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Universality in the spectral and eigenfunction properties of random networks
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By the use of extensive numerical simulations, we show that the nearest-neighbor energy-level spacing
distribution P (s) and the entropic eigenfunction localization length of the adjacency matrices of Erdős-Rényi
(ER) fully random networks are universal for fixed average degree ξ ≡ αN (α and N being the average network
connectivity and the network size, respectively). We also demonstrate that the Brody distribution characterizes
well P (s) in the transition from α = 0, when the vertices in the network are isolated, to α = 1, when the network
is fully connected. Moreover, we explore the validity of our findings when relaxing the randomness of our
network model and show that, in contrast to standard ER networks, ER networks with diagonal disorder also
show universality. Finally, we also discuss the spectral and eigenfunction properties of small-world networks.
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I. INTRODUCTION

Networks have been used to represent the organization
of complex systems such as social networks, the Internet,
and ecosystems [1,2]. Depending on the application, vertices
and edges have different meanings [1,3]. For example, in
condensed matter physics, vertices and edges of the ordered
network known as Anderson’s tight-binding model are the
sites and hopping integrals, respectively [4]. Networks can be
deterministic, fractal, or random [5]. Deterministic and fractal
networks are constructed following specific rules, whereas for
random networks a set of parameters take fixed values but the
network itself has a random organization. In the latter case
it is meaningless to study a single random network; instead
a statistical analysis of an ensemble of networks with the
same average properties should be performed. Several models
of random networks have been introduced [3,6], including
Erdős-Rényi (ER) random graphs, the scale-free network
model of Barabási and Albert, and the small-world networks of
Watts and Strogatz. These models are considered to reproduce
the organization of real-world networks, such as the Internet,
power grids, and social and biological networks [1,3,6]. Al-
though random graphs fail in predicting most of the properties
observed in real-world networks, such as power-law degree
distributions and nonvanishing clustering coefficient [6], such
graphs have been thoroughly studied theoretically (e.g., [7]).
Indeed, many results, such as the emergence of percolation,
can be obtained analytically in ER networks [3,7].
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Here we consider the ER random graph model, which was
introduced by Solomonoff and Rapoport [8] and thoroughly
studied later by Erdős and Rényi [9,10]. This model is also
known as uncorrelated random graph model. Erdős-Rényi
networks are constructed by starting with N isolated vertices
and afterward each pair of vertices is connected according
to a probability α. This process is a type of N2-realization
Bernoulli process with probability of success α. Therefore,
the number of connections follows a binomial distribution.
Nevertheless, most realizations of this model take into account
large values of N and small values of α. In this way, the degree
distribution tends to a Poisson distribution due to the law of
rare events.

Independently of the field, classification, or application, a
commonly accepted mathematical representation of a network
is the adjacency matrix. The adjacency matrix A of a simple
network, i.e., a network having no multiple edges or self-edges,
is the matrix with elements Aij defined as [3]

Aij =
{

1 if there is an edge between vertices i and j

0 otherwise.
(1)

This prescription produces N × N symmetric sparse matrices
with zero diagonal elements, where N is the number of vertices
of the corresponding network. The sparsity of A is quantified
by the parameter α, which is the fraction of nonvanishing
off-diagonal adjacency matrix elements. Vertices are isolated
when α = 0, whereas the network is fully connected for α = 1.
Once the adjacency matrix of a network is constructed, it is
quite natural to ask about its spectral and eigenfunction prop-
erties, which is the main subject of this paper. As commonly
used, we refer to the spectral and eigenfunction properties
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J. A. MÉNDEZ-BERMÚDEZ et al. PHYSICAL REVIEW E 91, 032122 (2015)

of the adjacency matrix as the spectral and eigenfunction
properties of the respective network.

Moreover, there is a one-to-one correspondence between
the adjacency matrix A and the Hamiltonian matrix H of a
ξ -dimensional solid, described by Anderson’s tight-binding
model [4] with zero on-site potentials (Hii = 0) and constant
hopping integrals (Hij = 1). Here ξ is proportional to the
average nonzero off-diagonal adjacency matrix elements per
matrix row and therefore may be regarded as the effective
dimension of the network represented by A, as discussed
in Ref. [11] from a random matrix theory (RMT) point of
view. This correspondence enables the direct application of
studies originally motivated by physical systems, represented
by Hamiltonian sparse random matrices, to complex networks.
In the network literature, ξ is known as the average degree of
a network. Moreover, notice that

ξ = αN, (2)

where ξ is defined as the mean number of nonzero elements per
matrix row. From a mathematical-physicist point of view, in the
frame of RMT, Rodgers and Bray [12] proposed an ensemble
of sparse random matrices characterized by the connectivity
ξ . Since then, several papers have been devoted to analytical
and numerical studies of sparse symmetric random matrices
(see, for example, [11–25]).

Among the most relevant results of these studies we can
mention that (i) in the very sparse limit ξ → 1, the density
of states was found to deviate from the Wigner semicircle
law with the appearance of singularities, around and at the
band center, and tails beyond the semicircle [12–21]; (ii) a
delocalization transition was found at ξ ≈ 1.4 [14–16,22];
(iii) the nearest-neighbor energy-level spacing distribution
P (s) was found to evolve from the Poisson to the Gaus-
sian orthogonal ensemble (GOE) predictions for increasing
ξ [11,14,16] (the same transition was reported for the number
variance in Ref. [11]). More recently, the first eigenvalue-
eigenfunction problem was also addressed in Ref. [23]. Also,
non-Hermitian sparse matrices were discussed in Ref. [24].

It is relevant to emphasize that the RMT model of sparse
matrices introduced by Rodgers and Bray [12] is equivalent
to adjacency matrices of ER-type networks. In fact, motivated
by this equivalency and based on the ER model, here we study
spectral and eigenfunction properties of the following random
network model: Starting with the standard ER network, we add
to it self-edges and further consider all edges to have random
strengths.1 We call this model the ER fully random network
model. The sparsity α is defined as the fraction of N (N − 1)/2
independent nonvanishing off-diagonal adjacency matrix ele-
ments. Then, as in the standard ER model, the ER fully random
network model is characterized only by the parameters N and
α. However, the corresponding adjacency matrices come from
the ensemble of N × N sparse real symmetric matrices whose
nonvanishing elements are statistically independent random
variables drawn from a normal distribution with zero mean

1We justify the addition of random strengths to edges by recognizing
that in real-world networks connections and interactions are in general
nonconstant.

〈Aij 〉 = 0 and variance 〈|Aij |2〉 = (1 + δij )/2. According to
this definition, a diagonal random matrix is obtained for α = 0
(Poisson case), whereas the GOE is recovered when α = 1.

Our motivation to study spectral and eigenfunction prop-
erties of the ER fully random network model is twofold. On
the one hand, Jackson et al. [11] showed that the disorder
parameter ξ fixes some spectral features of sparse random
matrices equivalent to the adjacency matrices we study here.
Moreover, it is also known that the average degree ξ fixes some
properties of random graphs [26]. On the other hand, there is
a large number of papers studying spectral and eigenfunction
properties of complex networks [27–56]. However, most of
those studies focus on networks with specific combinations of
N and α. For instance, Refs. [32–37,49] investigated random
networks using concepts of RMT, centering the attention on
networks with fixed N and α, even when more sophisticated
topological properties are included in the network models,
such as the nonvanishing clustering coefficient [32] and
modular structure [36]. Moreover, Palla and Vallay [27]
investigated spectral properties of standard ER networks close
to the critical point of percolation, restricting the analysis to
values of 1 < ξ < 2.4.

Then we realized that the universality (in the sense of
identifying relevant network parameters) of the spectral and
eigenfunction properties of ER-type random networks has not
been completely explored yet. Thus, in this paper we undertake
this task, having as a reference RMT models and predictions.
Furthermore, our investigations generalize previous results
in the literature by not restricting our analysis to a specific
combination of network parameters or even to a specific
network model.

In the next section we analyze P (s), i.e., the nearest-
neighbor energy-level spacing distribution, the average Shan-
non entropy 〈S〉, and the entropic eigenfunction localization
length �N for the ER fully random network model as a function
of the connectivity α. It is well known that P (s), the probability
distribution function of the spacings between adjacent eigen-
values, plays a prominent role in the description of disordered
and quantized classically chaotic systems [57,58]. We show
that P (s), 〈S〉, and �N are all invariant for fixed average
degree ξ . In addition, we show that the Brody distribution
fits well P (s) in the transition from isolated to fully connected
networks. By noticing that the ER fully random network model
displays maximal disorder, in Sec. III we explore the validity
of our findings when relaxing the randomness of this network
model. Therefore, we show that the ER network model with
diagonal disorder (i.e., ER model including random strength
self-edges) also exhibits universality for fixed ξ . We also
apply our approach to a different random network model, so
in Sec. IV we comment on the spectral and eigenfunction
properties of small-world random networks. Our conclusions
are summarized in Sec. V.

II. ERDŐS-RÉNYI FULLY RANDOM NETWORKS

In the following we use exact numerical diagonalization
to obtain the eigenvalues Em and eigenfunctions �m (m =
1, . . . ,N) of the adjacency matrices of large ensembles of
random networks characterized by N and α.
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FIG. 1. (Color online) Nearest-neighbor energy-level spacing
distribution P (s) for ER fully random networks of size N = 1000
and different connectivity values α (red histograms). Blue lines
correspond to Poisson and Wigner-Dyson distribution functions given
by Eqs. (3) and (4), respectively. Black dashed lines are fittings of
the histograms with the Brody distribution of Eq. (5), where the fitted
values of β are given in the corresponding panels. The histograms
were computed from 5 × 105 unfolded spacings.

A. Nearest-neighbor energy-level spacing distribution

Figure 1 presents the nearest-neighbor energy-level spacing
distribution P (s) for the adjacency matrices of ER fully
random networks of size N = 1000 and different connectivity
values α. The histograms were constructed by the use of the
500 unfolded spacings [57] sm = (Em+1 − Em)/� around the
band center of 103 random matrices. Here � is the mean level
spacing computed for each adjacency matrix as the slope of the
curve Em vs m around the band center. When other network
sizes are considered, we always construct P (s) from half of
the total eigenvalues around the band center, where the density
of states is approximately constant.

For α = 0, i.e., when the vertices in the network are isolated,
the corresponding adjacency matrices are diagonal and P (s)
follows the exponential distribution

P (s) = exp(−s), (3)

better known in RMT as the Poisson distribution or the spacing
rule for random levels [57]. In the opposite limit α = 1, when
the network is fully connected, the adjacency matrices become
members of the GOE (full real symmetric random matrices)
and P (s) closely follows the Wigner-Dyson distribution2 [57]

P (s) = π

2
s exp

(
−π

4
s2

)
. (4)

Then, by increasing α from zero to one, the shape of
P (s) should evolve from the Poisson to the Wigner-Dyson

2It is interesting to mention that Eq. (4), also known as the Wigner
surmise, was derived for GOE matrices of size N = 2; however, it
remarkably provides a very good approximation for the P (s) of GOE
matrices with N � 2.

distribution. This transition, partially observed for our random
network model in Refs. [11,14] from a pure RMT point of
view, is well depicted in Fig. 1, where we also plot Eqs. (3)
and (4) as reference. In fact, it is interesting to mention that
for relatively small values of α the limiting GOE statistics
is recovered. The transition from Poisson to Wigner-Dyson
in the spectral statistics has also been reported for adjacency
matrices corresponding to other complex network models in
Refs. [29–36].

Here, in order to characterize the shape of P (s) for our
random networks we use the Brody distribution [59,60], which
was originally derived to provide an interpolation expression
for P (s) in the transition from a Poisson to a Wigner-Dyson
distribution by making the ansatz P (s) = c1s

β exp(−c2s
β+1)

(with c1,2 depending on β). Then, after proper normalization
the Brody distribution reads [59,60]

P (s) = (β + 1)aβsβ exp(−aβsβ+1), (5)

where aβ = [
(β + 2/β + 1)]β+1, 
(·) is the Gamma func-
tion, and β, known as the Brody parameter, takes values in
the range [0,1]. Here β = 0 and 1 reproduce the Poisson
and Wigner-Dyson distributions, respectively. We remark that,
even though the Brody distribution has been extensively
used to characterize P (s) having fractional power-law level
repulsion [61], it has been obtained through a purely phe-
nomenological approach and the Brody parameter has no
decisive physical meaning [62] but serves as a measure for
the degree of mixing between the Poisson and GOE statistics.
In particular, as we show below, the Brody parameter will
allows us to identify the onset of the delocalization transition
and the onset of the GOE limit in our random network models.

Black dashed lines in Fig. 1 represent the fittings of the
numerically obtained P (s) with Eq. (5). The fitted values of β

are given in the corresponding panels. This figure shows that
the Brody distribution provides very good fittings for the P (s)
of the adjacency matrices of ER fully random networks. In
fact, the Brody distribution also works well for other complex
networks models [33–37].

Now we also construct histograms of P (s) for a large num-
ber of values of α to extract systematically the corresponding
values of β. Figure 2(a) reports β versus α for five different
network sizes. Notice that in all five cases the behavior of β

is similar: β shows a smooth transition from zero (the Poisson
regime) to one (the Wigner-Dyson or GOE regime) when α

increases from α � 1 (mostly isolated vertices) to one (fully
connected networks). Notice also that the larger the network
size N , the smaller the value of α needed to approach the GOE
limit. This is in fact the reason we observed in Fig. 1 that
P (s) is very close to the Wigner-Dyson distribution already
for α = 0.004 26 � 1.

We recall that the parameter ξ [see Eq. (2)] fixes the density
of states of sparse random matrices [11] equivalent to the
density of connections in the adjacency matrices we study
here. Moreover, ξ was defined as the effective dimension of the
sparse random matrix model [11]. Also, Martı́nez-Mendoza
et al. [63] showed that scattering and transport properties of
tight-binding ER fully random networks are universal for a
fixed disorder parameter ξ . Thus, it makes sense to explore the
dependence of β on the average degree ξ ; in fact, in Fig. 2(b)
we show this dependence. We observe that curves for different
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FIG. 2. Brody parameter β as a function of (a) the connectivity α

and (b) the average degree ξ = αN for ER fully random networks of
sizes ranging from N = 250 to 4000. Dashed vertical lines at ξ = 1
and 7 mark the onset of the delocalization transition and the onset of
the GOE limit, respectively. Error bars are not shown since they are
much smaller than the symbol size.

network sizes N fall on top of a universal curve. This means
that once ξ is fixed, regardless of the network size, the shape
of P (s) is also fixed. We also note that the transition in the
form of P (s) takes place in the interval 1 < ξ < 7; i.e. when
ξ � 1 (ξ � 7), P (s) has the Poisson (Wigner-Dyson) shape.

Therefore, we verify the invariance of the form of P (s)
for fixed average degree ξ by (i) choosing four representative
values of β (0.25, 0.5, 0.75, and 0.98 ∼ 1), (ii) extracting the
corresponding values of ξ from the universal curve of Fig. 2(b),
and (iii) constructing histograms of P (s) for several network
sizes for each of the chosen values of ξ . Figure 3 shows that
once ξ is fixed, the form of P (s) is invariant. In addition, we
include in each panel the corresponding Brody distributions.

Notice that Fig. 2(b) also provides a way to predict the shape
of P (s) of ER fully random networks once the average degree ξ

is known: When ξ < 1, P (s) has the Poisson shape. For ξ > 7,
P (s) is practically given by the Wigner-Dyson distribution.
While in the regime 1 � ξ � 7, P (s) is well described by
Brody distributions characterized by a value of 0 < β < 1.
Thus, ξ = 1 and 7 mark the onset of the delocalization
transition and the onset of the GOE limit, respectively.

B. Entropic eigenfunction localization length

In order to characterize quantitatively the complexity of
the eigenfunctions of random matrices (and of Hamiltonians
corresponding to disordered and quantized chaotic systems)
two quantities are mostly used: (i) the information or Shannon
entropy and (ii) the eigenfunction participation number. These
measures provide the number of principal components of an
eigenfunction in a given basis. In fact, both quantities have
been already used to characterize the eigenfunctions of the
adjacency matrices of random network models (see some
examples in Refs. [30,35,38,41,47,52–56,64–67]).
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FIG. 3. (Color online) Nearest-neighbor energy-level spacing
distribution P (s) for ER fully random networks of sizes ranging
from N = 250 to 4000 and different values of the average degree
ξ (color histograms). Black dashed lines are the Brody distribution
of Eq. (5) with β = 0.25, 0.5, 0.75, and 0.98. Each histogram was
computed from 5 × 105 unfolded spacings.

Here we use the Shannon entropy, which for the eigenfunc-
tion �m is given as

S = −
N∑

n=1

(
�m

n

)2
ln

(
�m

n

)2
. (6)

The Shannon entropy S allows us to compute the so-called
entropic eigenfunction localization length [68], i.e.,

�N = N exp[−(SGOE − 〈S〉)], (7)

where SGOE ≈ ln(N/2.07) is the entropy of a random eigen-
function with Gaussian distributed amplitudes. We average
over all eigenfunctions of an ensemble of adjacency matrices of
size N to compute 〈S〉.3 With this definition, when α = 0, since
the eigenfunctions of the adjacency matrices of our random
network model have only one nonvanishing component with
magnitude equal to one, 〈S〉 = 0 and �N ≈ 2.07. On the
other hand, for α = 1, 〈S〉 = SGOE and the fully chaotic
eigenfunctions extend over the N available vertices in the
network, i.e., �N ≈ N .

Figures 4(a) and 5(a) show 〈S〉/SGOE and �N/N , respec-
tively, as a function of the connectivity α for the adjacency
matrices of ER fully random networks of sizes N = 500,
1000, 2000, and 4000. We observe that the curves 〈S〉/SGOE

and �N/N have the same functional form as a function of α.
Notice that this behavior is also observed for β in Fig. 2(a).
Also these curves are displaced to the left for increasing N .
On the other hand, when we plot 〈S〉/SGOE and �N/N as a
function of the average degree ξ , we observe the coalescence
of all curves into universal ones [see Figs. 4(b) and 5(b)]. In

3We have verified that our observations are not modified when we
restrict the averages to a fraction of the eigenfunctions around the
band center.
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FIG. 4. Average Shannon entropy 〈S〉 normalized to SGOE as a
function of (a) the connectivity α and (b) the average degree ξ for ER
fully random networks of sizes ranging from N = 500 to 4000. Each
point was computed by averaging over 106 eigenfunctions.

addition, note that the point at which every ER fully random
network becomes globally connected (in the sense that it does
not contain isolated subnetworks) α = (ln N )/N [26] occurs
when �N/N ≈ 1/2 [see the dashed vertical lines in Fig. 5(a)].

From Fig. 5(b) it is clear that the universal behavior of
the curve �N/N as a function of the average degree ξ can be
easily described: (i) �N/N transits from ≈2.07/N ∼ 0 to one
by moving ξ from zero to N ; (ii) for ξ � 2 the eigenfunctions
are practically localized since �N ∼ 1, hence the delocalization
transition takes place around ξ ≈ 2, which is close to previous
theoretical and numerical estimations [14–16,22]; and (iii) for
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FIG. 5. Entropic eigenfunction localization length �N normalized
to N as a function of (a) the connectivity α and (b) the average degree ξ

for ER fully random networks of sizes ranging from N = 500 to 4000.
Dashed vertical lines in (a) mark the values of α = (ln N )/N at which
every ER fully random network becomes globally connected [26].
Dashed vertical lines in (b) at ξ = 2 and ξ = 200 mark the onset of the
delocalization transition and the onset of the GOE limit, respectively.
Each point was computed by averaging over 106 eigenfunctions.

ξ > 200 the eigenfunctions are practically chaotic and fully
extended since �N ≈ N . Despite the fact that the transition
region for �N/N , which takes place in the range 2 < ξ <

200, is very large compared to that for β, both quantities are
highly correlated and characterize well the Poisson to Wigner-
Dyson transition of spectral and eigenfunction properties of the
adjacency matrices of ER fully random networks as a function
of ξ .

III. OTHER ERDŐS-RÉNYI RANDOM NETWORKS

Notice that with the prescription given above, our ER fully
random network model displays maximal disorder, because
averaging over the network ensemble implies an average
over connectivity and over connection strengths. With this
averaging procedure we get rid off any individual network
characteristic (such as scars [69], which in turn produce
topological resonances [70]) that may lead to deviations from
RMT predictions used here as a reference (see also [71]). More
specifically, we choose this network model to retrieve well
known random matrices in the appropriate limits. (Remember
that a diagonal random matrix is obtained for α = 0, when
the vertices are isolated, whereas a member of the GOE is
recovered for α = 1, when the network is fully connected.)

However, it is important to add that the maximal disorder
we consider above is not necessary for a graph or network
to exhibit universal RMT behavior. In fact, it is well known
that tight-binding cubic lattices with on-site disorder (known as
the three-dimensional Anderson model [4]), forming networks
with fixed regular connectivity having very dilute adjacency
matrices, show RMT behavior in the metallic phase (see,
for example, Refs. [72,73]). Moreover, it has been demon-
strated numerically and theoretically that graphs with fixed
connectivity show spectral [74,75] and scattering [76,77]
universal properties corresponding to RMT predictions. In
this case the disorder is introduced either by choosing
random bond lengths [74,76,77] (which is a parameter not
present in our network model) or by randomizing the vertex-
scattering matrices [75] (somehow equivalent to consider
random connection strengths). Some of the RMT properties
of quantum graphs have already been tested experimentally
by the use of small ensembles of small microwave networks
with fixed connectivity [78]. Furthermore, complex networks
having specific topological properties (such as small-world
and scale-free networks, where randomness is applied only
to the connectivity) show signatures of RMT behavior in
their spectral and eigenfunction properties [33–35,37,47].
Therefore, in the following we search for the scaling properties,
if any, of ER-type random networks when the condition of
maximal disorder considered above is relaxed.

A. Standard Erdős-Rényi random networks

In the standard ER random network model [8–10], the
corresponding adjacency matrices are random matrices with
zeros in the main diagonal and ones as nonvanishing off-
diagonal elements; i.e., in the adjacency matrix vertices and
edges are represented with zeros and ones, respectively [see
Eq. (1)]. Even though it has been shown that the P (s) of
standard ER random networks is close to the Wigner-Dyson

032122-5
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FIG. 6. (Color online) Nearest-neighbor energy-level spacing
distribution P (s) for standard ER random networks of size N = 1000
and different values of the average degree ξ (color histograms). The
black dashed line is the Wigner-Dyson distribution of Eq. (4). The
arrow indicates the direction of increasing ξ . Each histogram was
computed from 5 × 105 unfolded spacings.

shape for large connectivity (α → 1) [33,34,37], notice that
P (s) cannot show the Poisson to Wigner-Dyson transition
since in the limit of vanishing connectivity (α = 0) the
corresponding adjacency matrices are the null matrix.

Figure 6 shows the distribution P (s) for standard ER
random networks of size N = 1000. We observe that once
ξ is large enough, P (s) acquires the expected Wigner-Dyson
shape. However, for smaller values of ξ , P (s) develops two
components: (i) a prominent peak at s = 0 and (ii) a broad part
having a local maximum at s > 0. The presence of these two
components avoids the use of the Brody distribution to describe
the shape of P (s) in the transition from isolated vertices to fully
connected networks. The same behavior is observed for any
other value of N .

It is fair to say that the Brody parameter has already been
reported as a function of ξ for standard ER random networks in
Ref. [27], however, for 1 � ξ � 2.4 only. The reason to report
such a narrow range of ξ is because for vanishing connectivity
this model does not approach the Poisson limit and P (s) cannot
be fitted by the Brody distribution.

Concerning the Shannon entropy and the entropic eigen-
function localization length for this random network model,
we observe, as expected, that 〈S〉/SGOE and �N/N approach
zero when α → 0, whereas they approach one when α → 1.
Thus, the delocalization transition of this network model can
be well characterized by both 〈S〉 and �N . However, there is
no universal scaling of 〈S〉/SGOE and �N/N when plotted as a
function of ξ (not shown here).

B. Erdős-Rényi random networks with diagonal disorder

We construct the ER random network model with diagonal
disorder by adding self-edges with random strengths such that
the corresponding adjacency matrices acquire statistically in-
dependent random variables (drawn from a normal distribution
with zero mean and variance one) in their main diagonal.4

4This random network model also corresponds to tight-binding
random networks with random on-site potentials and constant
(normalized to one) coupling amplitudes between sites, which is
in fact the standard prescription for condensed matter models of the
Anderson type.
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FIG. 7. (Color online) (a) Brody parameter β and (b) entropic
eigenfunction localization length �N (normalized to N ) as a function
of the average degree ξ for ER random networks with diagonal
disorder of sizes ranging from N = 500 to 4000. Dashed red vertical
lines, displayed for comparison purposes, at ξ = 1 and ξ = 7 in (a)
[at ξ = 2 and ξ = 200 in (b)] mark the onset of the delocalization
transition and the onset of the GOE limit, respectively, of ER
fully random networks; see Fig. 2(b) [Fig. 5(b)]. Red data sets
corresponding to ER fully random networks of size N = 4000 are
also included as a reference.

With this construction, we do observe a clear Poisson to
Wigner-Dyson transition in the form of P (s) when α moves
from zero to one. Moreover, P (s) can be effectively fitted
by the Brody distribution (not shown here). Thus, Fig. 7(a)
presents the Brody parameter β as a function of the average
degree ξ for ER random networks with diagonal disorder. As
for ER fully random networks, here we observe that the curves
of β vs ξ for different network sizes N fall on top of a universal
curve. In addition, we also observe universal behavior for
the entropic eigenfunction localization length �N , normalized
to N , as a function of ξ [see Fig. 7(b)]. The delocalization
transition in ER networks with diagonal disorder has also
been investigated in Ref. [31], but as a function of the disorder
strength, by the use of P (s) for networks having 3 � ξ � 10.

It is relevant to add that even though we observe the collapse
of the curves β vs ξ and �N/N vs ξ for ER random networks
with diagonal disorder of different sizes, these universal
curves are slightly displaced to the left as compared to the
corresponding curves for ER fully random networks. More
specifically, the onset of the delocalization transition and the
onset of the GOE limit occurs for smaller values of ξ in
the case of ER random networks with diagonal disorder. See
dashed lines and red curves in Fig. 7 (included for comparison
purposes), which correspond to ER fully random networks.

IV. SMALL-WORLD NETWORKS

Once we analyzed the universal properties of ER-type
random networks, it make sense to further explore other
random networks models to look for universal properties.
For this task we consider small-world (SW) networks [79].
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A SW network, as defined by Watts and Strogatz [79], is
constructed by randomly rewiring the edges of a regular
ring network consisting of N vertices connected to their k/2
nearest neighbors (k � 2 must be an even number).5 Then,
for every vertex, every right-handed edge is reconnected with
probability p to a vertex chosen uniformly at random. In
the standard SW model multiply connected vertex pairs and
self-connections are not allowed. Notice that for p = 0 the
SW network becomes the original regular ring, whereas for
p = 1, a random network is obtained where every vertex has
a minimum degree of k/2.

Notice the following. (i) The parameter k is in fact
equivalent to the average degree ξ , given in Eq. (2), which fixes
the spectral and eigenfunction properties of ER fully random
networks and ER random networks with diagonal disorder.
However, k cannot take noninteger values nor values less than
2 as ξ does. Also, it is not an average quantity. (ii) The rewiring
probability p is a parameter, independent of k, that drives the
SW network model from regular to random. Also, we should
stress that as for standard ER random networks, the adjacency
matrices of standard SW networks as well have zeros in their
main diagonal. This prohibits the use of the Brody distribution
to fit the P (s) of standard SW networks when p and k are both
small. However, for large p and k, P (s) becomes close to the
Wigner-Dyson distribution, as shown in Refs. [33,35,37,49]
(for an analytical approach to the spectra of SW networks see
Ref. [80]).

Then, as we did in the previous section for ER random
networks, here we also consider SW networks with diagonal
disorder. That is, we include self-edges having random
strengths (drawn from a normal distribution with zero mean
and variance one) to each vertex in the network such that the
corresponding adjacency matrices exhibit random variables in
their main diagonal, whereas the edges joining vertex pairs are
still represented by ones in the adjacency matrices. In this way
we guarantee that P (s) will have the Poisson shape when p

and k are both small. Moreover, we observe (not shown here)
that by including diagonal disorder, the Brody distribution fits
reasonably well the P (s) of SW networks for any combination
of p and k. The delocalization transition in SW networks with
diagonal disorder has also been investigated in Ref. [30] as a
function of p, N , and disorder strength by the use of the inverse
participation ratio of eigenfunctions (equivalent to the entropic
eigenfunction localization length we use here); however, the
goal there was the implementation of a quantum algorithm
able to efficiently simulate the network.

Figure 8 shows the Brody parameter β as a function of
p (for several values of k) and k (for several values of p)
for SW networks with diagonal disorder of size N = 1000.
Except for k = 2, where P (s) is very close to Poissonian for
any p (i.e., β ≈ 0), since the corresponding adjacency matrix
is almost diagonal, P (s) shows the transition from Poisson to
Wigner-Dyson as a function of p [see Fig. 8(a)]. From this
figure we can see that the larger the value of k, the smaller the
value of p needed for β to approach one. Notice, for example,
that for k = 20 the value of p = 0.001 � 1 makes β very close

5Note that when k = 2, the ring is a one-dimensional tight-binding
ring.
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FIG. 8. Brody parameter β as a function of (a) the rewiring
probability p and (b) the degree k for SW networks with diagonal
disorder of size N = 1000.

to one. Clearly, the transition from Poisson to Wigner-Dyson
in the form of P (s) is also observed as a function of k for fixed
p [see Fig. 8(b)].

Also, in Ref. [33] the Brody parameter was reported as
a function of p but for standard SW networks with fixed
size N = 2000 and average degree k = 40. The goal there
was to show that β is correlated with two important network
parameters: the characteristic path length and the clustering
coefficient, quantities that are beyond the scope of our paper.
Nevertheless, the delocalization transition was clearly shown
as a function of p [analogous to our curves reported in Fig. 8(a)
for SW networks with diagonal disorder].

We stress that, in contrast to ER random networks with
diagonal disorder, where the average degree ξ fixes their
spectral and eigenfunction properties, the degree k does not
fix the properties of SW networks with diagonal disorder. This
fact is clearly visible in Fig. 9, where we show �N/N as a
function of p for SW networks of four different sizes. Each
panel corresponds to a fixed value of degree k where the curves
approach each other only when p > 0.1.

Finally, we mention that in analogy with the ER fully
random networks we studied in Sec. II, here we also considered
the case of SW fully random networks; i.e., all nonzero entries
of the corresponding adjacency matrices, including the main
diagonal, were considered as random variables [in fact, this
case has been discussed in Ref. [29] where the transition from
Poisson to Wigner-Dyson in the shape of P (s) was reported
as a function of p for a network with the fixed parameters
N = 1600 and k = 8]. However, we have not observed a
substantial difference from the results reported in Figs. 8 and 9
(not shown here).

V. CONCLUSION

We have studied numerically some spectral and eigen-
function properties of Erdős-Rényi–type random networks,
focusing our attention on universality. In particular, we have
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FIG. 9. (Color online) Entropic eigenfunction localization length
�N (normalized to N ) as a function of the rewiring probability p for
SW networks with diagonal disorder of sizes ranging from N = 500
to 4000 for (a) k = 2, (b) k = 8, (c) k = 12, and (d) k = 20.

shown for ER fully random networks (where all nonvanishing
adjacency matrix elements are Gaussian random variables)
and ER networks with diagonal disorder (where the diagonal
adjacency matrix elements are Gaussian random variables,
whereas the rest of nonvanishing matrix elements are ones)
that (i) the nearest-neighbor energy-level spacing distribution
P (s), the average Shannon entropy 〈S〉, and the entropic
eigenfunction localization length �N are universal for fixed
average degree ξ = αN (where α and N are the network
connectivity and the network size, respectively); (ii) the
Brody distribution fits well P (s) in the transition from a
Poisson distribution (α = 0, isolated vertices) to a Wigner-
Dyson distribution (α = 1, fully connected network); and (iii)

the Brody parameter β as a function of ξ displays an invariant
curve.

This analysis provides a way to predict the shape of P (s)
of ER-type random networks once the parameter ξ is known.
Specifically, for ER fully random networks and ER networks
with diagonal disorder we have found that when 0 < ξ < 1,
P (s) is well described by the Poisson shape. This range of ξ

values coincides with the regime where a typical ER random
graph is composed of isolated trees [26]. We have heuristically
located the delocalization transition point around ξ ≈ 1, in
close agreement with the transition value of ξ ≈ 1.4 reported in
Refs. [14–16,22]. Also note that ξ ≈ 3.5, known as the average
degree value at which the diameter of an ER random graph
equals the diameter of the giant cluster [26], is located about
halfway through the Poisson to Wigner-Dyson transition. Also,
we have observed that for P (s) to approach the Wigner-Dyson
shape ξ � 7 is needed.

However, we have determined that there is no universal
scaling of 〈S〉/SGOE and �N/N when plotted as a function of
ξ for the standard ER model or for SW networks, even though
these two quantities describe well the delocalization transition
of both models. Moreover, we can affirm that diagonal disorder
is needed for a random network model to show the Poisson to
Wigner-Dyson transition in the form of P (s).
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