists
a critical value xc

∗(s ′,m′), such that for x∗ ∈ (xc
∗,1 − xc

∗) the
infinite population is in the active phase, i.e., x∞ ∈ (0,1), while
it otherwise reaches one of the two absorbing states x∞ = 0
or 1. Figure 4 displays the dependence of the critical value
xc

∗ on the migration rate m′ for several values of selection
strength s ′. In addition, for m′ = 1 and s ′ = 1, Fig. 4 compares
the prediction of having fixation for x∗ < xc

∗ 
 0.25 and an
active state for x∗ > xc

∗ 
 0.25 with the numerical evidences
discussed further below (see also Fig. 4), corresponding to
the conditions indicated by the dotted and crossed circles,
respectively. Analytic estimates for the stationary value x∞
and for the critical value xc

∗ can be easily obtained for small
se/m, in which case the condition (20) reduces to M (0)(x̄) = 0.
Using Eq. (14a) one gets

x(0)
∞ =

⎧⎪⎨
⎪⎩

xe
∗ for xe

∗ ∈ [0,1],

0 for xe
∗ < 0,

1 for xe
∗ > 1,

(21)

where xe
∗ is given in Eq. (11), while

xc(0)
∗ = 1

2(m′ + 1)
. (22)

[We remind here that the superscript (0) denotes that the
corresponding quantity has been calculated on the basis of
the zeroth-order approximation M (0)(x̄) for M(x̄) in Eq. (12).]
This expression agrees with the heuristic estimate of Eq. (19)
if one sets the numerical threshold θ to θ = 1/2. The analytic
determination of x

c(0)
∗ in Eq. (22) is reported in Fig. 4 as a

solid line and it coincides, as expected, with the estimate
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FIG. 4. (Color online) Critical value xc
∗ as a function of m′ for

several values of s ′. For x∗ < xc
∗ or x∗ > 1 − xc

∗, the system is
driven deterministically to fixation for N → ∞. The solid line is
the estimate in Eq. (22), valid for small s, while the dashed lines
correspond to the numerical solution of Eq. (20) for larger values of
s ′. Focusing on the case s ′ = 1 and m′ = 1, metapopulations with
N → ∞ and x∗ larger than xc

∗ 
 0.25 (dashed curve) are expected to
be in the active phase, whereas those with x∗ smaller than that rapidly
fixate. This expectation is confirmed by numerical simulations of
metapopulations with finite but large N : the crossed and dotted circles
indicate the values of x∗ for which there is numerical evidence for
them to correspond to an active and an absorbing phase, respectively,
as discussed in Fig. 6 and further below.

based on the numerical solution of Eq. (20) for small s ′
(uppermost dashed line). Within the same approximation,
the mean frequency x̄ in the active phase approaches the
effective optimal frequency xe

∗ exponentially fast in time,
i.e., x̄(t) − xe

∗ ∝ exp[−sex
e
∗(1 − xe

∗)t]. In the absorbing phase,
instead, an equally rapid evolution drives the system to
fixation: for example, x̄(t) ∝ exp[−se|xe

∗|t] for xe
∗ < 0, with

an equivalent expression holding for xe
∗ > 1.

According to Fig. 4, a population with a certain m′ and x∗
may undergo the transition between coexistence and fixation
upon varying s ′, while for x∗ = 1/2 coexistence is maintained
for any positive value of s ′. In this respect, the present phase
transition resembles the one observed numerically in Ref. [30]
for the dynamics of the stepping-stone model [31] in two
spatial dimensions with mutualistic forces, which has been
verified experimentally in bacterial populations with similar
properties [32,33]. In addition, in the case of populations
embedded in one spatial dimension, this fixation-coexistence
phase transition, emerging in the limit of infinite size, has been
argued [34,35] to belong to the so-called DP2 universality
class [36], with which it shares only some universal features
(but, generically, not quantities such as the MFT). The
analytical results presented here are in fact in agreement with
the behavior expected for the DP2 phase transition within the
mean-field approximation.

The global heterozygosity H = 2x̄(1 − x̄) provides an
index of the biodiversity of the population, as it vanishes
in the absorbing states X0 and X1, while it does not in the
active phase. In this respect, it can be considered as an order
parameter for the phase transition occurring at x∗ = xc

∗ and
1 − xc

∗. Figure 5 reports H as a function of x∗, as obtained
from the numerical solution of Eq. (20) for s ′ = 1 and m′ = 1.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

x

H

m' 0.5
m' 2

FIG. 5. (Color online) Global heterozygosity H in the stationary
state x̄ = x∞ for N → ∞, as a function of the optimal frequency x∗
for s ′ = 1 and various values of m′. The value of H has been obtained
by the numerical solution of Eq. (20).

The picture presented above approximately carries over to
the case in which the number of demes N is finite but large. In
this case, one can heuristically assume that, in the absorbing
phase x∗ < xc

∗ or x∗ > 1 − xc
∗, fixation to a boundary (x̄ = 0

or 1) is effectively reached when the distance of x̄ to that
boundary is smaller than 1/(�N ) (corresponding to having
in the metapopulation only one individual different from
the others) and therefore we expect the MFT to scale as
Tfix ∝ ln(�N ) because of the exponential law with which x̄(t)
approaches the boundary as a function of time. Figure 6 reports
the MFT as a function of N for various values of the optimal
frequency x∗. It can be noticed that, as expected from the
arguments presented above, Tfix/N increases upon increasing
N in the active phase (red squares), while it decreases in
the absorbing phase (blue circles), and this supports the fact
that a bona fide phase transition should be present in the
limit N → ∞. A numerical interpolation reveals indeed an
exponential dependence of Tfix/N (red solid line) as a function

10 20 50 100 200

0.5
1.0

5.0
10.0

N

T f
ix

N

logarithmic fit
x 0.2 WF
exponential fit
x 0.4 WF

FIG. 6. (Color online) Dependence of the MFT Tfix on the size
N of the metapopulation, for � = 100, s ′ = 1, and m′ = 1. The
MFT has been determined via numerical simulations of the Wright-
Fisher (WF) model. For x∗ = 0.4 (red squares), Tfix/N shows an
approximate exponential increase upon increasing N [red solid line,
Tfix/(�N ) = exp(0.46 + 0.025N )] while for x∗ = 0.2 (blue circles),
Tfix displays an approximate logarithmic dependence on N [blue
dashed line, Tfix/(�N ) = (−27 + 16 lnN )/N ].
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of N in the active phase while a logarithmic one (blue dashed
line) of Tfix in the absorbing phase.

IV. CASE OF SLOW MIGRATION

The effective description of the island model with migration
introduced in Ref. [6] and summarized in Sec. I relies on a
perturbative expansion in the parameter se/m. The predictions
concerning the collective behavior of the metapopulation and,
in particular, the mean fixation time are therefore valid only
within the region of the parameter space corresponding to
small se/m. If the migration rate m is large, this region
stretches and includes large values of the selection strength
s 
 m. Interestingly enough, this case can also be described
by using a fast-mode elimination method recently proposed
in Ref. [37]. For small migration rate m, the approximation
discussed in Sec. I is expected to be accurate only for a small
selection coefficient s. In particular, it requires s � 1/� for
the value m 
 1/(

√
2�) of the migration rate m at which

the parameter se/m reaches its maximum as a function of m.
However, Fig. 2 in Ref. [6] suggests that the approximation
discussed in Sec. I provides accurate predictions beyond the
cases mentioned above. In order to rationalize this fact, in this
section we develop an alternative description of the system for
small migration rate m.

A. Effective voter model

With a small but nonvanishing migration rate m, the typical
time scale Tmigr ∝ 1/m′ associated with the occurrence of
migration can exceed the typical time Tfix1 needed by a
single deme to reach fixation in the absence of migration
(the determination of Tfix1 is discussed in some detail in
Appendix B 1). As a result, during the time interval separating
two consecutive migrations, each deme of the population
rapidly evolves towards one of the “boundary states” xi = 0
or 1, which are no longer absorbing due to m′ �= 0, and it
spends most of the time close to it. However, sometimes it
happens that a different allele is received by a deme because
of migration and it rapidly fixates, causing the variable xi

to “jump” to the other boundary state. This is illustrated in
Fig. 7 (see also Fig. 1 in Ref. [6]) which shows the time
evolution of the allele frequencies xi(t) in the various demes
of a population with xi(t = 0) either equal to 0.05 or 0.95, for
two values of migration rate (a) m′ = 0.1 and (b) m′ = 0.01
and some values of selection strength s ′. According to Eq. (B3),
one has Tfix1/Tmigr 
 10−1 and 
10−2 for Figs. 7(a) and 7(b),
respectively and, in fact, the demes in Fig. 7(a) attempt a jump
between the two boundary states more frequently than the
demes in Fig. 7(b), which spend most of their time close to
these boundaries. This dynamics can be effectively described
in terms of an effective voter model, in which each deme of
the metapopulation is mapped onto a voter with one of the two
possible opinions which corresponds to the states xi = 0 or 1.

Migration then acts as an effective interaction among the
voters, which can influence and change each other’s state.
More precisely, with a rate [38]

r = m′N/2 (23)

a

0 20 40 60 80 100
0

0.5

1

t N

x i

b

0 20 40 60 80 100
0

0.5

1

t N

x i

FIG. 7. (Color online) Time evolution of the frequency xi of
allele A in the various demes (represented by different colors)
of a fully connected metapopulation consisting of N = 12 demes
with � = 100 individuals each with (a) m′ = 0.1 or (b) m′ = 0.01
migration rate. These curves are obtained from the numerical
simulation of the Wright-Fisher model with balancing selection
characterized by x∗ = 0.5 and (a) s ′ = 5, (b) s ′ = 1. At time t = 0,
half of the demes have xi = 0.05, while the remaining ones xi = 0.95,
which results in the ratio Tfix1/Tmigr 
 10−1 and 
10−2 for panels (a)
and (b), respectively.

two randomly selected voters interact and, if they are in
different states, their interaction can cause one voter (or
both) to change its state. In particular, as a consequence
of the interaction between voters i and j with xi = 0 and
xj = 1, they change state with probability p = p(1|1/�)
and q = p(0|1 − 1/�), respectively, where p(x ′|x) is the
probability for a single isolated deme to reach the value x ′
starting from an initial value x before fixation occurs, and is
reported in Eq. (B4). Accordingly, p quantifies the probability
that an isolated deme originally in the absorbing state xi = 0
(all individuals carry allele B) fixates to the opposite boundary
xi = 1 when, because of migration, it receives an individual
carrying allele A, such that the ensuing, single-deme fast
dynamics of xi starts from the initial value 1/�. An analogous
interpretation holds for q. The probability that this interaction
increases (respectively decreases) by one unit the number
of individuals in state 1 is therefore p(1 − q) [respectively
q(1 − p)]. Accordingly, the rates W+/− at which the number
of voters in state 1 increases (+) or decreases (−) by one unit
are, respectively,

W+ = m′Np(1 − q)x̄(1 − x̄),
(24)

W− = m′Nq(1 − p)x̄(1 − x̄),

where the factors 2x̄(1 − x̄) account for the probability that
the interacting voters are in different states. When the number
N of demes is large, the master equation associated with the
rates in Eq. (24) can be approximated by a Langevin equation

˙̄x = σ vot
e x̄(1 − x̄) +

√
x̄(1 − x̄)

Nvot
e

η, (25)
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where σ vot
e = m′(p − q) is an effective directional selection

coefficient, Nvot
e = N/[m′(p + q − 2pq)] is an effective pop-

ulation size, and η the normalized Gaussian white noise such
as the one in Eq. (3). For small s ′, m′, and large �, these
effective coefficients reduce to

σ vot
e = 2m′s(x∗ − 1/2),

(26)

Nvot
e = N�

2m′ ,

and they coincide with the coefficients σe, Ne evaluated in
Eqs. (18) and (15), respectively. Since the expressions in
Eqs. (26), (18), and (15) have been obtained on the basis
of the diffusion approximation of the dynamics of two mi-
croscopically different models (i.e., the original microscopic
dynamics of the island model and the effective voter model,
respectively) their agreement demonstrates that both of them
correctly capture the dynamics of the system at a coarser scale.
As it was the case in Sec. I, the system behaves effectively as
a well-mixed population with rescaled effective coefficients.
Note, however, that the deterministic term in Eq. (25) has
the same functional form (typical of directional selection) as
M

(0)
dir (x̄), while the analogous of M (0)

symm(x̄), the footprint of
balancing selection, is missing completely. This is due to the
fact that the specific form of the selection does not enter into
the definition of the effective voter model; on the one hand,
this model provides a viable approximation for the dynamics
of any metapopulation with small enough migration rate but,
on the other, it fails to capture some qualitative features of
balancing selection.

The mean fixation time Tfix(m) of a metapopulation as a
whole (see Appendix B 2 for its determination) depends on
the initial state xi of each single deme, but the mean frequency
x̄ actually provides an effective description of the state of
the system at any time. For simplicity, in the following we
focus on an initial state with x̄ = 1/2: for x∗ 
 1/2 and a
large enough migration rate m, the state with x̄ 
 1/2 actually
corresponds to the metastable state onto which the population
quickly relaxes from its initial state [6]. The MFT T vot

fix of
the voter model, instead, can be evaluated from Eq. (25) via
the standard methods [24] which we used in order to derive
Tfix1 [see Eqs. (B2) and (B3)] from the analogous Langevin
equation (3): in the expression (B3) for the single-deme MFT
in the symmetric case x∗ = 1/2, the parameters s, � have to be
replaced by the migration-dependent renormalized parameters
σ vot

e , Nvot
e , while the functions S(a,b) and F (a,b) in the

analogous expression (B2) for generic x∗ have to be replaced
by the corresponding ones for the directional selection

Svot(a,b) = exp
[−2σ vot

e Nvot
e a

] − exp
[−2σ vot

e Nvot
e b

]
2σ vot

e Nvot
e

,

(27)

Fvot(a,b) =
∫ b

a

dz

∫ 1

z

dy
exp

[
2σ vot

e Nvot
e (y − z)

y(1 − y)
.

In the symmetric case x∗ = 1/2, one eventually finds

T vot
fix = N ln 2

m′p(1 − p)
. (28)

This MFT T vot
fix is reported in Fig. 8 (blue dashed line) as

a function of m′, for � = 100, N = 30, and s ′ = 1. For

0.001 0.01 0.1 1 10
1

5
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1000

m'

T
N

WF
Tfixvi
Tfixvot
Tfix
1

Tfix
0

FIG. 8. (Color online) Mean fixation time as a function of the
migration rate m′, for a metapopulation consisting of N = 30 demes
of � = 100 individuals each, with s ′ = 1 and x∗ = 1/2. Symbols
correspond to the MFT of the Wright-Fisher (WF) model obtained
via numerical simulations. The red dashed-dotted and green solid
curves correspond to the analytic prediction T

(0)
fix and its improvement

T
(1)

fix , respectively, obtained in Ref. [6]. The blue dashed line is the
MFT T vot

fix [see Eq. (28)] of the effective voter model described in the
main text. The brown dashed curve, instead, corresponds to the MFT
T vi

fix of the voter model with an intermediate state (see Sec. IV B),
which reproduces qualitatively the nonmonotonic behavior observed
in the numerical data. The “lifetime” Tu of the intermediate state
introduced in Sec. IV B is estimated as described in Appendix C.

small values of m′ � 0.03, T vot
fix is in excellent agreement

with the data from numerical simulations of the Wright-
Fisher microscopic model (symbols, WF), with the first-order
estimate T

(1)
fix described in Ref. [6] (green solid line), and with

the MFT T vi
fix (brown dashed line) obtained by introducing an

intermediate state in the voter model, which we discuss further
in the following.

B. Effective voter model with an intermediate state

In the previous section, the fixation process of the single
demes was considered to occur instantaneously and therefore
each deme was supposed to be always in one of the two
boundary states xi = 0 or 1. However, the transition from
one boundary state to the other, triggered by the exchange of
individuals between demes, takes some time and this fact can
be accounted for by introducing in the model an intermediate
uncertain voter with no definite opinion. This intermediate
state is associated with a single-deme frequency xi = xu,
where xu 
 x∗ is an effective parameter, which depends on
the optimal frequency x∗ and on the rates s ′ and m′. This
state is supposed to be metastable, with a “lifetime” Tu

proportional to the single-deme fixation time Tfix1 reported
in Eq. (B2); this means that the intermediate state decays
with a rate 1/Tu into one with definite opinion xi = 0 or
1. In Appendix C, we discuss a possible heuristic estimate
of the effective parameter Tu. Following the line of argument
outlined in the previous subsection, and the notation introduced
there, the state xi = 1 is reached from the intermediate state
with probability p̃ = p(1|xu). The presence of an intermediate
state is known to change completely the nature of the ordering
process of the voter model [39]. Here, such a state is introduced
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in order to mimic the effect of balancing selection and, as we
discuss further in the following, it is sufficient to cause the
emergence of an internal attractive point in the dynamics of x̄

and nonmonotonic dependencies of the MFT on the relevant
parameters.

With a rate r = m′N/2 (the same as for the effective voter
model, described in the previous subsection), an interaction
takes place between any pair of voters. After an interaction
with a voter having a different definite opinion or an indefinite
one, a voter with a definite opinion can lose its own, entering
the intermediate state. More specifically, consider a voter i in
the state xi = 0: its interaction with a voter j in a different state
(xj = 1) consists of the exchange of one individual between
them, which introduces in the ith deme an individual with
allele A into a background population of individuals with
allele B (and vice versa in the deme j ). The probability that
the ith deme, with a frequency xi = 1/� after the exchange,
reaches the value xi = xu is given by P = p(xu|1/�), which
represents the probability that the ith voter, initially in the
state xi = 0, reaches the intermediate state after the interaction
with the j th deme. Similarly, the probability that the voter
j , initially in the state xj = 1, reaches the intermediate one
due to its interaction with the voter i is Q = p(xu|1 − 1/�).
Let us consider now the case of a voter in the state xi = 0
interacting with a voter j in the intermediate one: due to this
interaction, i reaches the value xi = xu with probability xuP .
Indeed, deme i receives from deme j an individual with allele
A with probability xu, in which case the frequency xi of allele
A in deme i reaches the value xu with probability P . It is
important to note that we assumed that such an interaction
has no effect on the voter in the intermediate state because,
for large �, the state xu ± 1/� has almost the same fixation
probability as xu [i.e., p(0|xu ± 1/�) 
 p(0|xu)]. For later
purposes, we emphasize here that generically P increases
monotonically upon increasing the selection strength s ′, at
least for 0.25 � x∗ � 0.75. This feature turns out to be crucial
for understanding the nonmonotonic behavior of the MFT as
a function of s ′ (for fixed m′), which is discussed in detail
further below.

In order to describe the dynamics of this voter model, we
denote by N0, N1, and Nu the numbers of voters in states 0,
1, and xu, respectively. Since N0 + N1 + Nu = N , the state
of the metapopulation is fully determined by N0 and N1. The
rates of the possible transitions previously described are, in
the (N0,N1) space, as follows:

(i) (N0,N1)
WA−→ (N0 − 1,N1),

(ii) (N0,N1)
WB−→ (N0,N1 − 1),

(iii) (N0,N1)
WC−→ (N0 − 1,N1 − 1),

(iv) (N0,N1)
WD−→ (N0 + 1,N1),

(v) (N0,N1)
WE−→ (N0,N1 + 1),

where

WA = m′PN0

N
[N1(1 − Q) + Nuxu],

WB = m′QN1

N
[N0(1 − P ) + Nu(1 − xu)],

WC = m′PQN0N1

N
,

WD = 1 − p̃

Tu
Nu,

WE = p̃

Tu
Nu. (29)

These rates define the transition matrix W �N→ �N ′ of the effective
voter model with intermediate states, the stochastic evolution
of which is described by the master equation [40]

∂tP ( �N,t) =
∑

�N ′

[P ( �N ′,t)W �N ′→ �N − P ( �N,t)W �N→ �N ′], (30)

where P ( �N,t) is the probability to find the system in the state
�N = (N0,N1) at time t .

1. Numerical evaluation of the MFT

On the basis of the (forward) master equation (30),
a backward master equation for the fixation probabil-
ity u( �N,t) = P ((N,0); t | �N ; 0) + P ((0,N ); t | �N ; 0) immedi-
ately follows [40]

∂tu( �N ; t) =
∑

�N ′

[W �N→ �N ′u( �N ′,t) − W �N→ �N ′u( �N,t)]. (31)

This equation can be solved numerically by introducing a time
discretization tn = nδt [where δt is a time interval chosen to
be small enough to ensure that W �N→ �N ′δt � 1 for every pair
( �N, �N ′)] and by using the finite difference approximation of the
time derivative (Euler’s method). The state is described by an
(N + 1) × (N + 1) array un(N0,N1) with N0,N1 = 0, . . . ,N ,
whose entries are constrained to vanish for N0 + N1 > N . At
each time step, the entries of un evolve according to the discrete
version of Eq. (31).

If the system starts from a state different from the ab-
sorbing boundaries X1 = (N0 = 0,N1 = N ) and X0 = (N0 =
N,N1 = 0), the initial condition for the fixation probability
is u0(N0,N1) = δN0,NδN1,0 + δN0,0δN1,N , where δi,j = 1 for
i = j , 0 otherwise. Since we are interested in the deter-
mination of the MFT for a system which starts from the
state (N0 = N/2,N1 = N/2) [41], we focus on the quantity
Un ≡ u((N/2,N/2),tn). The probability density pfix(t) for
reaching one of the two absorbing states as a function of the
time t is therefore given by the discrete derivative of U for
sufficiently small δt , which reads as

pfix
n = Un − Un−1

tn − tn−1
. (32)

In terms of this density, the MFT T vi
fix of the voter model with

intermediate state is given, for δt → 0, by T vi
fix = ∑∞

n=1 tnp
fix
n ,

which can be estimated as

T vi
fix 


nmax∑
n=1

tnp
fix
n + Ttail, (33)

where the term Ttail is associated with the tail of the distri-
bution pfix(t) for t > tmax = tnmax and it can be conveniently
estimated by fitting u( �N,t) with an exponential function in the
corresponding range. In fact, Un 
 1 − e−μtn for large tn, from
which we obtain

Ttail 

(

tmax + 1

μ

)
e−μtmax , (34)

where the value of μ is determined from the fit.
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Figure 8 compares the various estimates of the MFT, as
obtained from the simple voter model (T vot

fix , blue dotted
line), the voter model with intermediate states (T vi

fix, brown
dashed line), or from the lowest-order (T (0)

fix , red dashed-dotted
line) and first-order (T (1)

fix , green solid line) expansion in
the small se/m parameter obtained in Ref. [6] (with the
approximation described in Sec. I); symbols with error bars,
instead, correspond to the numerical results of simulations
based on the Wright-Fisher model. For small m, the estimates
T vot

fix and T vi
fix agree with the results of simulations and with the

first-order T
(1)

fix in the small-s expansion. It can be noticed that
the introduction of the intermediate state extends to larger
values of m the range within which the approximation is
accurate and, more importantly, it makes the model able to
capture qualitatively the nonmonotonic behavior of the MFT
as a function of m. This demonstrates that the existence of
the intermediate (metastable) state plays a crucial role in
determining the emergence of the nonmonotonicity in the
mean fixation time, as it was argued in Ref. [6].

In Fig. 9, we report the MFT as a function of the selection
rate s ′ for a fixed small value of the migration rate m′ = 0.005.
It can be noticed that T vi

fix from Eq. (33) is in excellent
agreement with the results of the numerical simulations of
the Wright-Fisher model (symbols) also for quite large values
of the selection rate s ′; the introduction of the intermediate
state in the voter model significantly improves the accuracy of
the approximation compared to both T

(0)
fix and T

(1)
fix discussed

in Ref. [6] and to T vot
fix of the voter model without intermediate

state.
Since balancing selection tends to push all the demes

towards the configuration with allele frequency x∗ which
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FIG. 9. (Color online) MFT for a metapopulation of N = 30
demes with � = 100 individuals, m′ = 0.005, and x∗ = 1/2. Sym-
bols correspond to the MFT of the Wright-Fisher (WF) model
obtained via numerical simulations. The red dashed-dotted and green
solid lines correspond to the analytical predictions T

(0)
fix and T

(1)
fix

obtained in Ref. [6]. The blue dashed line is the MFT T vot
fix [see

Eq. (28)] of the effective voter model described in the main text. The
brown dashed curve, instead, corresponds to the MFT T vi

fix of the voter
model with an intermediate state (see Sec. IV B), which reproduces
qualitatively the nonmonotonic behavior observed in the numerical
data. We have estimated the lifetime Tu of the intermediate state as
described in Appendix C. The scenario presented here carries over to
different choices of m′ � 0.05.

is far from the boundaries (at least for x∗ 
 1/2), it is
heuristically expected to cause a slowing down of fixation
and therefore to increase the MFT; however, Fig. 9 shows
that this is not always the case and in fact the MFT plotted
there displays a nonmonotonic behavior as a function of the
selection rate. This nonmonotonicity appears for small enough
m′ and it can be rationalized on the basis of the effective
voter model with intermediate states. In fact, the MFT T vi

fix is
expected to be proportional to the mean time Tchange that a
voter needs to change its opinion, which can be estimated as
Tchange 
 Tint + Tu, where Tint is the time scale associated with
an interaction able to drive a voter initially in states 0 or 1
into the intermediate one xu with “lifetime” Tu. Since a voter
interacts with a typical rate m′ and, after this interaction, it
reaches the intermediate state xu with probability P , the rate
T −1

int associated with the transitions towards the intermediate
state is given by T −1

int 
 m′P , so that

Tchange 
 1

m′P
+ Tu. (35)

For small s ′, the mean time Tchange is predominantly determined
by the term 1/(m′P ), which in fact increases upon decreasing
s ′, while in the opposite limit of large s ′ it is actually
determined by Tu, which increases upon increasing s ′. The
interplay between these two terms results in the nonmonotonic
dependence of Tchange, and therefore of T vi

fix, on s ′. However,
upon further increasing s ′, it is no longer correct to assume that
each deme spends a large part of its time into a boundary state,
and therefore in this regime one cannot expect T vot

fix and T vi
fix to

reproduce accurately the corresponding results of numerical
simulations of the Wright-Fisher model; nonetheless, T vi

fix still
captures the qualitative behavior of Tfix of such a model, as it
is clearly seen in Fig. 9 by comparing the symbols (numerical
simulations) with the dashed line.

2. Effective equation for the mean frequency x̄

When the migration rate m is small [and therefore the
interaction rate r among the voters is small, see Eq. (23)] only
a relatively small fraction of voters is in the intermediate state,
i.e., Nu � N . For large N , the evolution of x̄ is expected to be
slow compared to that of Nu because every interaction causes
a change 	Nu = ±1 of Nu, but only a change 	x̄ � 1/N of
x̄ ∼ 1, so that the relative variation |	Nu|/Nu of the former is
significantly larger than that of the latter |	x̄|/x̄ � |	Nu|/Nu.
This time scale separation allows us to consider Nu as a fast
fluctuating variable on the time scale which characterizes the
dynamics of x̄. Conversely, x̄ can be considered as a slowly
varying (or almost constant) parameter on the time scale of the
dynamics of Nu.

For the sake of simplicity, we focus here on the case
of symmetric balancing selection (x∗ = 1/2 and, therefore,
xu = 1/2, p̃ = 1/2, and P = Q), but the following discussion
can be straightforwardly generalized to the nonsymmetric
case, with similar conclusions. Considering the characteristic
time scale over which the number Nu of voters in the
intermediate state evolves, an estimate of the mean 〈Nu〉 in
the large-N and small-m limits can be found by solving the
stationary master equation which describes the evolution of Nu
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(see Appendix D 1 for details):

〈Nu〉 
 2m′NPTux̄(1 − x̄)

1 − m′PTu/2
. (36)

Note that, as expected, the mean number 〈Nu〉 of voters in
the intermediate state vanishes as m′ → 0. On the time scales
over which x̄ varies, we can approximate Nu with its mean 〈Nu〉
[see Eq. (36)]; this allows us to write an effective Langevin
equation for the evolution of the mean frequency x̄, which
reads as

˙̄x = svix̄(1 − x̄)(1/2 − x̄) +
√

x̄(1 − x̄)

Nvi
η(t), (37)

for large N and � and small m (see Appendix D 2 for a
detailed derivation), where svi = m′2P 2Tu/(1 − m′PTu/2) is
an effective selection coefficient and Nvi = N/(m′P ) is an
effective population size. These effective parameters coincide
with se and Ne [see Eqs. (9) and (15)], respectively, for
large � and small s ′. Since se, Ne and svi, Nvi have been
obtained by considering the diffusion approximation of the
dynamics of two microscopically different models (the original
island model and the effective voter model, respectively),
their agreement shows the emergence of a coherent effective
dynamics at a coarser scale. Note that the deterministic term
in Eq. (37) has an internal attractive point x̄∗ = 1/2, which
is the footprint of balancing selection, and this means that
the intermediate state xu is the crucial ingredient in order to
capture the main features of balancing selection; note also
that svi ∝ m′2 for small m′, where indeed the approximation in
Eq. (25) is accurate.

V. SUMMARY AND CONCLUSIONS

Balancing selection is a major mechanism responsible
for promoting and maintaining biodiversity, as it favors
the coexistence of different alleles in the same population.
Under balancing selection, the evolution of a population is
characterized by the emergence of a long-lived metastable
state (at least for sufficiently strong selection), which is
eventually destabilized by stochasticity (genetic drift). When
the population is subdivided in many subpopulations of equal
size and features, migration interacts with balancing selection
and with genetic drift to determine the ultimate fate of the
population. In Ref. [6], we noticed that the interplay of these
evolutionary “forces” leads to the emergence of a separation of
time scales between the global and the local dynamics, which
can be used in order to develop an approximate description
of the dynamics and therefore to determine the fixation
properties of the population as a whole. In this work, we have
extended this approach in two directions. First, we have shown
that, contrary to the heuristic expectation, balancing selection
actually speeds up fixation with respect to a neutral model (i.e.,
a model without selection) if the allele frequency x∗ promoted
by balancing selection in the coexistence state is close to
extinction of one of the alleles. This phenomenon, already
observed in Ref. [29] for well-mixed populations, carries over
to a subdivided population, where, in addition, it is responsible
for the emergence of a phase transition in the limit of an
infinite number N of subpopulations, each of finite size �. We

heuristically explain this behavior in Sec. III by decomposing
the effect of asymmetric balancing selection on the evolution
of the mean allele frequency x̄ as a sum of a symmetric
balancing selection term Msymm(x̄) and a directional term
Mdir(x̄), which favor coexistence and fixation, respectively. In
fact, it turns out that Mdir(x̄) becomes stronger than Msymm(x̄)
as x∗ approaches one of the two boundaries x∗ = 0 or 1,
corresponding to the extinction of one of the alleles. The
results presented here are compatible with the critical behavior
expected for the DP2 universality class within the mean-field
approximation [36].

It is then possible to characterize in detail the mean fixation
time of finite populations as a function of the migration rate
m and of the other relevant parameters, the selection strength
s ′ and the optimal frequency x∗. While the perturbative results
provided in Ref. [6] are limited either to fast migration or
to moderate balancing selection, we have shown here how to
extend them to slow migration and larger values of selection
strength. In fact, a metapopulation with a small migration rate
m can be effectively described at a coarser level by a voter
model with an interaction rate proportional to the migration
rate m in the metapopulation. In Sec. IV A, we demonstrate
that the MFT of this effective voter model correctly reproduces
the one of the original metapopulation for slow migration.
However, the standard voter model fails to reproduce some
qualitative features of the MFT of the subdivided population,
which are recovered once we introduce into the model an
additional intermediate state, corresponding to a voter with
no definite opinion. This intermediate state turns out to be
crucial for reproducing the nonmonotonic behavior of the MFT
as a function of the migration rate, originally observed in
Ref. [6] (see Fig. 8 here); in addition, this model provides
prediction for the MFT in good quantitative agreement with
simulations up to larger values of the migration rate. We have
also shown that an analogous nonmonotonic behavior of the
MFT emerges as a function of the selection strength for a
sufficiently small and fixed migration rate, in qualitative and
partially quantitative agreement with numerical simulation of
the microscopic model (see Fig. 9).

In summary, the three-state effective model proposed here
provides a coarser description of the collective behavior of
the metapopulation that is useful in order to understand the
mechanisms underlying the emerging phenomena observed
in the population. Such a description is expected to carry
over to other population models in which it is possible
to identify a separation of time scales between local and
global dynamics. In this respect, the metapopulation con-
sidered here has a very simple internal structure (it is a
fully connected graph), therefore, it would be important to
investigate whether the features discussed above are present
on more general networked (or even spatially embedded)
systems and to understand their potential interplay with other
dynamical phenomena, such as diffusion and coarsening.
Since the validity of the effective voter models presented
in this work only relies on the “slowness” of migration
compared to the other forces driving the dynamics, these
approximations could be adapted to various networks and
spatial lattices, or even to different form of the interdeme
dynamics, as long as the migration between the demes is slow
enough.
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APPENDIX A: DIFFUSION APPROXIMATION
FOR THE MICROSCOPIC MODELS

Given a microscopic model (e.g., the Wright-Fisher model)
with certain transition rates, the evolution equation for the
probability P (x,t) of finding the population in a certain
configuration x at time t can be written in the form of a
master equation. The diffusion approximation then consists in
approximating this equation with a Fokker-Planck (or, equiv-
alently, a Langevin) equation, i.e., with a diffusion equation
with suitable x-dependent drift and diffusion coefficients μ

and v, respectively:

∂tP (x,t) = −∂x[μ(x)P (x,t)] + 1
2∂2

x [v(x)P (x,t)]. (A1)

In particular, only the mean value 〈	x〉 ∝ μ(x) and the
variance 〈(	x)2〉 ∝ v(x) of the change 	x per unit time of
the variable x resulting from the implementation of these
microscopic dynamical transitions are accounted for in the
evolution equation. Although this approach is known to fail
in some cases, for example, for the susceptiple-infected-
susceptible (SIS) model of epidemiology (see, e.g., Ref. [23]),
it turns out to be quite accurate for the Wright-Fisher and
Moran models discussed in this work [6,22]. In the following,
we illustrate how to implement the diffusion approximation
for the Wright-Fisher and Moran models; in addition, we also
discuss how one can modify the microscopic rules of these
two stochastic models in order to account for the migration
occurring within the island model, which takes the form of
exchanges of individuals among subpopulations.

1. Wright-Fisher model

For a well-mixed population of sufficiently large size �, one
can readily calculate the mean and the variance of the change
	x per unit time of the allele frequency x from the binomial
sampling probability pr(x) given in Eq. (1), obtaining

μ(x) = 〈	x〉 = s̃x(1 − x) + O(s̃2),
(A2)

v(x) = 〈(	x)2〉 = x(1 − x) + O(s̃)

�
+ O(s̃2).

A standard way to account for migration in the Wright-Fisher
model is to modify the probability pr(x) with which a new
generation is sampled. In fact, in the migration process which
occurs between two subsequent generations, a mean number
m� of randomly chosen individuals leaves each deme and it
is then randomly redistributed in the other demes. One can
effectively think of all the individuals leaving the N demes as
merging in a sort of “reservoir,” with a mean of m�N individ-
uals, and a mean fraction of type-A individuals determined by
the interdeme mean frequency x̄ = N−1 ∑N

i=1 xi . Individuals
are then randomly chosen from this reservoir in order to replace
those which migrated from each deme. Accordingly, the mean
fraction of type-A individuals arriving in the ith deme because
of this redistribution is m�x̄, while the mean fraction of
type-A individuals leaving deme i is m�xi . As a result of

migration, in each deme of the metapopulation, the original
fraction xi has changed into mx̄ + (1 − m)xi . This simplified
description of the migration process neglects fluctuations in
the number and in the composition of migrants during each
generation and, in fact, it accounts for migration only by
modifying the probability pr that a new individual carries
allele A [4,6]. In particular, due to migration, the probability
pr (xi,x̄) that a new individual in deme i carries allele A

acquires a dependence on the mean frequency x̄, and it has the
form

pr(xi,x̄) = (1 + s̃i)[mx̄ + (1 − m)xi]

1 + s̃i[mx̄ + (1 − m)xi]
, (A3)

where s̃i = s̃(x = mx̄ + (1 − m)xi) is the value of the function
s̃(x) [for balancing selection s̃(x) = s(x∗ − x)] evaluated at
x = mx̄ + (1 − m)xi . At this point, it is easy to extend the
diffusion approximation to a subdivided population (island
model) characterized by the binomial sampling probability
given in Eq. (A3), obtaining the mean and the variance of the
change in the fraction of A-type individuals of a subpopulation
i as

μ(xi) = 〈	xi〉 = s̃xi(1 − xi) + m(x̄ − xi) + O(s̃2,s̃m),

v(xi) = 〈(	xi)
2〉 = xi(1 − xi) + O(m,s̃)

�
+ O(s̃2,m2,ms̃).

(A4)

These expressions lead directly to the Langevin equation (4).

2. Moran model

In a well-mixed population, the time evolution of the
probability distribution P (x,t) of the frequency x can be
determined from the corresponding master equation with the
rates given by Eq. (2). For large � and in the limit of continuous
time δt → 0 (where δt denotes the duration of a step in the
dynamics of the Moran model), standard expansions, such as
the Kramers-Moyal expansion [40], lead to Eq. (A1) in which
the drift μ and the variance v are given by

μ(x) = W1 − W−1

�δt
= s̃

2
x(1 − x) + O(s̃2),

(A5)

v(x) = W1 + W−1

�2 δt
= x(1 − x) + O(s̃)

�
.

In a metapopulation consisting of N demes, instead, the
allele frequency xi of each deme i can additionally change,
during each step of the evolution, because of migration. More
precisely, the probability that in the ith deme the number �A

of individuals carrying allele A increases (decreases) by one
unit is given by Wm

1 δt (Wm
−1δt), where δt = O(τg/�) is the

duration of the evolutionary step and the rates are given by

Wm
+1 = mx̄(1 − xi),

(A6)
Wm

−1 = m(1 − x̄)xi,

where we neglect the O((mδt)2) probability that more than
one individual per deme migrates within one evolutionary step.
Because of the simultaneous action of death, reproduction, and
migration, the probability Qk to have a change k = ±1, ±
2 in the number of alleles A in the ith deme between two
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subsequent generations is given by

Q+2 = W+1δt Wm
+1δt,

Q+1 = W+1δt
[
1 − (

Wm
+1 + Wm

−1

)
δt

]
+ [1 − (W+1 + W−1)δt]Wm

+1δt,
(A7)

Q−1 = W−1δt
[
1 − (

Wm
+1 + Wm

−1

)
δt

]
+ [1 − (W+1 + W−1)δt] Wm

−1δt,

Q−2 = W−1δt Wm
−1δt.

If one neglects the contribution of order O(δt2), and for � � 1,
the evolution turns out to be described by the rates

W+1 = (1 + s̃)xi(1 − xi)/(1 + s̃xi) + mx̄(1 − xi),
(A8)

W−1 = xi(1 − xi)/(1 + s̃xi) + m(1 − x̄)xi,

associated with the Qk’s discussed above. The probability
distribution P ({xi},t) describing the evolution of the state of
the whole metapopulation satisfies a master equation that, in
the diffusion approximation, gives the multivariate Fokker-
Planck equation

∂tP ({xi},t) = −
N∑

j=1

∂xj
[μ(xj )P ({xi},t)]

+ 1

2

N∑
j=1

∂2
xj

[v(xj )P ({xi},t)], (A9)

in which the drift μ and the variance v are given by

μ(xi) = W1 − W−1

�δt
= s̃

2
xi(1 − xi) + m

2
(x̄ − xi) + O(s̃2),

(A10)

v(xi) = W1 + W−1

�2 δt
= xi(1 − xi) + O(s̃,m)

�
,

where we have chosen the temporal step to be δt = 2/�. With
this choice of time scales, the resulting genetic drift v(xi) for
small s̃ and m is the same as the one of the Wright-Fisher model
for a population of the same size [see Eq. (A4)]. Note that, in
order to recover the same expression also for the drift μ(xi), it is
necessary to rescale the migration and the selection coefficients
as m → 2m and s̃ → 2s̃, respectively. Equation (A9) is
nothing but the Fokker-Planck equation associated with the set
of N single-deme Langevin equations (4), which, as we argued
above, also describe the dynamics of the Wright-Fisher model
in the presence of migration.

APPENDIX B: MEAN FIXATION TIME
AND FIXATION PROBABILITY

1. Well-mixed population

The time required in order to reach fixation in a well-mixed
population of size � is a stochastic variable. Its mean, i.e.,
the MFT Tfix1, can be evaluated by standard methods [24] in
the diffusion approximation with drift μ(x) and variance v(x)

defined in Sec. I. Let us define the quantity G(x) = e
− ∫ x

0
2μ(x′)
v(x′ ) dx ′

and the functions S(a,b) and F (a,b):

S(a,b) =
∫ b

a

dx G(x) =
∫ b

a

dx exp[−s ′x(2x∗ − x)],

(B1)

F (a,b) =
∫ b

a

dz

∫ 1

z

dy
G(z)

�v(y)G(y)

=
∫ b

a

dz

∫ 1

z

dy
exp{s ′[y(2x∗ − y) − z(2x∗ − z)]}

y(1 − y)
,

where we conveniently introduced the rescaled selection
coefficient s ′ = �s. The mean fixation time reads as

Tfix1(x)

�
= 2 [S(x,1)F (0,x) − S(0,x)F (x,1)]

S(0,1)
, (B2)

where x is the initial condition. In the symmetric case x∗ =
1/2, Eq. (B2) reduces to

Tfix1(x)

�
=

∫ 1

(1−2x)2
du

∫ 1

0
dz

es ′u(1−z2)/4

1 − uz2
. (B3)

As expected, Tfix1(x) vanishes if the initial condition x

corresponds to one of the two absorbing states x = 0 or 1,
while it reaches smoothly its maximum value as the initial
condition moves towards x = 1/2. In this work (as well as in
Ref. [6]), we focused on the initial condition x = 1/2, which,
for x∗ 
 1/2 and s large enough, corresponds to a long-lived
metastable state promoted by balancing selection.

Note that starting from an initial value x0, the frequency x

does not typically visit the whole interval of possible values
x ∈ (0,1) during its evolution because of the presence of
absorbing states which cause fixation: in fact, the probability
p(x1|x0) that the population reaches the value x1 during the
evolution which precedes fixation can be evaluated via a
standard procedure [42] and it reads as

p(x1|x0) =

⎧⎪⎨
⎪⎩

∫ x0
0 dy G(y)∫ x1
0 dy G(y)

if x1 > x0,∫ 1
x0

dy G(y)∫ 1
x1

dy G(y)
if x1 < x0.

(B4)

2. Metapopulation

As argued in the main text, for a metapopulation, the
mean fixation time Tfix(m) effectively depends on the mean
frequency x̄ and, for simplicity, we focus on a symmetric
initial state with x̄ = 1/2 [6]. Tfix(m) differs from the one of
a single deme Tfix1 also in the absence of migration, i.e., for
m = 0, when each deme evolves independently of the others.
In this case, the mean time Tfix(m = 0) required by the overall
population to reach one of the two absorbing states is given by
the mean time necessary for all demes to reach it, after which
no evolution occurs within the metapopulation. This is given by
the maximum of the single-deme fixation times calculated over
N demes, and it turns out to be Tfix(m = 0) 
 Tfix1 ln N [6].
For nonzero migration, the approximation proposed in Ref. [6]
and summarized in Sec. I makes possible to calculate the
mean fixation time for the metapopulation using formula (B2)
with modified expressions for the drift and the variance. In
particular, by using the drift and the variance reported in
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Eqs. (14a) and (14b), one obtains

T
(0)

fix = Ne

2

∫ 1

0
dy

∫ 1

0

eseNey(1−z2)/4

1 − yz2
, (B5)

i.e., Eq. (5) of Ref. [6]. Analogously, by using the improved
approximations for the drift and the variance discussed therein,
one obtains the estimate T

(1)
fix provided in the Supplemental

Material of that work.

APPENDIX C: ESTIMATE OF THE “LIFETIME”
Tu OF THE INTERMEDIATE STATE

If the migration rate m′ is sufficiently small, such that
Tfix1 � Tmigr ∝ 1/m′, each deme spends most of its time
into one of the two boundary states, until it receives, due to
migration, one individual different from the majority. In turn,
this individual triggers an attempt to leave the boundary state
which leads to the intermediate one xu (and possibly to the
opposite boundary) with an overall rate m′P , as discussed in
Sec. IV B (see also Fig. 7). Under our assumption of small
migration rate, this transition takes place before any other
individual is exchanged by the deme with the rest of the
population, and therefore it occurs as in an isolated deme,
i.e., it takes a mean time Tfix1. During this transition, the deme
will spend a mean time Tu close to the intermediate state
xu before reaching the final boundary. Figure 10 provides a
schematic representation of the time evolution of the allele
frequencies of the various demes (indicated by solid and
dashed lines of different colors) in the regime described
above. In particular, the deme represented by the solid line
has received an individual with allele A from another deme
and has fixed it after a time Tfix1, of which Tu spent close
to the intermediate state promoted by balancing selection.
Other demes of the metapopulation (indicated by dashed lines)
evolve similarly, i.e., they move from one boundary state to
the other, with possible unsuccessful attempts.

In order to estimate Tu, we focus on the ratio ρ = Tu/Tfix1,
i.e., on the fraction of the time spent outside the boundaries in
which the deme is actually close to xu; in the quasistationary
state associated with a certain value of the mean frequency x̄

FIG. 10. (Color online) Schematic representation of the evolu-
tion of the frequencies xi of various demes (represented by different
colors) in a metapopulation with small migration rate m′ � T −1

fix1.
Under this assumption, the possible transition between the two
boundary states is triggered with a typical time scale ∼1/m′ which
is much longer than the one Tfix1 taken by the transition itself, where
Tfix1 is the single-deme MFT. Part of this time, corresponding to the
“lifetime” Tu, is spent by the various demes in the vicinity of the
intermediate state.
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FIG. 11. (Color online) Estimate of the ratio ρ = Tu/Tfix1 as a
function of x̄ for m′ = 0.2, xu = x∗ = 1/2, � = 100 and s ′ = 0, 4,
8, and 12 from bottom to top, calculated as explained in the main text
on the basis of the quasistationary distribution.

[and described by the density Pqs(x|x̄)], ρ can be estimated
as the ratio of the corresponding probabilities, i.e., of the
probability to find a deme close to the intermediate state (that
is, x 
 xu) to the one of finding it outside the boundaries.
In order to specify properly the condition of xi being “close
to” xu, hereafter we focus for simplicity on the symmetric
case with x∗ = xu = 1/2. In the effective voter model with the
intermediate state, the continuous interval of states x ∈ [0,1]
is represented by the three coarse states {0,1/2,1}. It is then
natural to associate to every value of x in the interval [0,1] its
closest representative state. With this definition, the probability
Pu to find the deme close to the intermediate state is

Pu(x̄) =
∫ 3/4

1/4
dx Pqs(x|x̄). (C1)

On the other hand, the probability to find the deme outside the
boundary states can be estimated as

Pnon-fix(x̄) =
∫ 1−1/�

1/�

dx Pqs(x|x̄), (C2)

where a minimal distance 1/� of the deme frequency from a
boundary corresponds to having one individual different from
the background. The ratio ρ can therefore be approximated as

ρ(x̄,s ′,m′) = Pu(x̄)

Pnon-fix(x̄)
. (C3)

A numerical study of the estimate of ρ according to
Eq. (C3) is reported in Fig. 11 as a function of x̄ for m′ = 0.2,
xu = x∗ = 1/2, � = 100, and for various values of s ′. In
particular, ρ turns out to increase uniformly as s ′ increases,
which indicates that Tu grows faster than Tfix1 as a function
of this parameter. It can be noticed that, while generically
ρ depends on x̄, this dependence becomes increasingly less
important as m′ decreases. The typical x̄-independent estimate
of ρ (and therefore of Tu) can be obtained by considering the
mean value

ρ(s ′,m′) =
∫ 1

0
dx̄ A(x̄)ρ(x̄,s ′,m′), (C4)

which depends on the a priori distribution A(x̄) of the
frequency x̄. However, as we pointed out above, ρ(x̄,s ′,m′) is
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FIG. 12. (Color online) Mean fraction ρ of time that a deme
spends close to the intermediate state xu as a function of the migration
rate m′, for xu = x∗ = 1/2, � = 100, and m′ = 0.001, 0.2, and 0.5
from bottom to top; these values of ρ have been estimated on the
basis of Eq. (C4) with an uniform a priori distribution A(x̄) ≡ 1.

approximately independent of x̄ at least for sufficiently small
m′ and therefore the specific form of A(x̄) is inconsequential,
so that we can set A ≡ 1 in Eq. (C4). Figure 12 shows the
dependence of ρ on the migration rate m′, as obtained from
the numerical integration of Eq. (C4) for various values of the
selection coefficient s ′. We note again that ρ is an increasing
function of the selection coefficient s ′, and this can be
heuristically understood from the fact that balancing selection
favors the location of the deme frequency xi around the optimal
frequency x∗. Using Eq. (C4), it is straightforward to obtain a
numerical estimate for the lifetime of the intermediate state as
Tu 
 ρTfix1.

APPENDIX D: DERIVATION OF THE EFFECTIVE
EQUATION FOR x̄ IN THE VOTER MODEL WITH

INTERMEDIATE STATE

In Sec. IV B, we introduced a simplified description of the
metapopulation consisting of N demes in terms of a voter
model with N individuals which can have a definite (0,1) or
no definite opinion. Each deme of the original island model
is represented by a voter, with opinion 0 or 1 depending on
whether the deme has almost fixated at the values x = 0
or 1 of the frequency x of allele A, while individuals with
no definite opinion correspond to demes with x = xu 
 x∗
fluctuating in an intermediate long-lived state. The dynamics
of the island model can therefore be described at this coarser
level by following the evolution of the numbers Nu, N0, and
N1 = N − Nu − N0 of individuals with intermediate opinion,
or opinions 0 and 1, respectively.

1. Evolution of Nu

Under the assumption that x̄ = (N1 + xuNu)/N is constant
(or slowly varying), the behavior of Nu is described by a condi-
tional quasistationary distribution Pqs(Nu|x̄); this distribution
is the stationary solution of the master equation

0 =
∑

n=−1,1,2

[
WNu−n→NuPNu−n − WNu→Nu+nPNu

]
, (D1)

where, for small Nu/N and considering the symmetric case
xu = x∗ = 1/2 for simplicity, the rates in Sec. IV B can be

written as

WNu→Nu+1 = m′P [2N (1 − P )x̄(1 − x̄) + Nu/2],

WNu→Nu+2 = m′NP 2x̄(1 − x̄), (D2)

WNu→Nu−1 = Nu/Tu,

where P = p(xu|1/�) is the probability that a deme with
initial frequency x = 1/� reaches the intermediate state
x = xu before fixation. Since the rates WNu→N ′

u
are linear

functions of Nu, the evolution of the mean value 〈Nu〉 =∑∞
Nu=0 NuPqs(Nu|x̄) can be written in closed form:

∂t 〈Nu〉 =
∑

n

nWn(〈Nu〉). (D3)

The approximate expression reported in Eq. (36) can be
obtained from the stationary condition ∂t 〈Nu〉 = 0, under the
assumption of large N and small m′.

2. Evolution of x̄

We study here the evolution of x̄ by considering the
fluctuations of Nu around its mean given in Eq. (36); for the
sake of simplicity, we focus on the symmetric case x∗ = 1/2,
but the following discussion carries over to a generic value of
x∗. Because of the presence of demes in the intermediate state,
the value of x̄ receives a contribution of the form

x̄ = N1

N
+ Nu

2N
, (D4)

and therefore

N1 = Nx̄ − Nu/2,
(D5)

N0 = N (1 − x̄) − Nu/2.

These relations can now be used in order to express the rates
WA,...,D in Eq. (29) as functions of Nu. For large �, these
expressions can be further simplified by taking into account
that P , Q ∝ 1/� for s ′ not too large [we recall here that
P = p(xu|�−1), Q = p(xu|1 − �−1) (see Sec.IV B) with p

given in Eq. (B4)], and that Tu ∝ Tfix1 ∝ �; one eventually
finds

WA = m′NP

{
x̄(1 − x̄) − Nu

N

x̄

2

}
+ O(1/�2),

WB = m′NP

{
x̄(1 − x̄) − Nu

N

1 − x̄

2

}
+ O(1/�2),

(D6)
WC = O(1/�2),

WD = WE = Nu/(2Tu).

As discussed in Sec. IV B 2, the evolution of x̄ can be described
by an effective Langevin equation (diffusion approximation,
see Appendix A) in the large-N limit,

˙̄x = Mvi(x̄) +
√

Vvi(x̄) η(t), (D7)

where the drift and variance are given by

Mvi(x̄) =
∑

i=A,B,C,D,E

Wi	x̄i,

(D8)
Vvi(x̄) =

∑
i=A,B,C,D,E

Wi(	x̄i)
2,
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and the relevant increments are 	x̄A = 	x̄E = 1/(2N ) and
	x̄B = 	x̄D = −1/(2N ). Then, by replacing Nu with its

mean 〈Nu〉 reported in Eq. (36), we eventually obtain the result
anticipated in Eq. (37).
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