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Crossover aspects in Ising strips under the influence of variable surface fields and a grain boundary
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I use an exact variational formulation of Mikheev and Fisher to study the critical Ising strip with a grain
boundary and confining surfaces characterized by arbitrary and different surface magnetic fields. Energy density
profiles that serve as order parameters of the system within the used method show strong nonmonotonous
behavior in the vicinity of confining surfaces. I consider short-distance expansion of energy density profiles. New
universal amplitudes associated with distant-wall corrections exhibit nontrivial crossover behaviors from positive
to negative values as the field’s variables are continuously varied. Casimir amplitudes calculated in a self-contained
manner are characterized by complex manifolds which may comprise two disconnected positive wings separated
by an area of negative values. I define and determine the generalized de Gennes-Fisher amplitude, which strongly
suggests that a stress tensor is present within one of the distant-wall corrections. This is an unanticipated result
given that a similar discovery for standard extraordinary (E) and ordinary (O) surface universality classes was
based on the conformal invariance symmetry, which is broken under the present boundary conditions. A grain
boundary essentially influences both energy density profiles and Casimir amplitudes, besides surface fields with a
number of accompanying features that are examined in detail. We present closed analytic forms of energy density
profiles for standard (N) and (O) BCs: εNN(x,g), εOO(x,g), εNO(x,g) [(N) is the normal surface universality class,
g is the grain boundary’s strength, x is the relative distance x := z/L with L as a film width], thus enabling us
to deduce their important symmetry properties and to have a detailed insight into their general behaviors.
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I. INTRODUCTION

Usual critical behavior of confined thermodynamic systems
may essentially change with respect to standard surface
universality classes [1] such as the ordinary (O), the ex-
traordinary (E), and the special or the “surface-bulk” (SB)
one [2] when they are subjected to changeable boundary
conditions (BCs) [3,4]. Manifestly different critical behavior
of relevant universal quantities and laws governing them was
also supported by experiments [5–7] referring to systems with
tunable BCs. It turns out that systems driven from (O,E,SB)
surface universality classes have very interesting and rich
behavior in wide crossover regions situated among (O,E,SB)
fixed points.

The underlying reason for more complex critical behavior
in the case of adjustable BCs is the appearance of a new length
scale that may become macroscopic and compete with the
bulk correlation length ξ . Close to the (O) phase transition,
when surface magnetic field h1 is applied, the behavior of
magnetization under the rescaling of distances is described by
the relation [1]

m(z,t,h1) ∼ b−β/νm
(
zb−1,tb1/ν,h1b

yord
1
)
, (1)

where yord
1 = �ord

1 /ν is a scaling dimension of h1, β and
ν are usual critical exponents associated with spontaneous
magnetization and correlation length near the bulk critical
temperature Tc, respectively, and �ord

1 is the surface gap
exponent at the ordinary phase transition [1]. In the case
of h1 = 0, letting b ∼ z in Eq. (1), magnetization takes
on the scaling form m ∼ z−β/νMt (z/ξ ), with Mt (x) as a
scaling function. I am currently interested in the situation
at the bulk critical temperature T = Tc and h1 �= 0. The
scaling form of magnetization following from Eq. (1) in this

case is

m(z,h1) ∼ z−β/νm
(
zh

1/yord
1

1

)
. (2)

The last equation implies that surface magnetic field h1 induces
the new length scale in the critical system:

l1 ∼ h
−ν/�ord

1
1 . (3)

As a consequence of (2), singular behavior of thermodynamic
quantities may go through different universal regimes. For
example, the short-distance behavior z � l1 of magnetization
is described by the law m(z) ∼ h1z

κ , where κ = (�ord
1 − β)/ν.

In the opposite limit z � l1 magnetization approaches the bulk
equilibrium value zero as z−β/ν [3].

The Casimir effect, originally discovered in electrodynam-
ics, arises when confining surfaces influence the spectrum
of electromagnetic fluctuations between them in a way
that causes vacuum energy of the electromagnetic field to
become size and shape dependent, which leads to attractive
or repulsive force between them depending on the geometry
involved. Near a critical point of a thermodynamic system the
fluctuating field of order parameter becomes important, instead
of the electromagnetic field. A field-theoretic interpretation of
critical phenomena [8] explains that an analogous underlying
mechanism causes boundaries in critical systems to play the
same role as in electrodynamics. They modify the spectrum
of the fluctuating order parameter so that the singular part of
the free energy F ex(t,L) becomes dependent on separation
distance L between the surfaces. Due to this a new force in
the thermodynamic system occurs near the critical point, the
Casimir force −∂F ex/∂L [8,9]. Tunable BCs may profoundly
influence the Casimir effect in thermodynamic systems as
well. The thermodynamic Casimir force FCas between the two
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macroscopic parallel plates at a distance L decays as L−d in
the d-dimensional space at the bulk critical temperature Tc.
The strengths of the Casimir force for standard (O,E,SB) BCs
are determined by dimensionless Casimir amplitudes (CAs)
�ab [8], so that

FCas = (d − 1)�abL
−d . (4)

The universal constants �ab may depend on the BCs denoted
above by (ab).

It was shown that such a picture expressed by Eq. (4)
is oversimplified in case of variable symmetry-preserving
BCs [10]. It turns out that the Casimir force in this case
cannot be characterized by constant amplitudes �ab. Instead,
�ab become effective scale (i.e., L-) dependent amplitudes
�c1c2 → D(c1L

	/ν,c2L
	/ν), where ci (i = 1,2) are the so-

called surface enhancements controlling surface properties [1],
while 	 is the surface crossover exponent [1]. The study
shows [10] that the nature of the Casimir force at the bulk
critical point T = Tc may change from repulsive to attractive
and vice versa when BCs are smoothly varied.

The simultaneous influence of thermal and surface mag-
netic field effects on the Casimir force exclusively was studied
by the transfer-matrix [11] and mean-field [12] methods. These
results show that the strength as well as the sign of the force
can be controlled by varying the temperature or the surface
fields. They also point out that the Casimir force as a function
of the temperature exhibits in the crossover regime between
(N) and (O) BCs more than one extremum and for certain
ranges of surface field strengths it changes sign twice upon
varying temperature.

We clarify some important aspects of the rich crossover
phenomena arising away from standard surface universality
classes in the critical (T = Tc) Ising strips under the con-
finement of surface fields hi (i = 1,2), h1 �= h2, h1h2 > 0.
Additionally, I introduce grain boundary (GB) in the system
and observe how tunable BCs and the GB as a model of internal
defect influence at the same time the critical behavior of Ising
strips. Our study uses the exact variational principle [13] as
an alternative to detailed methods such as the transfer-matrix
or Pffafian techniques, which may result in very complex
expressions while further efforts are usually required to turn
them into scaling forms and extract universal quantities.

We address specifically critical energy density profiles
(EDPs) ε(�r) which, together with magnetization m(�r), are
among primary local quantities in semi-infinite systems or
films [1,8]. Energy density is closely related to the internal
energy density u(T ,L) of the system via the relation u(T ,L) =∫ L

0 ε(t,z,L)dz. Magnetization m and energy density ε are
conjugate variables with respect to the fields such as the re-
duced magnetic field h = H/kBT and the reduced temperature
t = (T − Tc)/Tc, namely, m = −∂fb/∂h, ε = ∂fb/∂t , where
fb is the Helmholtz free energy of the bulk thermodynamic
system. All considerations [1,8] suggest that local observables
such as the mean magnetization at a given point or local energy
density are very sensitive to disturbances caused by the surface.
Indeed, their thermodynamic averages near the surface tend to
differ significantly from their values deep inside the bulk.

At the bulk critical point the z dependence of the scaling
density profile 〈ψ(�r)〉∞/2 in the corresponding semi-infinite

system for large distances z from the wall is given by

〈ψ(�r||,z)〉∞/2 − ψb = Aψz−xψ , (5)

where 〈ψ〉 is either the magnetization m or energy density ε

and ψb is the equilibrium bulk value of corresponding scaling
density. Aψ in Eq. (5) is a nonuniversal amplitude and xψ is
scaling dimension given by xm = β/ν for magnetization and
by xε = (1 − α)/ν for energy density [1]. Critical exponent α

is associated with singular behavior of specific heat near the
bulk critical temperature Tc.

We explore first the global characteristics of EDPs in the
film geometry, that is, the full form of the corresponding uni-
versal scaling functions. Apart from their general importance
in the theory that I stress below, the knowledge of complete
EDPs enables us to calculate the Casimir force within the
present theoretical framework. The other aspect of our work
examines small perturbation of the power law (5) due to the
presence of the second wall at z = L. This is usually termed
the distant-wall correction [8]. For example, in the case of
standard (E) and (O) BCs, for three combinations (ψ,a) =
(ε,E), (ε,O), and (m,E), the corresponding film profile at small
distances becomes

〈ψ(z � L)〉 = 〈ψ(z)〉∞/2

[
1 + Bab

(
z

L

)d�

+ · · ·
]
, (6)

where 〈ψ(z)〉∞/2 is given by Eq. (5) and d� is spatial dimension
d� = d for d < d> and d� = d> for d � d>, with d> as the
upper critical dimension (d> = 4 for the present scope of
problems within the Ising universality class). Values of the
universal constants Bab depend on the boundary conditions
(ab) at both the near and the far walls, which are characterized
by surface fields h1 and h2, respectively. It turns out that the de
Gennes-Fisher (dGF) amplitude Bab is a simple combination
of the CAs �ab and a new amplitude CT for standard (E,O)
BCs [14,15],

Bab = CT (d − 1)�ab. (7)

Examination of the short-distance expansion of type (6),
which I carry out for variable BCs in Sec. III C, is generally
one of the important aspects of the theory of confined critical
systems. It has involved a number of universal amplitudes
for various standard BCs such as those included in Eq. (7),
the structure of which features fundamental aspects of the
theory [8,15]. Apart from terms (6) and (7), there are other
distant-wall corrections that may become leading asymptotic
contributions within short-distance expansions, as I consider
in Sec. III C.

As already emphasized above, the thermodynamic Casimir
effect arises due to the fluctuating field of the order parameter.
The induced Casimir effect in critical systems is described
within this work by the fluctuating field of the EDP, which
plays part as the order parameter, as will be clear from
Sec. II. By examining short-distance expansions analogous to
Eq. (6) for more general symmetry-breaking BCs, I have also
generalized the dGF amplitude Bab (7), which reveals another
type of relation to CAs. This is another reason which makes
the study of Casimir effect [8] necessary within the present
framework, making the adopted formulation [13] complete
regarding all its aspects.
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While showing that global EDPs, CAs, and distant-wall
corrections show interesting and nontrivial crossover behav-
iors, I also revisit some other fundamental theoretical questions
pertinent to short-distance expansions such as Eq. (6). One of
them is hyperuniversality of the amplitude analogous in our
work to the amplitude CT in Eq. (7), which was thoroughly
examined in the past for standard BCs [16]. The other issue
that I focus on for current BCs relates to the origin of the
dGF amplitude (7) associated with the term (z/L)d

�

in Eq. (6).
Standard field-theoretic and conformal field approaches [8],
used earlier to resolve this question for (E,O,SB) BCs, cannot
be applied in the present situation.

Within the current work I also scrutinize Ising strips with the
internal GB. The GB is an interface separating two bulk phases
in a solid. It represents discontinuity in their physical or other
characteristics. I study the concurrent influence of variable
boundary surface fields h1,h2 and the GB onto critical EDPs
and CAs characterizing Ising strips. While the GB as a model
of a defect plane induces strong perturbations of the order
parameter, it also influences essentially crossover behaviors
of CAs. I show that it is possible to express the simultaneous
influence of boundary surface fields and the GB within the
unique CA. I outline here only some earlier pronounced results
when the GB’s influence is most closely related to critical
systems. For example, the GB may induce melting by liquid
upon approaching the melting curve [17]. Complete interfacial
wetting of the GB by a liquidlike film within the mean-field
theory of the two-dimensional lattice-gas model with short-
range interactions was found [18].

The interface between two different bulk phases may be
pinned (or localized) near the defect plane at low temperatures
or may be depinned (or delocalized) at higher temperatures. In
the case of identical bulk phases (say, −), separated by the GB,
the + phase may emerge and form microscopic wetting layers
between the defect plane and either of the − phases. No wetting
phase transition may occur within the planar Ising model with
the internal GB [19]. Yet, in case of the layered Ising model
with GB, where systems on the two sides of the defect line are
characterized by different couplings, the critical-point wetting
(when interface is delocalized) may still be induced [20]. The
same conclusion based on the real-space renormalization holds
for three-dimensional systems [21].

The Landau theory of wetting in systems with GB enabled
exact results [22], showing that systems of Ising universality
class may undergo critical-point wetting only if the defect
plane remains ordered at the critical temperature [therefore
belonging to the (E) surface universality class]; otherwise, it
is absent for (O) and (SB) BCs. The critical-point wetting may
resemble the wetting at the free surface within a mean-field
two-layered Ising model with the GB separating two semi-
infinite systems [23].

When the interface of the planar Ising strip traverses internal
GB at an angle, a new kind of phase transition from geodesic to
the zigzag configuration takes place [24]. In connection with
the same model, a specific mechanism of matter transport
confined to the GB arises during relaxation of such system to
its equilibrium [25].

In the context of nonequilibrium phase transitions, GBs,
along with other extended spatial defects, like dislocations,
may have dramatic effect on the prominent class of absorbing

state transitions [26,27]. The absorbing state, featured by
absence of fluctuations, is a dynamical trap which can be
accessed with certain probability but cannot be left.

Let us mention the GB-segregation model which describes
enrichment of a material constituent at the internal interface
of the material such as the GB [28]. In connection with this,
if the solidlike film condenses at a substrate, one observes
layering when a monolayer or two or more layers may form.
The completion of each layer occurs as a first-order transition
accompanied by a jump in coverage. A series of layering
transitions associated with the GB segregation was found in
the lattice-gas model of a binary alloy [29].

When exploring systems with various inhomogeneities
such as localized defects including walls, steps, interfaces
between different phases, GBs, etc., it is crucial to know
profiles of various densities in order to be able to calculate
extensive thermodynamic quantities, such as specific heat,
adsorption, etc. One of valuable approaches to such problems
adopts variational formulation. The classical van der Waals-
Landau-Ginzburg or the local mean-field theory [30] are
among the most often used approaches of this kind. We calcu-
late an inhomogeneous order parameter profile m(�r) induced
by the arbitrary external field h(�r) within this theory from the
local [31] free energy functional 
[m] = ∫

dr{ 1
2c|∇m|2 −

h(�r)m(�r) + 1
2 t0m

2(�r) + 1
4um4(�r) + · · · }. Unfortunately, the

van der Waals-Landau-Ginzburg functional 
[m] fails to give
correct description in the critical region below the upper critical
dimension d>.

Several local but approximate functionals 
̃[t,m] have been
proposed as generalizations [32,33] of van der Waals-Landau-
Ginzburg functional 
[m]. Although very effective for a num-
ber of problems within finite systems such as the calculation
of interfacial tensions [34], critical adsorption [35], Casimir
force [36], it also contains flaws. Yet, when addressing, for
example, the wall free energy of the near critical system above
the bulk critical temperature Tc or the local perturbations
to the bulk produced by a wall or an interface for (O) or
(OO) BCs the above free energy functionals 
[m] or 
̃[t,m]
defined only by the order parameter m(�r) do not suffice as
the order parameter for (O) and (SB) BCs becomes zero for
T � Tc. Then energy density ε(�r), in fact, provides singular
contributions to thermodynamic quantities. This is the case
in physical situations specified by symmetry-preserving BCs
such as 4He near the λ point of transition to superfluidity when
(OO) BCs are relevant. Similarly, the above mentioned concept
based on the use of the single order parameter m(�r) may be
inefficient for GBs and surfaces in ferromagnetic materials in
the zero field.

To overcome this deficiency an entropylike thermodynamic
potential S[m,ε], which I use presently, has been defined as
the functional of both local magnetization and local energy
density [13]. More profound theoretical arguments related
to the scaling theory and the renormalization group analysis
suggest that a correct description should include all relevant
critical densities with scaling dimensions xm = β/ν,xε =
(1 − α)/ν, . . . < d [37]. In the case of the Ising universality
class only m and ε are necessary. Such models treat the two
scaling densities m and ε on the same footing.

The paper is organized as follows. In Sec. II I explain the
main features of the model [13] used in this work. I discuss
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BCs that model the boundary “surfaces” of the Ising strip
characterized by continually variable surface magnetic field
variables. I further comment on the model of the GB applied
to the current formulation. Section II is completed with a
general formula of CAs used in Secs. III and IV. I proceed
with Sec. III, which considers the Ising strip with changing
surface field variables and without an internal defect line. I
analyze exact EDPs, as the order parameter of the system,
CAs, as well as short-distance expansion of EDPs ε(x,y1,y2)
in detail. In close relation to the latter I present the distant-
wall correction universal amplitudes and discuss a number
of essential questions, including that of an important dGF
universal amplitude. Section IV generalizes earlier findings in
a more complex situation when the Ising strip with varying
boundary surface fields also accommodates an internal defect
line. I explore coexisting influences of surface fields and the
GB onto the EDPs and CAs exhaustively and compare these
results with those of Sec. III. Several special cases of physical
interest are (NN), (OO), and (NO) BCs with the internal GB,
allowing for a number of analytic insights providing valuable
and useful symmetry properties, among other results.

II. THEORETICAL BACKGROUND

In order to explore crossover behaviors among standard
surface universality classes, a “microcanonical” or an en-
tropy functional S[ε(�r),m(�r)] was established [13], where
m(�r) is the order parameter and ε(�r) local energy den-
sity. Such functionals yield the free energy functional F
via minε(�r),m(�r){S[ε,m] − ∫

d�r[tε + hm]}, from where it is
possible to calculate straightforwardly ε(�r), as well as
other quantities. This idea was first realized for the one-
dimensional nearest-neighbor ferromagnetic Ising chain. Ex-
pressions for the functional S[ε,m] have been derived
in a discrete, lattice formulation and then in the scaling
limit as the conformally covariant local functional S1 =
1
2

∫
dzε(z){ln 1

2ε(z) + B[m; ṁ/ε]}, with B(u,v) = 1
2 ln[(1 +

v)1+v(1 − v)1−v/ exp(2)(1 − u2)], ṁ := dm/dz [37]. The re-
sult on the one-dimensional S1 can be further used to find the
exact variational functional for the two-dimensional, layered
Ising model in the zero field (h = 0). The advantages of
continuum over lattice formulation include that (a) it represents
the whole Ising universality class instead of only the nearest-
neighbor model, (b) it is manifestly conformally covariant, and
(c) results are directly available in a scaling limit.

By treating the two-dimensional Ising model as a set
of independent d = 1 Ising chains denoted by wave vec-
tors q ∈ [0,π ] it was possible to formulate an exact free
energy functional in terms of free energy F1 of individual
chains as Fd=2 = ∫ π

0
dq

2π
F1[τq ; Hq]. Each chain in the last

equation is defined by spatially varying coupling τq in the
external magnetic field Hq , andF1 = minEq ,Mq

{S1[Eq,Mq] −∫
dz[τq(z)Eq(z) + Hq(z)Mq(z)]}. Variational parameters Eq

and Mq play the role of spatially varying energy and
magnetization densities, respectively, of the one-dimensional
chain labeled q. This way the basic, zero-field thermodynamic
potential Fd=2 of the two-dimensional layered Ising model
decouples exactly into a sum of potentials relevant to the set
of one-dimensional Ising chains denoted by the wave number
q. The full free energy follows after minimization [13] with

respect to Eq ,

F2[εq(z)] = min
εq (z)

kbT

∫ �

0

dq

2π

∫
dz[Lq(εq,ε̇q) − t(z)εq],

(8a)

Lq(εq,ε̇q) := −Eq(εq,ε̇q) + 1

2
ε̇q tanh−1

(
ε̇q

2Eq

)
, (8b)

Eq(εq,ε̇q) =
√

1

4
ε̇2
q + q2

(
1 − ε2

q

)
, (8c)

where εq in the above equations specify energy modes
of layers of the original two-dimensional Ising model,
ε̇q := dεq/dz, and t(z) is the basic thermal field.

Functional (8) should be used in the scaling limit near the
critical point. In order to consider finite-size systems, this
functional comes with additional surface terms,

L(i)
S,q = {−giεq(zi) + 1

4 [1 + εq(zi)] ln[1 + εq(zi)]

+ 1
4 [1 − εq(zi)] ln[1 − εq(zi)]

}
δ(zi), i = 1,2, (9)

where z1 = z and z2 = L − z, when boundary “surfaces” are
situated at z = 0 and z = L. The first term in Eq. (9) describes
interaction with the surface field. By employing scaling ideas it
follows [13] that gi ≈ 1

2 ln(q/h2
i ),i = 1,2. Boundary terms (9)

come from the scaling limit of the original lattice Ising model.
The general solution to the Euler-Lagrange equation of

functional (8) at bulk criticality is

εq(z) = 1

sinh(2Lq)

2∑
i=1

ε(i)
q sinh(2qz̃i), (10)

where z̃1 = L − z and z̃2 = z, and wall energy modes ε(1)
q =

εq(z = 0) and ε(2)
q = εq(z = L) follow from the system of the

following two equations deriving from minimizing surface
boundary terms (9):

sgn(−i + 3/2)pq(xi) − gi − 1

4
ln

(
1 + ε(i)

q

1 − ε
(i)
q

)
= 0, i = 1,2.

(11)
The last system of equations uses the definition of conju-
gate momenta to the “coordinates” εq , pq := ∂Lq/∂ε̇q = 1

2
tanh−1[ε̇q/2Eq(εq,ε̇q)], where above x1 = 0,x2 = L.

Knowing energy density modes εq local EDPs are calcu-
lated by

ε(x = z/L,y1,y2) =
∫ ∞

0

dq

2π
εq(x,y1,y2), (12)

where yi := D2h2
i L, (i = 1,2), D is a nonuniversal metrical

factor D = eKc
√

2/a, Kc = ln[1 + √
2]/2, which is used to

set up complete equivalence with the microscopic model.
Within the study of critical behavior of inhomogeneous

thermodynamic systems defined by the above arbitrary
symmetry-breaking BCs, I consider the overall features of
universal functions of their scaling densities such as EDPs.
Indeed, addressing EDPs under the influence of various
BCs [8,14,38–41] is a lasting effort in the theory of critical
phenomena. Knowing profiles εq(z), other relevant physical
quantities characterizing inhomogeneities due to surfaces,
films, chains, and GBs, such as specific heat, adsorption, etc.,
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may be calculated from the free-energy functional F . At the
same time, complemental information on shared influence of
BCs on scaling densities derives from their short-distance ex-
pansions [1,8,16,32,39], such as Eq. (6), leading to formulation
of several important universal amplitudes, such as Bab and CT

in Eq. (7), which were scrutinized in the past.
Examining local characteristics of EDPs within the present

work I have recognized that the structure of one of the distant-
wall corrections is closely related to CA �(y1,y2) for BCs
under consideration. Thus, it became necessary to study the
Casimir force and derive CA within the existing theoretical
framework. To incorporate the study of CA under the impact
of surface fields hi (i = 1,2), we need a finite-size term [8,32]
of the functional (8):

F ex
2 = min

εq (z)
kbT

∫ �

0

dq

2π

∫ L

0
dz[Lq(εq,ε̇q) + q]. (13)

The thermodynamic Casimir force is defined as a generalized
force conjugate to separation L between the confining bound-
aries [8,32] FCas = −∂F2/∂L. I simplify the calculation of CA
with the relation [42] ∂F ex

2 /∂L + Eex = 0, which amounts to
the Hamilton-Jacobi equation in the mechanical analog, where
Eex is the total conserved energy of the system at T = Tc. The
energy Eex follows from the formula Eex = ∫

dq

2π
Eex

q , with
Eex

q = Eq − q and Eq given by Eq. (8c). According to the
finite-size scaling arguments [8,32], the critical Casimir force
is given by the law

FCas = L−d (d − 1)�(y1,y2), (14)

with d = 2 presently and �(y1,y2) equivalent to CAs �ab (4)
for standard BCs (NN), (NO), (OO), etc. [8] [where N denotes
normal surface universality class equivalent to the (E), which
itself cannot exist in d = 2]. After solving Eqs. (11) we obtain
Eq and Eex

q from Eqs. (10) and (8c). Then, from the above
Hamilton-Jacobi like equation and Eq. (14) we set up the
general formula for CA defined by simultaneous influence of
the surface fields:

�(y1,y2) =
∫ ∞

0

dt

2π
Eex

t=qL

=
∫ ∞

0

dt

2π

{
1

2

√
4t2

[
1 − ε2

q(x)
] + ε̇2

q(x)−t

}
. (15)

The GB (situated at z = 0) is introduced in the present
model [13] with the thermal field t(z) of Eq. (8) adding the
δ function character to the simplest model of the boundary
as a stepwise variation of the basic field t−θ (−z) + t+θ (z),

that is [13],

t(z) = t−θ (−z) + t+θ (z) + gδ(0). (16)

We recall that the temperaturelike thermal field t(�r) embodies
a variation of the coupling constant J (�r) of the original lattice
Ising model, t(�r) = Kc − K(�r), where K(�r) = J (�r)/kBT ,
while Kc is the bulk critical value of K . Such a model enables
the desirable limit of the microscopic model when both lattice
spacings a⊥+ and a⊥− on the two sides of the GB together with
the interface width approach zero (see Fig. 1 and other details
in Ref. [13]). Then, in addition to BCs (11) (now formulated
at boundaries situated at z1 = −L/2 and z2 = L/2), I also
deal with the third one for the GB at z = 0 that follows after
minimizing the functional (8):

pq(0+) − pq(0−) = −g. (17)

The long-wavelength limit of the exact lattice functional [13],
which preceded continuum formulation (8) confirmed cor-
rectness of the GB model (16). The GB of the type (16)
makes each mode εq(z) continuous through z = 0; that is,
it holds εq(0+) = εq(0−), but ε̇q(z) is discontinuous, which
reflects in the jump of the canonical momentum pq(z) of
Eq. (17). One should comprehend the field g, defined by
Eq. (16), as the measure of strength K0 of boundary bonds
coupling domains on two sides of the GB (see Fig. 2 and
the accompanying discussion in Ref. [13]). I comment on
important limits g → ±∞ in Sec. IV.

III. THE ISING STRIP: ADAPTABLE SURFACE FIELDS

I study in this section, as the first step, EDPs and CAs
of the Ising strip exposed only to changing BCs delineated
by surface field variables y1 and y2. Apart from discussing
their crossover behaviors, I also go over the short-distance
expansion of the EDP analogous to Eq. (6). Because it is
more complicated for new BCs than Eq. (6) it enables us
to determine several universal amplitudes associated with the
distant-wall corrections, such as generalized dGF amplitude
Bab, originally introduced by Eqs. (6) and (7). Furthermore, I
generalize my considerations in the next section allowing that
the internal defect line is present in the strip besides existing
surface fields.

A. Global energy density profiles

We solve the system of nonlinear equations (11) in the
general case of BCs h1 �= h2, obtaining for surface energy
modes ε(1)

q and ε(2)
q

ε(1)
q = [−1 + e2(g1+g2)] cosh(Lq) + (e2g1 − e2g2 ) sinh(Lq)

[1 + e2(g1+g2)] cosh(Lq) + (e2g1 + e2g2 ) sinh(Lq)
, (18a)

ε(2)
q = cosh(Lq)(−1 + e2g1+2g2 ) + (−e2g1 + e2g2 ) sinh(Lq)

cosh(Lq)[1 + e2g1+2g2 ] + (e2g1 + e2g2 ) sinh(Lq)
. (18b)

Using the last solution in Eq. (10), we determine the energy density modes εq(z):

εq(x) = csch(2t){(t2 − y1y2) cosh[t(1 − 2x)] sinh(2t) + t(y1 − y2) sinh(t)[sinh[2t(x − 1)] + sinh(2tx)]}
(t2 + y1y2) cosh(t) + t(y1 + y2) sinh(t)

. (19)
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FIG. 1. (Color online) Plots of the universal part of EDPs
ε(x,y1,y2) with respect to variables x = z/L, y1 = D2h2

1L, and
y2 = D2h2

2L confined to a two-dimensional Ising strip of width L for
h1 �= h2 (h1h2 > 0). Curves in the picture correspond to the following
values of surface fields variables: (y1,y2) = (0,0), (0,∞), (∞,∞),
(0.1,5), (0.3,0.7), (3,9), (18,2), (0,17). The first three couples of
values correspond to (OO), (ON), and (NN) BCs, respectively.

Figure 1 presents EDPs ε(x,y1,y2) confined to critical Ising
strips obtained by integrating εq(z) from Eq. (19) according to
Eq. (12) for several arbitrarily assigned values of field variables
y1 and y2. Pronounced nonmonotonous behavior that may
accommodate one or two different minima near confining
“surfaces” and a single maximum located somewhere in
between them distinguishes EDPs for a range of field variables
y1 and y2. For larger values of field variables y1 and y2

minima of energy density curves evolve towards surfaces,
with a general tendency to collapse onto the surfaces when
y1 → +∞ and/or y2 → +∞, transforming into monotonous
diverging behavior. Similar behavior occurs when surface field
variables y1 and y2 attain very small values, that is, y1 → 0
and/or y2 → 0, except that in this case curves diverge upward
ε(x) → +∞ as x → 0, that is, opposite to a previous case.
Figure 1 also shows EDPs in limits (y1 → +∞,y2 → +∞),
(y1 → 0,y2 → 0), and (y1 → +∞,y2 → 0) with additional
designations (NN), (OO), and (NO), respectively.

We extract a leading influence of the nearest wall on EDPs
by scrutinizing only a part of EDPs pertaining to a single wall.
Then the system of Eqs. (11) decouples, yielding EDPs in a
closed form,

ε∞/2(z,h1) = 1 − 4e2h2
1zh2

1z�
[
0,2h2

1z
]

4πz
, (20)

where �[a,z] := ∫∞
z

ta−1e−t dt is an incomplete gamma func-
tion. We solve the equation of extremum ε̇∞/2(z�,h1) = 0,
that is, 1 − 4h2

1z
� + 8e2h2

1z
�

h2
1z

��[0,2h2
1z

�] = 0, numerically
for assigned values of the surface fields h

(k)
i ,k = 1,2, . . . . As

an example, for an ascending array of fields values h
(1)
1 = 0.5,

h
(2)
1 = 2.0, and h

(3)
1 = 4.0 we have from the last equation

the descending array for coordinates z�
k of extreme points of

EDPs: z�
1 = 3.12, z�

2 = 0.195, and z�
3 = 0.0487, respectively,

demonstrating that for larger values of surface fields curves’
minima are approaching the walls, while their amplitudes
get larger. As a matter of fact, z�

k,k = 1,2, . . . mark the new

characteristic length l1 (3) in the system, besides the film width
L, clearly pointing out to a crossover of EDPs from descending
to ascending behavior and therefore inducing nonmonotonicity
of pertinent quantities. Nonmonotonicity of EDPs as functions
of the surface field has been also reported in the case of the
semi-infinite geometry for T > Tc [13].

We now show that Eqs. (19) and (12) embody former results
on EDPs εab(x) for standard (N) and (O) surface universal-
ity classes. Carrying out limits y1,y2 → ∞ and y1,y2 → 0
in Eq. (19), we get εaa

q (x) = Aa cosh[t(1 − 2x)][cosh(t)]−1,
where a =(N,O), AN = −1, AO = 1. An integration of the last
expression by Eq. (12) yields [41] εaa(x) = Ãa/ sin(πx), with
nonuniversal amplitudes of opposite signs, ÃN = −1/(4L)
and ÃO = 1/(4L), implying

εNN
q (x) = −εOO

q (x), εNN(x) = −εOO(x). (21)

The last relationship between profiles εNN(x) and εOO(x)
conforms to inverted curves for (NN) and (OO) BCs in Fig. 1.
Similarly, realizing limits y1 → 0, y2 → ∞ in Eq. (19) give
εON
q (x) = −csch(2t){sinh[2t(x − 1)] + sinh(2tx)}, so that af-

ter integration (12) we have εON = cot(πx)/(4L), which is the
EDP for mixed BCs [14].

B. Casimir force

We establish the formula for CA in the general case of
freely variant surface fields h1 �= h2 (h1h1 > 0) by replacing
the solution (19) into Eq. (15):

�(y1,y2)

=
∫ ∞

0
dx

x

2π

exp(−x)(y1 − x)(−y2 + x)

[(y1y2 + x2) cosh x + (y1 + y2)x sinh x]︸ ︷︷ ︸
�(k)(y1,y2,x)

.

(22)

The last variational result agrees with the off-critical transfer-
matrix calculations of Ref. [11] in the limit T → Tc. In Fig. 2
I show a distinctive feature of CA �(y1,y2), which is that it
not only varies in magnitude but it may also change twice
the nature of the Casimir force from repulsive to attractive
and vice versa with smooth variation of field variables y1

and y2 along certain trajectories. The possibility to tune the
Casimir force and change its nature from repulsive to attractive
only by altering surface fields in higher dimensions (d > 2)
follows from Monte Carlo simulation analysis [43] in d = 3 in
special cases of (E,h1) and (h1,|h1|) BCs as well as from the
mean-field analysis (d � 4) realized for several preselected
cases [12].

Equation (22) encompasses earlier results for standard
surface universality classes. Taking limits y1,y2 → ∞ and
y1,y2 → 0 in Eq. (22) results in the same formula �NN =
�OO = ∫∞

0
xdx
2π

(tanh x − 1) = −π/48, also known from other
approaches for [44] (OO) and [42] (NN ) BCs. The equality
of CAs �NN = �OO stems from a symmetry property (21)
between EDPs for (NN) and (OO) BCs. CA for mixed (NO)
BC is retrieved from Eq. (22) in limits y1 → ∞, y2 → 0,
giving [45] �NO = ∫∞

0
xdx
2π

(coth x − 1) = π/24.
Complementary but different analysis [10] of crossover

behavior of CA for symmetry-preserving BCs in dimension
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FIG. 2. (Color online) Generalized CA �(c1,c2) [ci := yi/

(1 + yi)], yi := (Dhi)2L,(i = 1,2) defined by h1 �= h2, h1h2 > 0 for
Ising universality class in d = 2 according to Eq. (22). The quantity
�(c1,c2) changes from positive values to negative ones and vice versa
for some trajectories in the (c1,c2) space. Regions of the repulsive
Casimir force are delimited by bold lines from the one where the
Casimir force is attractive.

d = 4 − ε also highlights a possibility for CA to change both
its nature and magnitude continuously varying BCs.

C. The short-distance expansion

In a film of thickness L the second wall is present at z = L.
Examining scaling density profiles such as magnetization m

or energy density ε near the first wall, i.e., for z � L, one
notices the influence of the second wall at z = L as a small
perturbation of the power law (5). Additional terms such as
Babx

d�

in Eq. (6) are called distant-wall corrections that I now
examine due to the presence of the wall characterized by the
arbitrary surface field variable y2 at the distance L from the
first wall featured by the variable field variable y1. Here we
need a more general discussion of the short-distance expansion
originally introduced by Eq. (6). The common origin of the
short-distance expansion about the surface for a given pair
(ψ,a) [1] is

ψ(�r||,z)/〈ψ(�r||,z)〉∞/2 = 1 + σI (�r||)zx
(S)
ψ C1 + · · · , (23)

where (ψ,a) = (ε,O),(ε,SB),(ε,E),(φ,E), φ is the order pa-
rameter so that its average is magnetization 〈φ〉 = m and x

(S)
ψ

is the surface exponent corresponding to the close wall (z = 0).
In the last equation the sequence σI , σII , . . . , represents
fluctuating local surface densities (“surface operators”) [8].

It is an outstanding feature that all three cases (ε,O), (ε,E),
and (φ,E), except (ε,SB), are characterized by the surface
exponent equal to the spatial dimension d [1,39],

x
(S)
ψ = d. (24)

The last equation indicates that the scaling dimension of the
operator σI in Eq. (23) is d. It is intriguing that x

(S)
ψ and σI are

unique for the above mentioned cases, although generally they
may differ for different pairs (ψ,a). This suggests that σI ’s
have a common origin. It was argued that σI is related to the

stress-tensor component T⊥⊥ perpendicular to the surface [16],

σI (�r||) = − lim
z→0

T⊥⊥(�r||,z). (25)

The last equation is connected with the fact that the stress-
energy tensor Tkl of the critical field theory is a bulk operator
described by the scaling dimension d. It was also found that the
amplitude C1 = CT in Eq. (23) is related to the stress tensor
correlation function in the half space at Tc:

CT

/
x

(S)
ψ ∼ 1

/
[lim〈T⊥⊥(�r||,z)T⊥⊥(�r||,z′)〉|�r|| − �r ′

|||2d ].

For the critical film (T = Tc) with standard BCs the average
of T⊥⊥ equals [46]

〈T⊥⊥〉 = (d − 1)�abL
−d . (26)

Equations (23)–(26) establish Eqs. (6) and (7), which are valid
as the leading asymptotic contribution for (ε,O), (ε,E), and
(φ,E) pairs of (ψ,a).

For (ε,SB) the surface exponent x
(S)
ψ in Eq. (23) is smaller

than d, [
x(S)

ε

]
SB = d − 1 − 	/ν, (27)

where 	 is the crossover exponent [1] of the multicritical
SB transition. Thus, Eqs. (24) and (25) do not apply in
this case. Yet, Eq. (25) is present within the short-distance
expansion (23) as the subleading contribution with the same
structure given by Eqs. (6) and (7).

Expanding the EDP ε(x,y1,y2) by means of Eqs. (19)
and (12), with usual normalization with respect to semi-infinite
profiles (20) ε∞/2(z,h1), we find

ε(x,y1,y2)

ε∞/2(z,h1)

= 1+xC(y1,y2)+x2
∫ ∞

0
D̃(y1,t)�

(k)(y1,y2,t)dt + · · · ,

(28)

C(y1,y2)

=
∫ ∞

0

8ty1(t − y2)

(t + y1)[(t − y1)(t − y2) + e2t (t + y1)(t + y2)]
dt,

(29)

D̃(y1,t) = γSD(y1,t), D(y1,t) = −8π
(
t2 + y2

1

)
t2 − y2

1

, (30)

with �(k)(y1,y2,t) as an integrand of the integral formula (22)
of CA. In the last equation γs = 1 for all y1 < +∞ and
γs = −1 only for y1 → ∞, associated with different limits
of the function ε∞/2(z,h1) (20): zε∞/2(z,h1) → 1/(4π ) when
z → 0, y1 < ∞ and zε∞/2(z,h1) → −1/(4π ) when z → 0,
y1 → ∞. Figure 3 discloses intricate behavior of the distant-
wall correction universal amplitude C(y1,y2), which may attain
positive values (when the other wall enhances the profiles)
and negative ones (when the distant wall makes the profiles
weaker). Figure 4 features the second distant-wall correction
of Eq. (28), which, similarly to the previous one, exhibits
the alteration of its magnitude and sign. Figure 3 apparently
points to the line of special values of the surface field variables
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FIG. 3. (Color online) Crossover behavior of the leading distant-
wall correction universal amplitude (29)C(y1,y2) of the short-distance
expansion, Eq. (28). Areas of positive values (when EDPs are
magnified by the distant wall) are delimited by the bold line from
the negative ones (when the distant wall diminishes the EDPs).

(y�
1,y

�
2) defined by C(y�

1,y
�
2) = 0 [with the addition of (NN),

(NO), and (OO) fixed points] along which the second distant-
wall correction in Eq. (28) becomes the leading asymptotic
contribution in the short-distance expansion of EDPs.

The last distant-wall correction of Eq. (28) incorporates
standard (NN), (NO), and (OO) BCs: limy1→∞ D̃(y1,t) =
limy1→0 D̃(y1,t) ≡ CT = −8π , with the amplitude CT hyper-
universal in d = 2 with respect to standard surface universality
classes as earlier established in Ref. [16]. Combining the above
fixed points’ BCs, I have from Eqs. (28), (30), and (22) terms
CT �NN, CT �OO (with the above discussed result �NN =
�OO = −π/48), and CT �NO (with �NO = π/24, as shown in
the last section). Therefore, the last term in Eq. (28) embodies
as special cases dGF amplitudes (7) for standard (E,O) BCs in
Eq. (6) [8,14,32]. The surface exponent x(s)

ε = d = 2 (well
established for (O,E,SB) surface universality classes [47])
associated with the third term in Eq. (28) corresponds
at the same time to the scaling dimension of the stress-
tensor component perpendicular to the surface T⊥⊥(�r||,z → 0).

FIG. 4. (Color online) The universal dGF amplitude
Bd=2(c1,c2) = ∫ ∞

0 D(c1,t)�(c1,c2,t)dt , [ci := yi/(1 + yi)],
yi := (Dhi)2L,(i = 1,2) associated with the distant-wall correction
term x2 of Eq. (28) in dimension d = 2, featuring the reversal of
its sign from positive values to negative ones. The bold line in the
figure delimits domains of opposite signs of the dGF amplitude. The
picture does not encompass the line c1 = 1 as a separate case.

Previous studies, as explained above, based on the con-
formal invariance theory established that the stress-tensor
component T⊥⊥(�r||,z → 0) must be contained in the short-
distance expansion for (O,E,SB) surface universality classes
and therefore it completely determines [16,46] the structure
of the distant-wall correction via Eqs. (23)–(26). In this sense
Eqs. (28), (30), and (22) with their structure unequivocally
imply that the stress-tensor component perpendicular to the
surface T⊥⊥(�r||,z → 0) preserve for the current variable
symmetry-breaking BCs its earlier role in the short-distance
expansion within the second-wall correction B̃d (y1,y2)xd .
The generalized dGF amplitude, as it follows from current
calculations (28), is defined as an integral over the product of
two amplitude functions:

B̃d (y1,y2) = (d − 1)
∫ ∞

0
D̃d (y1,t)�

(k)
d (y1,y2,t)dt. (31)

This is a striking result since conformal invariance symmetry
is presently broken.

The issue of hyperuniversality of the quantity CT for (O,E)
surface universality classes [16] drew significant attention in
the past. It was found out that, although CT is hyperuniversal
in d = 2 (due to the property of the stress-tensor correlation
function 〈T⊥⊥T⊥⊥〉/x(s)

ε ), this property does not exist in higher
dimensions d > 2 (see Ref. [48] and references therein).
Contrary to the case of standard surface universality classes,
the amplitude D̃(y1,t) defined by Eqs. (28) and (30) in d = 2
as a natural analog of the former CT (7), explicitly depending
on the surface field variable y1, is not hyperuniversal even in
the dimension d = 2 for the current BCs.

The first distant-wall correction xC(y1,y2) of Eq. (28)
as a leading asymptotic contribution to EDPs generalizes
Eqs. (23) and (27) (	 = 0 in d = 2) for variable BCs. In higher
dimensions (d > 2) it would attain the form xd−1−	/νCd (y1,y2)
and would comprise a (SB) fixed point as a borderline case.

IV. ISING STRIPS: ADJUSTABLE SURFACE
FIELDS AND GRAIN BOUNDARY

A. Energy density profiles

We proceed with the previous analysis, making our consid-
eration more involved by introducing an internal defect “plane”
as a model of the GB. I examine important aspects when this
perturbation, so often encountered in real physical systems,
affects the behavior of critical confined Ising systems. I modify
in this section previously assumed geometry by placing the
GB now at the coordinate origin z = 0, while surface planes
are at points z = −L/2 (characterized by surface variable y1)
and z = L/2 (specified by another independent surface field
variable y2).

First, I deal with the analysis of EDPs for arbitrary finite
values of field variables 0 < yi < ∞ (i = 1,2), and GB’s
strength g. I highlight physically important limits g = ±∞.
Second, I show that in the case of standard BCs (NN),
(OO), and (NO,) the general solutions for EDPs ε(x,y1,y2,g)
acquire closed analytic forms, which, among other relevant
information, provide new symmetry properties between them
which are also relevant to Casimir effect.
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The general solution to Euler-Lagrange equation of functional (8) at the bulk criticality is modified with respect to Eq. (10)
in the present situation,

εq(z) =
{

csch(Lq)
{
ε(0)
q sinh[q(L − 2z)] + ε(2)

q sinh(2qz)
}
, 0 < z < L/2,

−csch(Lq)
{
ε(1)
q sinh(2qz) − ε(0)

q sinh[q(L + 2z)]
}
, −L/2 < z < 0,

(32)

where ε(1)
q = εq(z = −L/2) and ε(2)

q = εq(z = L/2) are boundary surface energy modes, while ε(0)
q = εq(z = 0) is another mode

associated with the GB. Then I calculate ε(i)
q (i = 0,1,2) from boundary conditions given by Eq. (11) (modified with respect to

new positions of boundary surfaces) and (17). Employing earlier variables x := z/L, t := qL, and yi = D2h2
i L (i = 1,2), after

substituting solutions ε(i)
q (i = 0,1,2) into Eq. (32), I derive the following form of energy density modes:

εq(z) =
⎧⎨
⎩

cosh(g)[cosh(2tx)(t2−y1y2)+t(y1−y2) sinh(2tx)]+sinh(g){cosh[t(1−2x)](t2+y1y2)+t(y1+y2) sinh[t(1−2x)]}
sinh(g)(t2−y1y2)+cosh(g)[cosh(t)(t2+y1y2)+t sinh(t)(y1+y2)] , 0 < x < 1

2 ,

cosh(g) cosh(2tx)(t2−y1y2)+sinh(g) cosh[t(2x+1)](t2+y1y2)+t{cosh(g)(y1−y2) sinh(2tx)+sinh(g)(y1+y2) sinh[t(2x+1)]}
sinh(g)(t2−y1y2)+cosh(g)[cosh(t)(t2+y1y2)+t sinh(t)(y1+y2)] , − 1

2 < x < 0.
(33)

EDPs ε(x,y1,y2,g) follow from the integration (12) of the last
solution (33). I present curves of ε(x,y1,y2,g) in Fig. 5 for a
couple of arbitrarily chosen values of surface field variables
y1 = 8 and y2 = 17 and a few positive and negative values of
the GB field g, g = ±1,±0.01.

Figure 6 also examines EDPs for higher arbitrarily fixed
values of surface variables y1 = 20 and y2 = 60 and various
values of the field g, g = ±2,±0.01. We should recall that
the GB field g controls within the present continuum model
the strength K0 of a bonding between spins in the ladder type
of the GB in the lattice model formulation via the exponential
law [13] exp(−g) ∼ K0. Thus, values of g = ±2,±1, used in
Figs. 5 and 6 already prompt noticeable strengthening (g < 0)
or weakening (g > 0) of the bond K0 between surface spins.
The smaller values of g = ±0.01 in Figs. 5 and 6 are culled
to refer to the linear regime g � 1 that may draw separate
attention [13] within the overall analysis, as I demonstrate
later in this work.

All profiles ε(x,y1,y2,g) in Figs. 5 and 6 are nonmonotonic
and display minima near boundary surfaces for finite nonzero
values of surface fields 0 < |hi | < ∞. We can notice that the
GB greatly affects EDPs not only in the vicinity of the GB at
z = 0 but throughout the film. This influence, as clearly seen
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FIG. 5. (Color online) Plots of EDPs for arbitrary surface field
variables y1 = 8, y2 = 17, calculated according to solution (33) and
Eq. (12) for a pair of positive and negative values of the GB field g:
(a) g = 1, (b) g = −1, (c) g = +0.01, (d) g = −0.01.

from Fig. 5, reflects also in amplitudes of profiles’ minima
near boundary walls. For example, the higher are the positive
values of g, such as g = +1 in Fig. 5(a), the lesser are the
amplitudes of minima in comparison with the case of Fig. 5(c)
derived for the lower value of the field g = +0.01. We see
the signature of the GB for higher and lower negative values
of the field g in Figs. 5(b) and 5(d), where larger negative
g makes minima generally deeper. EDPs for larger surface
field variables y1 = 20, y2 = 60 in Fig. 6 behave qualitatively
similarly to those in Fig. 5, undergoing comprehensive changes
due to the GB, except that their amplitudes are noticeably more
stable with respect to the alteration of the GB strength g.

We additionally explain the behavior of EDPs in Figs. 5
and 6 with close insight into the role of the GB. Taking limit
L → ∞ in Eq. (33), one readily obtains from Eq. (12) the
semi-infinite profile perturbed by a single GB:

ε(z,g) = tanh(g)

4π |z| , z → ±0. (34)

The last equation is exact in d = 2 at the bulk critical point
Tc, as shown earlier by the conformal invariance theory [49],
while it is a leading asymptotic contribution near the GB away

0.4 0.2 0.0 0.2 0.4
2.0
1.5
1.0
0.5
0.0
0.5

x

L x

0.4 0.2 0.0 0.2 0.4
3.0
2.5
2.0
1.5
1.0
0.5
0.0

L x

0.4 0.2 0.0 0.2 0.4

2.0
1.5
1.0
0.5
0.0 x

L x

0.4 0.2 0.0 0.2 0.4

2.0
1.5
1.0
0.5
0.0

L x

y1 20
y1 20

y1 20 y1 20

y2 60
y2 60

y2 60 y2 60

g 2 g 2

g 0.01 g 0.01

(a) (b)

(c)
(d)

FIG. 6. (Color online) Plots of EDPs for a pair of larger arbitrary
surface fields variables y1 = 20, y2 = 60, calculated according to the
solution (33) and Eq. (12) for a pair of positive and negative values
of the GB strength g: (a) g = 2, (b) g = −2, (c) g = +0.01, (d)
g = −0.01.
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FIG. 7. (Color online) Plots of EDPs for a pair of arbitrary
surface field variables y1 = 8, y2 = 17, calculated according to the
solution (35) and Eq. (36) for limiting values of the GB strength g:
(a) g = +∞; (b) g = −∞. EDPs are more positive and minima are
shallower with the larger positive g.

from the critical point [13] T �= Tc, so that when g → +∞,
K0 → 0 and surface spins on the GB are completely free.
Indeed, to corroborate quantitatively such reasoning we may
use Eq. (20). In the limit when z → 0, y1 → 0, referring to
the (O) surface universality class, it follows from (20) that
ε∞/2(z,h1) → 1

4πz
, in concordance with the limit g → +∞

of Eq. (34). On the other hand, when g → −∞, then K0 → ∞,
implying that the surface spins on the GB are completely
frozen, which is equivalent to the (N) BC. This is again
validated by Eq. (20), from where it follows for z → 0
and y1 → +∞ for the (N) BC that ε∞/2(z,h1) → − 1

4πz
,

in agreement with the limit g → −∞ of Eq. (34). This
identification of limits g → ±∞ with (O) and (N) BCs was
shown as appropriate also in the off-critical regime [13], when
fields h1 and t became irrelevant at short wavelengths.

The interpretation of profiles in Figs. 5 and 6 and subse-
quently in Figs. 7 and 8 is clear and in accord with Ref. [13]:
When g > 0, in particular g → +∞, the disordering effect of
bonds in the original ladder GB of the lattice model increases
the energy, making EDPs more positive. On the contrary, for
g < 0, and especially g → −∞, large-scale fluctuations are
abolished by the ordering effect of the GB’s surface, making
profiles negative.

We also consider limits g → ±∞ within EDPs that follow
from Eq. (33). This sheds additional light onto the above
discussion on (O) and (E) BCs derived from limits g → +∞
and g → −∞ of Eq. (34), respectively. Equation (33) in the
limit g → +∞ becomes

εq(x,y1,y2,g → +∞)

=
{

t cosh[t(1+4x)/2]+y1 sinh[t(1+4x)/2]
t cosh(t/2)+y1 sinh(t/2) , − 1

2 < x < 0,

t cosh[t(1−4x)/2]+y2 sinh[t(1−4x)/2]
t cosh(t/2)+y1 sinh(t/2) , 0 < x < 1

2 ,
(35)

while the same Eq. (33) in the limit g → −∞ transforms into

εq(x,y1,y2,g → −∞)

=
{− y1 cosh[t(1/2+2x)]+t sinh[t(1/2+2x)]

y1 cosh(t/2)+t sinh(t/2) , − 1
2 < x < 0,

− y2 cosh[t(1/2−2x)]+t sinh[t(1/2−2x)]
y2 cosh(t/2)+t sinh(t/2) , 0 < x < 1

2 .
(36)

Then, after integrating Eqs. (35) and (36) according to Eq. (12)
I present EDPs ε(x,y1,y2,g→ + ∞) and ε(x,y1,y2,g→ − ∞)
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FIG. 8. (Color online) Plots of EDPs when both confining sur-
faces belong to standard surface universality classes (N) and (O)
for several arbitrary positive and negative values of the GB strength
parameter g: (a) (OO) BC with g = +0.1, (b) (OO) BC, g = +5, (c)
(OO) BC, g = −0.1, (d) (OO) BC, g = −5, (e) (NN) BC, g = +0.1,
(f) (NN) BC, g = −2, (g) (NO) BC, g = +2, (h) (NO) BC, g = −0.3.
Plots for (NN) and (OO) BCs are based on solutions (A1) and (A2)
of the Appendix, respectively. The curves for (NO) BC were derived
by Eq. (42).

in Figs. 7(a) and 7(b), respectively. Qualitatively similar com-
mentary connected with Figs. 5 and 6 applies to the behavior
of EDPs in Figs. 7(a) and 7(b). Yet, present situations g = ±∞
stand out for a new feature. Borderline cases g → ±∞ cause
the original film to split into two independent halves (each
of width L/2) defined on the subintervals x ∈ [−1/2,0] and
x ∈ [0,1/2]. This may be perceived from Eqs. (35) and (36),
where branches of the solutions on the intervals x ∈ [−1/2,0]
and x ∈ [0,1/2] completely lack information on the BC of
the opposite wall, that is, y2 and y1, respectively. Each part
of the solution apparently contains either the surface variable
y1 (left half of the strip) or y2 (right half of the film). Then
the intuitively appealing interpretation that the second BC in
corresponding subfilms corresponds either to the (N) BC when
g → −∞ or to the (O) BC when g → +∞ may be confirmed
analyzing the general solution (19) rescaled to width L/2 and
translated for distance −L/2 when necessary. We take at the
same time either limits yi → ∞ or yi → 0 (i = 1,2) and thus
we map (19) onto Eqs. (35) and (36), respectively.
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We gain useful insights from the general solution (33) into behavior of critical Ising strips with the internal defect plane of
arbitrary strength g for standard BCs (NN), (OO), and (NO) in d = 2. Taking limits y1 → ∞, y2 → ∞, which correspond to the
(NN) BC, we obtain for energy density modes

εNN
q (x,g) =

{− cosh(2tx) cosh(g)+sinh(g) cosh[t(1+2x)]
cosh(g) cosh(t)−sinh(g) , − 1

2 < x < 0,

− cosh(g−2tx)+cosh(g+2tx)−2 cosh[t(1−2x)] sinh(g)
2 cosh(g) cosh(t)−2 sinh(g) , 0 < x < 1

2 .
(37)

Integration of energy modes (37) with the help of (12) may be performed analytically providing us with a closed form for
EDPs εNN(x,g). As this solution is lengthier, I give it in the Appendix by Eq. (A1). It turns out that knowledge of εNN(x,g)
together with other results that follow will enable us to infer important symmetry features of EDPs for fixed-point (NN) and
(OO) BCs with an internal GB.

Letting y1 → 0 and y2 → 0 in Eq. (33) correspond to (OO) BC:

εOO
q (x,g) =

{ cosh(g−2tx)+cosh(g+2tx)+cosh[t(1−2x)] sinh(g)
2[cosh(g) cosh(t)+sinh(g)] , 0 < x < 1

2 ,

cosh(g−2tx)+cosh(g+2tx)+2 cosh[t(1+2x)] sinh(g)
2[cosh(g) cosh(t)+sinh(g)] , − 1

2 < x < 0.
(38)

Closed analytic form for EDPs εOO(x,g), given in the Appendix by Eq. (A2), follows from integrating the last equation according
to Eq. (12).

Profiles εNN(x,g) and εOO(x,g) given by Fig. 8 obviously show the absence of their nonmonotonic behavior near boundary
surfaces. This is expected due to the fact that the other characteristic length l1 (3), besides the film width L, which is responsible
for nonmonotonicity properties of order-parameter profiles, becomes irrelevant for either yi → ∞ or yi → 0 (i = 1,2). While
profiles εNN(x,g) diverge always downward near surfaces, profiles εOO(x,g) tend to +∞ just as in the former case of Fig. 1. Both
types of profiles εNN(x,g) and εOO(x,g) behave near GB asymptotically in accord with Eq. (34).

We generalize the previous trait of EDPs without GB (21) for the Ising strip with internal defect of strength g as

εOO(x,g) = −εNN(x,−g), (39)

which is consequent to Eqs. (A1) and (A2). Indeed, the last feature is also evident in Figs. 8(c) and 8(e). Apparently due to the
inherent symmetry of (NN) and (OO) BCs it also holds,

εOO(x,g) = −εNN(−x,−g), (40)

which ensues from Eqs. (A1) and (A2) as well.
We complete the current exposition of EDPs for standard surface universality classes with (NO) BC. Taking limits y1 → ∞

and y2 → 0 in Eq. (33) yields

εNO
q (x,g) =

{
csch(t){sinh(2tx) − sinh[t(1 − 2x)] tanh(g)}, 0 < x < 1

2 ,

csch(t){sinh(2tx) + sinh[t(1 + 2x)] tanh(g)}, − 1
2 < x < 0.

(41)

An integration of the last expression in Eq. (12) provides an analytic solution for EDPs εNO(x,g):

εNO(x,g) =
{

1
4L

[tan(πx) + cot(πx) tanh(g)], 0 < x < 1
2 ,

1
4L

[tan(πx) − cot(πx) tanh(g)], − 1
2 < x < 0.

(42)

Plots of profiles εNO(x,g) according to the solution (42)
are given by Figs. 8(g) and 8(h). Due to different surface
universality classes: (N) at z = L/2 and (O) at z = L/2,
profiles diverge near boundaries to −∞ and +∞, respectively.
Of course, near the GB at z = 0, εNO(x,g) abides by Eq. (34)
continuously changing with the field g. Equation (42) implies
the following parity features of EDPs εNO(x,g):

εNO(−x,g) = −εNO(x,g), (43a)

εNO(x,−g) = εNO(−x,g). (43b)

B. Modified Casimir amplitudes

I am interested here how the Casimir force at Tc behaves
when in addition to surface fields, considered in Sec. III B, the
GB is present in the system. I examine first CAs �(y1,y2,g)
for assigned positive g > 0 and negative g < 0 discrete values
of the GB strengths g. Within the scope of this discussion,

depending on the magnitude of the field |g|, I comment on the
similarity and difference of present CAs with respect to the
case when the GB is absent from the system as elaborated
in Sec. III B. I also attend to qualitative symmetry that is
discerned between CAs �(y1,y2,g) and �(y1,y2,−g), which
attains a more pronounced, although still approximate, form
for infinite values of the field g, g → ±∞. In order to shed
more light onto the structure of CAs �(y1,y2,g) as well as onto
a separate impact of the GB onto their behavior, I also examine
�(y1,y2,g) as a continuous function of the field parameter g in
cases of symmetric (h1 = h2) and asymmetric (h1 �= h2) BCs.
This analysis enables us to discuss once again the approximate
symmetry between CAs �(y1,y2,g) and �(y1,y2,−g) for
larger values of g especially for g → ±∞ when the field g

controls CAs dominantly in comparison with surface fields
hi (i = 1,2). Additionally, it turns out that CAs manifest
interesting behavior also for small values of the GB field g,
g � 1, that I highlight within the current analysis.
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We base the present analysis on the formula (15) of Sec. III B and the general solution (33) of Sec. IV A, which takes into
account the influence of the GB field of strength g in the Ising strip. From Eqs. (15) and (33) we determine the following
generalization of Eq. (22) for CA:

�(y1,y2,g) =
∫ ∞

0
�(k)(y1,y2,t,g)dt, (44a)

�(k)(y1,y2,t,g) = (1 − δg,0/2)
exp(−t)t[(t − y1)(t − y2) cosh(g) + exp(t)(t2 − y1y2) sinh(g)]

π{(t2 − y1y2) sinh(g) + cosh(g)[(t2 + y1y2) cosh(t) + t(y1 + y2) sinh(t)]} , (44b)

where δg,0 is Kronecker δ symbol and variable t := qL and yi (i = 1,2) are surface field variables. Before examining the
formula (44) it is useful for subsequent considerations to derive separately CAs in the pronounced limits g → ±∞ of Eq. (44):

�(k)(y1,y2,t,g → +∞) = t[(t − y1)(t − y2) + (t2 − y1y2) cosh(t) + (t2 − y1y2) sinh(t)]

2π [t cosh(t/2) + y1 sinh(t/2)][t cosh(t/2) + y2 sinh(t/2)][cosh(t) + sinh(t)]
, (45a)

�(k)(y1,y2,t,g → −∞) = t{t(y1 + y2) + t2[−1 + cosh(t) + sinh(t)] − y1y2[1 + cosh(t) + sinh(t)]}
2π [y1 cosh(t/2) + t sinh(t/2)][y2 cosh(t/2) + t sinh(t/2)][cosh(t) + sinh(t)]

. (45b)

We first plot manifolds of CAs �(y1,y2,g) in the space
spanned by redefined surface field variables ci= yi

1+y1
, (i=1,2)

for several characteristic positive and negative values of
the GB field g, based on Eq. (44). Figures 9 and 10
present CAs �(c1,c2,g) for positive and negative values of
g, respectively running from |g| = +1 up to the very small
value of |g| = +0.01. We notice that CAs �(c1,c2,g) for

FIG. 9. (Color online) Plots of CAs (44) �(c1,c2,g) in the space
of reduced surface fields variables ci = yi

1+yi
, (i = 1,2) for several

positive GB strengths g: (a) g = +1, (b) g = +0.258 is near the
borderline case g�

1 � 0.246 between cases (a) and (c), when the
earlier single connected area of positive � > 0 transforms into two
disconnected wings of positive values of CAs, delimited in the panels
by bold lines; (c) g = +0.1 and (d) g = +0.001. Symmetry of the
manifold �(c1,c2,g > 0) with respect to the axis c1 = c2 gradually
sets in for smaller values of g, as shown in cases (c) and (d). Areas
of the repulsive �(c1,c2,g) > 0 and the attractive �(c1,c2,g) < 0
Casimir force are marked off by bold lines in all panels. Extreme
values �max and �min may be roughly ten times larger than the
corresponding ones in the case without the GB, as in Fig. 2.

larger |g| [cf. Figs. 9(a) and 10(a) for g = +1 and g = −1,
respectively] are very much different from the one in Fig. 2
of Sec. III B realized in the absence of the GB, that is,
g = 0. First, they are characterized only by a single line of
zeros �(c�

1,c
�
2,g) = 0 separating positive �(c1,c2,g) > 0 from

negative values �(c1,c2,g) < 0 of CA instead of earlier two
separate lines in Fig. 2 disconnecting areas of positive values

FIG. 10. (Color online) CAs (44) �(c1,c2,g) in the space of
reduced surface fields variables ci = yi

1+yi
, (i = 1,2) for several

negative GB strengths g: (a) g = −1, (b) g = −0.22, close to the
borderline value g�

2 � −0.235, presents the onset of the second wing
of positive CAS �(c1,c2,g) > 0 situated at the corner (c1,c2) = (0,0);
(c) g = −0.1, (d) g = −0.01. CAs �(c1,c2,g < 0) are symmetric
with respect to the axis c1 = c2 for smaller values of the GB field
|g|, as evident in cases (c) and (d). Areas of repulsive �(c1,c2,g) > 0
and attractive �(c1,c2,g) < 0 Casimir forces are marked off by bold
lines in all panels. Extreme values �max and �min may be roughly ten
times larger than the corresponding ones when the GB is missing as
in Fig. 2.
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�(c1,c2,g) > 0 symmetrically placed around the domain of
negative values �(c1,c2,g) < 0. Apart from this, it is also
noticeable from Figs. 9(a) and 10(a) as well as from other
calculations that extreme positive �max(c′

1,c
′
2,g) and negative

values �min(c′′
1,c

′′
2,g) are roughly more than ten times larger

than in Fig. 2 as a manifest consequence of the GB’s influence
on the Ising strip. We may conclude that Casimir force may
significantly be magnified toward positive or negative values
for certain domains of surface variables (c1,c2) combined with
a conspicuous effect of the GB.

As the GB strength |g| grows less, evolution of Casimir
manifold resembles previously shown Fig. 2 as we see in
Figs. 9(c), 9(d), 10(c), and 10(d) for positive g > 0 and
negative g < 0, respectively. However, even in such cases
the interval [�max(g) > 0,�min(g) < 0] of possible values of
CA, although diminishing with a decrease of the field g, is
still definitely larger than in Fig. 2. Figures 9(d) and 10(d)
correspond to the linear regime with respect to the parameter
g. The similarity of CAs �(c1,c2,g) with the case of �(c1,c2)
free of GB in Fig. 2 holds within an almost symmetrical interval
g ∈ (g�

2 � −0.235,g�
1 � 0.246). This also implies the mutual

resemblance of surfaces �(y1,y2,g > 0) [Figs. 9(c) and 9(d)]
and �(y1,y2,g < 0) [Figs. 10(c) and 10(d)] in the linear regime
of g. To reiterate, outside of this interval for g ∈ (g�

1,+∞)
and g ∈ (−∞,g�

2) we have qualitatively different crossover
behavior of �(c1,c2,g) from the unperturbed case g = 0 in
Fig. 2, distinguished by single connected areas of positive
and negative values. Figures 9(b) and 10(b) present CAs near
borderline values of g�

1 and g�
2, respectively, and therefore they

describe a transitory regime from one [cf. Figs. 9(a) and 10(a)]
to another [cf. Figs. 9(c), 9(d), 10(c), and 10(d)] mode of their
behavior.

We notice that structure of CA manifold �(c1,c2,

g → −∞), presented by contour plots in Fig. 11(a), is
near symmetric to �(c1,c2,g → +∞) in Fig. 11(b) with
respect to the axis c1 + c2 = 1. This is especially apparent
for positive contours. If the symmetry were exact, the axis
c1 + c2 = 1 would be an intersection line of the two surfaces
�(c1,c2,g → −∞) and �(c1,c2,g → +∞). Figure 12 shows
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FIG. 11. (Color online) Contour plots of CAs �(c1,c2,g) for
limiting cases (a) g = −∞ and (b) g = +∞, calculated by Eq. (45).
Pictures present a qualitatively symmetric relationship of CAs in the
above cases with respect to the axis c1 + c2 = 1. In particular, positive
contours of �(c1,c2,g = −∞) and �(c1,c2,g = +∞) are in closer
symmetric relation regarding both their positions and curvatures.

FIG. 12. (Color online) The line of intersection of CAs
�(c1,c2,g = −∞) and �(c1,c2,g = +∞). The picture illustrates to
what extent it deviates from the axis c1 + c2 = 1, as a part of the
discussion on the symmetry between CAs �(c1,c2,g = −∞) and
�(c1,c2,g = +∞).

the degree of deviation of the real line of intersection of
CAs �(c1,c2,g → −∞) = �(c1,c2,g → +∞) from the axis
c1 + c2 = 1. The qualitatively symmetric relationship between
CAs for g → ±∞ with respect to the line c1 + c2 = 1 is
related multifariously to very different role of the GB in these
limits. The larger positive g > 0 affects the GB, making
it eventually closer to the (O) surface universality class as
argued in Sec. IV A. On the contrary, larger negative g < 0
accomplishes the GB’s resemblance with the (N) BC. Then we
see that borderline points (c1,c2) = (0,0) and (c1,c2) = (1,1)
in fact influence affirmatively the above perceived symmetry
between �(c1,c2,g → −∞) and �(c1,c2,g → +∞). Indeed,
the point (c1,c2) = (0,0) in Fig. 11(b), when g→ + ∞,
corresponds to two subfilms with combined BCs (OO)(OO),
resulting in the negative overall CA for the entire
strip: �(c1 = 0,c2 = 0,g = +∞)/L2 ≡ �(OO)(OO)/L

2 =
(−π/48)[1/(L/2)2] + (−π/48)[1/(L/2)2], that is, �(c1 = 0,

c2 = 0,g = +∞) = −π/6. On the other hand, the point
(c1,c2) = (1,1) in Fig. 11(b) defines mixed (NO)(ON)
BCs so that CA of the whole film is necessarily
positive: �(c1 = 1,c2 = 1,g = +∞)/L2 ≡ �(NO)(ON)/L

2 =
(π/24)[1/(L/2)2] + (π/24)[1/(L/2)2], that is, �(c1 =
1,c2 = 1,g = +∞) = π/3. Similarly, I identify CAs at the
leading points (c1,c2) = (0,0),(1,1) in Fig. 11(a). In this case
the limit g = −∞ corresponds to the GB of the type (N).
I have mixed (ON)(NO) BCs at the point (c1,c2) = (0,0)
and therefore �(c1 = 0,c2 = 0,g = −∞) = π/3, which
is exactly symmetric to �(c1 = 1,c2 = 1,g = +∞) in
Fig. 11(b). At the point (c1,c2) = (1,1) in Fig. 11(a), arguing
analogously, I obtain �(c1 = 1,c2 = 1,g = −∞) = −π/6
which is completely symmetric to �(c1 = 0,c2 = 0,g = +∞)
in Fig. 11(b).
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This relationship among the CAs �(c1,c2,g → +∞)
and �(c1,c2,g → −∞) at the prominent points (c1,c2) =
(0,0),(1,1) is also presented explicitly below in Fig. 15(b),
which is a plane cut through space [c1,c2,�(c1,c2,g = ±∞)]
along the diagonal c1 = c2 of Figs. 11(a) and 11(b). The
finite nonzero values of field variables 0 < ci < +1 (i = 1,2)
away from the borderline points (c1,c2) = (0,0),(1,1) are in a
more complex competition with GB fields g = ±∞, resulting
in the overall deviation from the exact symmetry between
CAs �(c1,c2,g → +∞) and �(c1,c2,g → −∞), as shown in
Figs. 11(a) and 11(b).

The symmetriclike relation between �(c1,c2,g → +∞)
and �(c1,c2,g → −∞) is worsened for finite values of |g|
due to a more intricate interplay between surface fields and the
GB. Yet, symmetry between them is preserved for finite values
of |g| to a very limited extent, as noticeable, for example, in
Figs. 9(a) and 10(a).

While Figs. 9, 10, and 11 explore CAs �(c1,c2,g) in the
space spanned by surface field variables c1 and c2 for several
arbitrary appropriate fixed positive and negative values of the
GB field g, I now want to enquire about the same quantity
defined by Eq. (44) as a function of the continuously changing
variable g. Then, in order to produce three-dimensional man-
ifolds of CA, I choose to present the two most characteristic
cases: (i) symmetric BC, h1 = h2 and (ii) asymmetric BC,
h1 �= h2, when only surface variable c2 is fixed arbitrarily,
while c1 varies in the whole range c1 ∈ [0,1]. Figure 13(a)
presents the case (i) and Fig. 13(b) the case (ii) for arbitrarily
fixed c2 = 0.8. We see that �(c1,c2,g) is a smooth manifold
in the whole interval of g �= 0. These pictures reveal that
CAs for symmetric and asymmetric BCs are qualitatively
alike: Manifolds �(c1,c2,g) are distinguished in both cases by
two disconnected domains of positive values �(c1,c2,g) > 0
separated by a single valley of negative values �(c1,c2,g) < 0
between them. However, in case (ii) CA �(c1,c2,g) is not
symmetric with respect to the line g = 0, as evident from
Fig. 13(b): The area of positive values �(c1,c2,g) > 0 near
the corner (c1,g) = (0,−5) is notably smaller than the other
one situated around the opposite corner (c1,g) = (1,5).

Here, when comparing Figs. 13(a) and 13(b) and observing
their approximate resemblance, I really refer to global char-
acteristics of manifolds, while their details may differ consid-

FIG. 13. (Color online) CAs (44) �(c1,c2,g) in the space of
reduced surface field variable c1 = y1

1+y1
and the GB field parameter

g for two characteristic cases of (a) symmetric BC, h1 = h2, and (b)
asymmetric BC, h1 �= h2, with c2 fixed arbitrarily c2 = 0.8. Areas
of repulsive Casimir force �(c1,c2,g) > 0 are confined by bold
lines from the complementary area of the attractive Casimir force
�(c1,c2,g) < 0.

g 0.1

g 0.1

g 0.01

g 0.01 symmetric BC: c1 c2

c1

g 0

intersection point

0.0 0.2 0.4 0.6 0.8 1.0

0.15

0.10

0.05

0.00

c1

FIG. 14. (Color online) The CAs (44) �(c1,g) for symmetric BC
h1 = h2 for several smaller positive and negative values of the GB
field g: g = ±0.01, ±0.1 Also shown in the same picture is a limiting
case without the GB: g = 0. CAs �(c1,g) are always attractive for
symmetric BC, either without GB (g = 0) or for smaller values of
the field g � 1 that correspond to the linear regime. All curves in
the above picture intersect in the common point (c�

1,�(c�
1,g � 1)) =

(0.631, −0.0255).

erably, as I discuss. A closer look reveals that dissimilarities
are rather severe between the two regimes near the line g = 0,
that is, in the linear domain of g. As the behavior of the
Casimir force in the domain of small values of the GB field g

is characterized by several interesting features, I first examine
independently the linear domain |g| � 1 for symmetric and
antisymmetric BCs.

Figure 13(a) shows CAs �(c1,g), c1 ∈ [0,1], for (i) sym-
metric BC (c1 = c2) in the linear regime of g for several
casually fixed values of g: g = ±0.1,±0.01. The same picture
contains for comparison CA in the strip without the GB,
g = 0. We see that in the case when there is no GB the
Casimir force for the like BC (h1 = h2) is always attractive
for planar surfaces: FCas(g = 0) < 0. This generalizes earlier
conclusions that the Casimir force is attractive for [50] (++)
BCs in all dimensions [51–53]. The curve of �(c1 = c2,g = 0)
appears as a kind of an envelope for curves �(c1 = c2,g � 1),
as we can notice for g = ±0.01 and even greater g = +0.1. We
may also conclude from Fig. 14 that CAs �(c1 = c2,g � 1)
retain the most distinctive feature of �(c1 = c2,g = 0) to be
always negative; that is, �(c1 = c2,g � 1) < 0 on the whole
interval c1 ∈ [0,1], notwithstanding whether g > 0 or g < 0.
This is an unexpected result given the high sensitivity of
profiles to the sign of g as shown in Sec. IV A.

It is interesting to recognize in Fig. 14 the nodal singular
point [54,55] for the family of curves 	(c1,�,g � 1) = 0,
which is, of course, at the same time the characteristic
point [56]. The unique point of intersection is determined by

(c�
1,�(c�

1,g � 1)) = (0.631,−0.0255). (46)

We also discern that the inequality �(c�
1,g�1)<�(c�

1,g=0)
always holds. The singular point (c�

1,�(c�
1,g � 1)), since it

is unique for all CAs �(c1,g � 1) in the linear regime of g,
may be credited with a more meaningful connotation as the
universal feature of the confined Ising strip with the GB for
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symmetric (h1 = h2) BC. Also, in Fig. 14 it is noteworthy that
the Casimir force with linear perturbation g � 1 is always
more strongly attractive than the one without the GB:

�(c1,g � 1) < �(c1,g = 0). (47)

This becomes especially pronounced at end points, where both
�(c1 = 1,g � 1) ≡ �NN(g � 1) and �(c1=0,g � 1) ≡
�OO(g � 1) are remarkably smaller than corresponding CAs
without GB, �NN = �OO = −π/48, therefore implying that
even small perturbation g � 1 always makes the attractive
Casimir force stronger than the unperturbed one g = 0 and
even more so toward end points of the curve �(c1,g � 1),
irrespective of the sign of the GB field g.

We now examine the linear regime of g in Fig. 13(b),
which I have designated as the asymmetric case (ii). Plots of
�(c1,c2 = 0.8,g) for the arbitrary value of c2 = 0.8 and very
small g, g = ±0.05, are given in Fig. 16(a). Curves �(c1,c2 =
0.8,g = +0.05) and �(c1,c2 = 0.8,g = −0.05) are very close
to each other in the linear regime, yet completely different
from the symmetric case (i) in Fig. 14: CAs may now acquire
both positive (for c1 < c̃+

1 � 0.398 when g = +0.05 and
c1 < c̃−

1 � 0.399 when g = −0.05) and negative values (for
c1 > c̃+

1 or c1 > c̃−
1 ). It turns out that CAs �(c1,c2 = 0.8,g �

1) in the linear regime of g are also characterized by a nodal
singular point,

(c�
1,�(c�

1,c2 = 0.8,g � 1)) = (0.405,−0.001), (48)

the existence of which is analogous to Eq. (46) and Fig. 14.
We further delve into specific areas of the manifold in

Fig. 13 by fixing g at larger values g = ±0.5 and borderline
values g = ±∞. Curves �(c1,g = ±0.5) and �(c1,g = ±∞)
for symmetric BC are given by Fig. 15. We now notice the ten-
dency for curves �(c1,g) and �(c1,−g) to split entirely. From
Fig. 15 it is apparent that for much of the interval of the variable
c1 it holds that �(c1,g)�(c1,−g) < 0; that is, CAs have
opposite signs, except in narrow intervals around intersection
points c�

1, �(c�
1,g) = �(c�

1,−g). Indeed, results in Fig. 15(b)
for g = ±∞ [which is cut out of Figs. 11(a) and 11(b)
along the diagonals] support strongly the above perceived
approximate symmetry between CAs �(c1,c2,g = +∞) and
�(c1 = 0,c2 = 0,g = −∞) in Figs. 11 and 12. Earlier noticed
exact symmetric relationships �(c1 = 0,c2 = 0,g = +∞) =
�(c1 = 1,c2 = 1,g = −∞) = −π/6 and �(c1 = 0,c2 =
0,g = −∞) = �(c1 = 1,c2 = 1,g = +∞) = −π/3 are ex-
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0.0 0.2 0.4 0.6 0.8 1.0
0.5

0.0

0.5

1.0
c1, g

g 0.5

g 0.5

g

g

c1 c1

a b

FIG. 15. (Color online) CAs (44) �(c1,g) for symmetric BC
h1 = h2 for larger positive and negative values of the GB field g:
(a) g = ±0.5 and (b) g = ±∞. CAs are both attractive and repulsive
for symmetric BC when field g attains larger values. CAs �(c1,g) and
�(c1, −g) have a tendency to behave in the opposite manner for larger
strengths g, that is, �(c1,g)�(c1,−g) < 0 for most of the interval of
the variable c1, except in narrow intervals around intersection points.

0.0 0.2 0.4 0.6 0.8 1.0
0.10
0.05
0.00
0.05
0.10
0.15

c1, 0.8, g

0.0 0.2 0.4 0.6 0.8 1.0
0.2
0.1
0.0
0.1
0.2

c1, 0.8, g

0.0 0.2 0.4 0.6 0.8 1.0
0.3
0.2
0.1
0.0
0.1
0.2
0.3

c1, 0.8, g

0.0 0.2 0.4 0.6 0.8 1.0

0.2
0.0
0.2
0.4
0.6

c1, 0.8, g

ac2 0.8 c2 0.8

c2 0.8 c2 0.8

g 0.05
g 0.05

g 0.5

g 0.5

g 1

g 1

g

g

c1 c1

c1
c1

c d

b

FIG. 16. (Color online) CAs (44) �(c1,c2,g) for the asymmetric
BC h1 �= h2, with c2 arbitrarily fixed as c2 = 0.8 just as in Fig. 13(b).
Plots are given for (a) smaller values of the field g = ±0.05, which
refers to the linear regime of the GB, (b) g = ±0.5, (c) g = ±1,
and (d) g = ±∞. Curves �(c1,c2, ± g) are close to each other for
small |g|, just as in Fig. 14. However, unlike the symmetric BC, CAs
presently take both positive and negative values. As the strength g

grows larger, curves �(c1,0.8,g) and �(c1,0.8,−g) split more and
more up to limiting cases g = ±∞, behaving in the reverse order
�(c1,0.8,g)�(c1,0.8, −g) < 0 regarding their nature on a significant
part of the interval of the variable c1 ∈ [0,1], yet perceptibly narrower
in case (d) than in Fig. 15(b) for symmetric BC.

plicitly presented in Fig. 15(b) at the curves’ end points
(c1,c2) = (0,0),(1,1). A qualitatively similar scenario is main-
tained for larger finite values of ±|g|, as in Fig. 15(a) for
g = ±0.5.

Figures 16(b)–16(d) examine CAs for (ii) antisymmetric
BCs by gradually increasing the field g up to the limiting
cases g= ± ∞, also illustrating the tendency of curves
�(c1,c2 = 0.8,g) and �(c1,c2 = 0.8,−g) to split for larger
values of g outside the linear regime, just in analogy with the
case in Fig. 15. The inequality �(c1,0.8,g)�(c1,0.8,−g) < 0
although valid on the significant part of the interval of
the variable c1 is yet restricted on the narrower subinterval
[Fig. 16(d)] than in the symmetric case [Fig. 15(b)].

While the nature of CAs (i) �(c1 = c2,g � 1) and (ii)
�(c1,c2 = 0.8,g � 1) are crucially different in the linear
regime of g, g � 1 [cf. Figs. 14 and 16(a)], these quantities
become qualitatively similar for larger values of the GB
strength g, which dominates notably over the influence of
surface fields h1,h2 [cf. Figs. 15 and 16(b)–16(d)], although
naturally quantitative variations between them are clearly
discernible.

V. CONCLUSIONS

We have scrutinized exactly the full form of universal
functions of EDPs together with analysis of their short-distance
expansion in Ising strips confined by two symmetry-breaking
“surfaces” characterized by variable surface fields variables
yi = D2h2

i L (i = 1,2). Intriguing crossover behaviors of
either EDPs, CAs, or distant-wall correction universal ampli-
tudes mentioned in Sec. III emerge from the new characteristic
length l1 (3) in the critical system besides the film width L.
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After identification of surface exponents we have perceived a
distant-wall correction with the structure and surface exponent
essentially referring to dGF amplitude (31) and therefore likely
connected with the stress-tensor component perpendicular to
the surface T⊥⊥(�r||,z → 0) [cf. Eqs. (23)–(25)]. The discovery
of the generalized form of dGF amplitude under freely variant
BCs (31) within this study, is an extraordinary feature taking
into account that the conformal invariance symmetry is broken
for such BCs. The study of the structure of the distant-wall
correction associated with dGF amplitude which itself is linked
with CA [cf. Eqs. (28), (30), and (31)] required that I undertake
independent analysis of the critical Casimir force using the
current method. CAs �(y1,y2) controlled only by surface
fields exhibit exciting complex crossover behavior, showing
that the Casimir force can be so tuned that it becomes attractive,
repulsive, or even switched off from the confined strip along
certain trajectories in the (c1,c2) plane.

We have also examined in Sec. IV the more complicated
physical situation when, apart from surface fields, the confined
Ising strip also has the internal GB. The simultaneous influence
of variable BCs and the GB brings in new effects dramatically
affecting both EDPs and CAs. While the nonmonotonicity of
EDPs remains their main feature near confining surfaces for fi-
nite values of surface fields variables 0 < yi < +∞ (i = 1,2),
the GB brings about crucial changes in their overall behavior,
making them more positive or negative, increasing or decreas-
ing their amplitudes and controlling their diverging behavior
near the GB according to the law (34).

In connection with standard surface universality classes
using the present theoretical framework I have derived closed
analytic solutions for EDPs εNN(x,g), εOO(x,g), and εNO(x,g).
These formulas, besides giving us insight into their detailed
behavior, asymptotic limits, etc., reveal a few symmetry
properties (39), (40), and (43) that may generally have
pervasive consequences [57] on the Casimir effect for standard
BCs with the internal GB.

The behavior of CAs �(y1,y2,g) via the broad interplay
of tunable surface fields and the GB is inspected in detail.
The GB strongly alters both the nature and magnitude of
the Casimir force with respect to the case without GB. As
a rule manifolds �(y1,y2,g) of CAs for lower values of the
GB strength g ∈ (g�

2 � −0.235,g�
1 � 0.246), in particular in

the linear regime, g � 1 become qualitatively similar to the
unperturbed case (g = 0) in Fig. 2, although CAs may still
acquire prominently larger positive and negative values than
before. Crossover behavior of CAs for larger values of the
GB field |g| is definitely very different from the unperturbed
case g = 0 in Fig. 2. Figures 9(a), 10(a), and 11 characterize
CAs in this regime of larger g comprising single areas of
positive and negative values delimited by the sole line of
zeros �(c�

1,c
�
2,g) = 0. At the same time with the growing

field |g| CAs �(c1,c2,g) may acquire more than ten times
larger limiting values than in the unperturbed case (22). CAs
�(c1,c2,g = −∞) [cf. Fig. 11(a)] and �(c1,c2,g = +∞)
[cf. Fig. 11(b)] are near symmetric with respect to the axis
c1 + c2 = 1. Roughly similar correspondence may hold in
some proportion even for lower values of |g|, as in Figs. 9(a)
and 10(a).

To further elucidate the role of the GB onto the Casimir
effect and single out its peculiar influence from surface fields,

I have explored the CAs as the function of the field g in
two most characteristic cases for (i) symmetric (h1 = h2)
and (ii) asymmetric (h1 �= h2) BCs. I have determined that
CAs qualitatively remain similar to the unperturbed case in
the linear regime |g| � 1: (i) �(c1 = c2,g � 1) is always
negative (cf. Fig. 14), while (ii) �(c1 �= c2,g � 1) may be
both positive and negative [cf. Fig. 16(a)]. However, larger
values of the GB field |g| incline to cancel out to some
extent differences between cases (i) and (ii), as Figs. 15
and 16(b)–16(d) show. I have also shown that in the domain
of large g, |g| � 1, CAs �(c1,c2,g) and �(c1,c2,−g) tend to
split mutually so as that they behave contrary to each other
regarding the nature of the Casimir force: It holds almost
everywhere on c1 ∈ (0,1) for finite and infinite |g| � 1 that
�(c1 = c2,g)�(c1 = c2,−g) < 0 for symmetric BC (h1 =
h2) [see Figs. 15(a) and 15(b)], while the same inequality
remains valid for asymmetric BC to a significant extent, in
particular for |g| → ∞ [see Figs. 16(b)–16(d)]. These findings
also complement the above discussion on the near-symmetry
between CAs �(c1,c2,g) and �(c1,c2,−g) for larger GB fields
|g| in Fig. 11.

It is a result of many studies so far that Casimir in-
teraction may be tuned either by BCs or by changing the
temperature [8,9,51–53]. This report deals with the possibility
when general smoothly varying BCs affect EDPs and CAs. A
recent experiment demonstrated that critical Casimir forces
in colloidal systems can be continuously tuned [58] by
the choice of BCs. By measuring the interaction potential
of the colloid particle in the mixture of water and 2,6-lutidine
above the substrate with the gradient it was shown that it may
change from attraction to repulsion even for small changes in
the surface properties. These experimental findings are fully
in accord with results of the present work demonstrating the
possibility to continuously change the critical Casimir force by
smooth variation of BCs. It was recognized that Casimir forces
sensitive to surface properties bring in novel perspectives of
colloidal suspensions as model systems [58]. On the other
hand, it was suggested that this also opens new possibilities
for fabrication of colloidal crystals which are significantly
important for technical applications.

Besides tunable BCs and thermal adjustments, an additional
possibility to influence the Casimir force arises with the GB
present in the critical system as the current study examines. I
have elucidated how the EDP as order parameter of the system
as well as CAs may be altered by the GB. Both the nature of
the Casimir force (repulsive or attractive) and its magnitude
may undergo compelling changes due to the impact of the GB.
Besides the fundamental importance, this may also be applied
to real materials and to engineering their desirable properties.

The present study can be extended to higher dimen-
sions [59] d > 2, as well as to confined layered Ising models,
etc. Consequently, new effects in higher dimensions may be
expected, such as the presence of the (SB) fixed point and the
possibility to examine the important case of the XY model
relevant to 4He near the λ point of superfluid transition if
(OO) BCs are imposed. The fact that the present model is
applicable in 2 � d � 4 for arbitrary BCs is an advantage
over transfer-matrix methods (d = 2). Additionally, it may be
preferred over the standard field-theoretic method [1], confined
only to the mean-field limit [12] for symmetry-breaking BCs.
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APPENDIX: EDPs FOR (NN) AND (OO) BCs WITH THE GB

We derive here analytic solutions of EDPs for (NN) and (OO) BCs. The integration (12) of energy-density modes εNN
q (x,g),

defined by Eq. (37), may be carried out in terms of Gaussian hypergeometric function [60,61] 2F1(a,b,c,z). Using the regularized
Gaussian hypergeometric function 2F̃1(a,b,c,z) := 2F1(a,b,c,z)/�(c), with �(c) as the � function, I recast the original very
lengthy solution to a somewhat more compact form:

LεNN(0 < x < 1/2,g) = 1

16
exp(−g)

⎧⎨
⎩2�(1 − 2x)

π

[
1

exp(2g) + 1

(
(1 + i exp(g))(i + exp(g))3

× 2F̃1

(
1,1 − 2x,2(1 − x); 1 − 2

1 + i exp(g)

)
+ i(exp(2g) − 1)(1 − 2x)

×
(

(exp(g) − i)2
2F̃1

(
1,2(1 − x),3 − 2x; 1 + 2

−1 + i exp(g)

)

− (exp(g) + i)2
2F̃1

(
1,2(1 − x),3 − 2x,1 − 2

1 + i exp(g)

)))

− i(exp(g) − i)2
2F̃1

(
1,1 − 2x,2(1 − x),1 + 2

−1 + i exp(g)

)]

+ 1

2π (1 + x)
�(2(x + 1))

⎡
⎣−2i(exp(g) − i)2

2F̃1

(
1,2x + 1,2(x + 1),1 + 2

−1 + i exp(g)

)

+
(1 + i exp(g))(exp(g) − 1)(exp(g) + 1)2F̃1

(
1,2x,2x + 1; 1 + 2

−1+i exp(g)

)
(exp(g) + i)x

+ 2i(exp(g) + i)2
2F̃1

(
1,2x + 1,2(x + 1); 1 − 2

1 + i exp(g)

)

+
(1 − i exp(g))(exp(g) − 1)(exp(g) + 1)2F̃1

(
1,2x,2x + 1,1 − 2

1+i exp(g)

)
(exp(g) − i)x

⎤
⎦
⎫⎬
⎭ . (A1)

The second branch of the solution εNN(−1/2 < x < 0,g) arises from Eq. (A1) because εNN(x,g) is an even function of the
argument x due to the symmetry of (NN) BC. Graphs of the EDP εNN(x,g) obtained from Eq. (A1) are given by Figs. 8(e)
and 8(f) for a couple of strengths g = 0.1,−2.

Similarly integrating energy density modes εOO
q (x,g) defined by Eq. (38) in Eq. (12), I obtain the analytic solution for EDP

for the (OO) BC conveniently presented in terms of regularized Gaussian hypergeometric function 2F̃1(a,b,c,z):

LεOO(0 < x < 1/2,g) = 1

8

⎧⎨
⎩�(2(1 + x))

2π (1 + x)

[
2(1 − i sinh(g))2F̃1

(
1,2x + 1,2(x + 1); −1 − 2i

−i + exp(g)

)

+ 1

(exp(2g) + 1)x
exp(g)

[
2F̃1

(
1,2x,2x + 1,−1 − 2i

−i + exp(g)

)
(2 sinh(g) − i cosh(2g) + i)

+2(1 + i sinh(g))

(
sinh(g)2F̃1

(
1,2x,2x + 1,

2i

i + exp(g)
− 1

)

+ 2x cosh(g)2F̃1

(
1,2x + 1,2(x + 1);

2i

i + exp(g)
− 1

))]]

−2i�(2(1 − x))

π

⎡
⎣ 1

exp(2g) + 1
sinh(g)

(
(exp(g) + i)2

2F̃1

(
1,2(1 − x),3 − 2x; −1 − 2i

−i + exp(g)

)

− (exp(g) − i)2
2F̃1

(
1,2(1 − x),3 − 2x;

2i

i + exp(g)
− 1

))
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+
(sinh(g) − i)2F̃1

(
1,1 − 2x,2(1 − x); −1 − 2i

−i+exp(g)

)
2x − 1

+
(sinh(g) + i)2F̃1

(
1,1 − 2x,2(1 − x); −1 − 2i

−i+exp(g)

)
1 − 2x

⎤
⎦
⎫⎬
⎭ . (A2)

Again I avoid explicitly quoting the second branch of the solution for the EDP for (OO) BC εOO(−1/2 < x < 0,g) as it follows
from Eq. (A2) due to the symmetry of (OO) BC, which imposes parity relation εOO(−x,g) = εOO(x,g). Plots of εOO(x,g) derived
by means of Eq. (A2) are presented in Figs. 8(a)–8(d) for GB fields g = ±0.1,±5.
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