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Accurately describing work extraction from a quantum system is a central objective for the extension of
thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when
generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for
application to an open quantum system undergoing quantum evolution under a general quantum process by which
we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for
such processes and show consistency with the second law. We show that heat, from the first law, is positive when
the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same
majorization condition. This makes a strong connection between the two operational laws of thermodynamics.
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I. INTRODUCTION

The laws of thermodynamics were forged in the furnaces
of the industrial revolution, as engineers and scientists refined
their picture of energy, studying heat and its interconversion
to mechanical work with a view to powering the mines and
factories of this new era of human endeavor. Followed by the
development of statistical mechanics at the turn of the century
[1], far from its pragmatic inception, thermodynamics is now
a theory with a remarkable range of applicability, successfully
describing the properties of macroscopic systems ranging from
refrigerators to black holes [2].

Moving on to the 21st century with both industrial and
electronic revolutions behind us, technological development
is pushing towards and beyond the microscopic scale. With
a view to devices operating at a scale where quantum
mechanical laws become important, we may ask whether
the solid grounds of thermodynamics might be challenged,
not only by the lack of a thermodynamic limit, but also by
the intrinsic uncertainty synonymous with this domain. It
comes as no surprise that there has been a concerted effort
to understand how the laws of thermodynamics generalize
to arbitrary quantum systems [3] both at and away from
equilibrium. Such laws will aid in better understanding the
relationship between quantum and statistical mechanics,
extend our predictability for out-of-equilibrium systems, and
aid the design of efficient controls for thermal machines.

An important question relating to the extension of the
first law of thermodynamics into such a regime is to ask to
what extent the concepts of work and heat extend to quantum
systems. This is an avenue of research that has been open for
several decades [3,4]. Without severe assumptions regarding
the set of allowed quantum states, coupling strengths, and
bath properties, it has so far remained a difficult question
without any satisfactory general answer. Nevertheless, it is
central for the formulation of a concrete theory of quantum
thermodynamics of both equilibrium and nonequilibrium sys-
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tems. Some important steps have been made toward providing
an answer, such as the formulation of quantum fluctuation
relations [5], information theoretical approaches [6] (see [7]
for an overview), and some combination of the two [8]. Finally,
central to the work presented here is a work extraction formal-
ism for nonpassivity of quantum states [9]. Despite the range
of approaches, a more general picture for the thermodynamics
of general quantum evolutions is far from clear.

In this paper we take an operational approach to character-
izing the energy change of an open quantum process described
by a completely positive trace-preserving (CPTP) map. Such
maps are ubiquitous in modern quantum physics and arguably
the most encompassing generic description available for
quantum processes (i.e., all processes that can be described
by coupling to an initially uncorrelated ancilla, joint unitary
evolution, and tracing out over the ancilla). In the context of
this paper we will consequently refer to evolutions that are
CPTP as general quantum processes. The results presented
here rely on processes being both completely positive and also
trace preserving but are not contingent on a specific description
(for instance, in terms of Kraus operators) and the maps may
be thought of as an input-output formalism for quantum states.
In analogy to the first law of thermodynamics, we discuss work
done, extractable work, and heat. The concepts of ergotropy
and adiabatic work allow us to state our main result: an
operational first law for general quantum processes. We show
that our operational first law is in agreement with the widely
used Hatano-Sasa version of the second law for CPTP maps
[10,11] by explicitly stating the Clausius inequality for unital
and thermal maps. We then show that both operational heat
and the change in von Neumann entropy are positive when the
input state of the map majorizes the output state.

II. THERMODYNAMICS OF QUANTUM SYSTEMS

The first law of thermodynamics states that the internal
energy change in a thermodynamic process can be split into
two contributions, work and heat: dE = δQ + δW . For a
general quantum system, the internal energy at time t is
E(t) = tr[ρ(t)H (t)], implying that the change in the internal
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energy dE depends only on the end points. Heat and work, on
the other hand, are path dependent, hence the different notation
for the ‘differentials’. As illustration we may consider the heat
expended when pushing a piston into a cylinder filled with
gas: It depends not only on the initial and final positions of
the piston but also on how fast it is pushed. Using the time
derivative of the internal energy, the following two expressions
are motivated [10]:

δW = tr[ρ(t)dtH (t)]dt

δQ = tr[H (t)dt ρ(t)]dt, (1)

with dt := d/dt . Integrated over a specific evolution, this
yields (average) values for heat and work

�E =
∫ τ

0
δW +

∫ τ

0
δQ = 〈W 〉 + 〈Q〉

= tr[ρ(τ )H (τ )] − tr[ρ(0)H (0)]. (2)

These definitions fit the understanding that heat corresponds
to a change in the state and, accordingly, entropy, a function
of state. For unitary evolution heat vanishes by virtue of the
Liouville–von Neumann equation dt ρ(t) = i[H (t),ρ(t)]. The
part corresponding to work, on the other hand, does not relate
to a change of the state or its entropy but rather to a change in
Hamiltonian.

In general, however, it is not easy to compare work and heat
for a general quantum process. This is because the integrands in
Eq. (2) are often neither well defined nor easy to measure. Only
for systems with well-defined descriptors of ρ(t) and dt ρ(t) do
we have a closed form for work and heat. For instance, Markov
systems are described in a time local form dt ρ(t) = L[ρ(t)],
leading to the well-known results [10]. A related situation
presents itself when dropping related assumptions about weak
coupling, semigroup properties of the quantum channel, or its
infinitesimal divisibility. Here we are specifically interested
in the regime where such assumptions do not hold. In this
sense, our approach shares similar obstacles with the popular
description of thermal operations [6,12]. What is different in
our scenario is that we do not impose energy conservation (for
instance, in order to derive a second law) but rather ask whether
we can meaningfully characterize the energy exchange in a
quantum process for which dynamic resolution is not available.

It is clear that trying to recover path-dependent quantities
as in Eq. (1) would be futile since the path (that is, the
precise system dynamics) is either unknown or not well
defined. In our approach the minimal requirements are the
existence of meaningful marginals of the system state and
Hamiltonian at both the beginning and the end of the process.
(Restrictively, one could ask for the system-ancilla state to
be separable initially and for the Hamiltonian to be a sum
of two local Hamiltonians.) However, neither the (marginal)
system states nor a system Hamiltonian need to be available
and moreover thermodynamically meaningful during the time-
resolved evolution. Far from being an academic issue, this is a
very realistic and practical problem. For instance, in a chemical
process the Hamiltonian dynamics as well as the reduced state
at all times are generally not known. Such stochastic processes
can be described by a CPTP map, which may be thought of as
a black box relating an input to an output state.

In this context, work and heat obtain their meaning in an
operational sense: Given a general map M(ρ), how much work
can be extracted from the output state ρ ′ = M(ρ) assuming a
fully controllable quantum operation? How much energy is
wasted (or gained) in the process? The reader may think of the
initial state and the map M as free resources in this scenario. In
the next two sections we introduce the concepts of ergotropy
and adiabatic work before stating the main result.

III. ERGOTROPY AND CYCLIC WORK EXTRACTION

We proceed with a brief review of work extraction in
cyclic unitary evolution [9,13]: Given a quantum state ρ on
a finite-dimensional Hilbert space and a Hamiltonian H , we
may ask how much work can be extracted via a cyclic unitary
process. Cyclicity here means that the system Hamiltonians at
the beginning and the end of the process have to be identical,
i.e., H ≡ H (0) = H (τ ). For unitary evolution any change in
internal energy 〈H 〉 is due to work. We express the Hamiltonian
in its increasing spectral decomposition

H :=
∑

εn|εn〉〈εn| with εn+1 � εn ∀n. (3)

The state ρ, on the other hand, is expressed in its decreasing
eigendecomposition

ρ :=
∑

rn|rn〉〈rn| with rn+1 � rn ∀n. (4)

The goal is to transform ρ into a state with lower internal
energy, extracting the difference in internal energy in the
process.

After maximal cyclic, unitary work extraction no further
work can be extracted and the system ends up in a so-called
passive state π [9,13]. A passive state is unique up to
degeneracies in the Hamiltonian.1 Passive states are diagonal
in the Hamiltonian’s eigenbasis with decreasing populations
for increasing energy levels. That is, a state ρ, as defined above,
is passive if |rn〉 = |εn〉 ∀n. Gibbs states are consequently
passive.

The maximum work that can be extracted from a nonpassive
state ρ with respect to a Hamiltonian H via a cyclic unitary
process (ρ → π ) is called ergotropy [9]:

W := tr[ρH − πH ] =
∑
m,n

rmεn[|〈εn|rm〉|2 − δmn]. (5)

Ergotropy is always positive and includes contributions to
work extraction from both excitations and coherences. Its
relation to quantum correlations has recently been explored
in [14]. We may write W(ρ,H ) in order to explicitly state the
dependence on the pair (ρ,H ) of the state and Hamiltonian.

IV. ADIABATIC WORK

Consider now a noncyclic unitary process with different
initial and final Hamiltonian H and H ′ := ∑

ε′
n|ε′

n〉〈ε′
n|, again

1Since a passive state’s internal energy is fixed even in the presence
of degeneracies they have no bearing on the arguments presented here
and the reader may think of passive states as being unique with regard
to a given Hamiltonian: π will here correspond to H and π ′ to H ′.
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with ε′
n+1 � ε′

n. If we restrict the change in the Hamiltonian
from H to H ′ to be adiabatic in the quantum sense, i.e.,
the eigenstates of the Hamiltonian remain eigenstates at each
instant, the final state π ′ will be a passive state with respect to
H ′ if the initial state πm was passive with respect to H . Since
this transformation is unitary there is no heat and we call the
energy change adiabatic work:

〈W 〉ad = tr[π ′H ′] − tr[πmH ]. (6)

In the following we will associate this definition with any
process, adiabatic or not, that starts with a passive state and
preserves its spectrum.

In the case of a general unitary process (ρ,H ) → (ρ ′,H ′)
we can combine the ideas of ergotropy and adiabatic work.
Since all energy change is work it can be extracted reversibly
from the final state if full quantum control is available. The
extractable work in ρ ′ is thus given by

W = 〈W 〉ad + W(ρ ′,H ′) − W(ρ,H ). (7)

If the initial state is passive we can think of the ergotropy as
deposited work, or inner friction as in [15], where initial Gibbs
states were considered.

V. ENERGETICS OF OPEN QUANTUM EVOLUTION

We now consider the change in internal energy E due to
general quantum evolution, i.e., ρ → ρ ′ =: M(ρ),

�E = tr[ρ ′H ′] − tr[ρH ], (8)

where we have labeled the initial and final system Hamiltoni-
ans H and H ′. We may now use the notions of ergotropy and
adiabatic work as introduced above to arrive at an operationally
meaningful first law of thermodynamics. Defining πm :=∑

n r ′
n|εn〉〈εn|, we add and subtract tr[π ′H ′], tr[πmH ′], and

tr[πH ] to �E to get

�E = tr[πH ] − tr[ρH ] + tr[ρ ′H ′] − tr[π ′H ′]

+ tr[π ′H ′] − tr[πmH ] + tr[πmH ] − tr[πH ]. (9)

The first two pairs of terms are simply the ergotropies
−W(ρ,H ) + W(ρ ′,H ′) =: �W , while the next pair is adi-
abatic work. Defining operational heat

〈Q〉op = tr[πmH ] − tr[πH ], (10)

we state the main result

�E = �W + 〈W 〉ad + 〈Q〉op. (11)

This last equation tells us that the internal energy change in
a general quantum process can be split up into a worklike, a
heatlike, and a third, genuine out-of-equilibrium contribution
that equals the difference in ergotropy between the initial and
final states. In this sense it can be understood as an operational
first law of quantum thermodynamics. The definition of heat
is justified as the eigenvalues of equilibrium state πm are
changed to attain another equilibrium state π , in analogy
to the second term of Eq. (1). This expression of the first
law becomes particularly meaningful for processes where the
internal energy remains constant but the ergotropy of the
state changes: A conventional description of the first law is

FIG. 1. (Color online) The process starts with a nonpassive state
ρ and ends up in state ρ ′ = M(ρ). We express this out-of-equilibrium
change in internal energy between ρ and ρ ′ (purple) using a
plausible, but not necessarily implemented, reverse process of ex-
tracting ergotropy ρ ′ → π ′ (blue), equilibrium extraction of adiabatic
work π ′ → πm (green), equilibrium heating πm → π (orange), and
finally redepositing ergotropy π → ρ (blue) to close the loop. The
relationship between these quantities is given in Eq. (11). It is worth
noting that while the processes in the graph need not be implemented
in practice, they are operationally meaningful as illustrated below.

inadequate for recognizing this change. We illustrate this in
the next section.

Now, we can interpret the CPTP map as a sequence of
fictitious thermodynamic processes as illustrated in Fig. 1.
Going backward one can extract an amount of work equal to
W(ρ ′,H ′) + 〈W 〉ad. This is the maximal amount that can be
extracted unitarily from ρ ′ ending up back in H . After work
extraction the state ends up in πm. In order to complete the
cycle by also resetting the state, a heat step is necessary to
return the original spectrum of ρ. The heat in this process,
going from πm to π , is given by −〈Q〉op. Finally, we restore
coherences and excitations that might have been present in
ρ by reinserting W(ρ,H ). This last step is of course only
necessary if the initial state was active. For illustration we now
provide an example where the initial state is passive.

Example: Initial thermal state

In a particularly relevant setting we may consider the
process to start in a Gibbs state τβ = ρ = π . This is a natural
setting to consider if, similar to thermal operations, a heat bath
at inverse temperature β is available as a resource. The setting
is the same as in Fig. 1 with π = ρ. As a consequence, no
additional deposition of ergotropy is possible at the end of
the cycle. As before, the ergotropy gained in going from ρ ′
to π ′ is the maximum work that can be extracted in a cyclic
process with initial state ρ ′ and reference Hamiltonian H ′. The
maximum work that can unitarily be extracted in a noncyclic
process with final Hamiltonian H is given by 〈W 〉max :=
W ′ + 〈W 〉ad. While W ′, being a genuine out-of-equilibrium
quantity, is always positive, 〈W 〉ad could also be negative.
Requiring the process to finish with H (rather than H ′) could
thus in fact be disadvantageous for work extraction since,
depending on H , 〈W 〉max < W ′ is possible. In the last step
(the green arrow in the graph) the transfer of operational heat
going from πm to π (=τβ) corresponds to the very practical
scenario of thermalization at the initial temperature β−1 and
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Hamiltonian H after maximal work extraction. This concludes
the example.

In summary, we note that it has long been convenient
to express the properties of out-of-equilibrium systems by
using quantities that relate to equilibrium states and hence can
be computed in a straightforward fashion. Furthermore, the
equilibrium quantities relate to measurements that can predict
the nonequilibrium properties of systems of interest. Similar
to other works in statistical mechanics relating to fluctuation
theorems [5], we have broken up the out-of-equilibrium
energy change into equilibrium quantities adiabatic work and
operational heat and an operational quantity ergotropy. We
now relate these results to the second law of thermodynamics.

VI. OPERATIONAL HEAT AND DEPHASING

We illustrate the meaning of operational heat for nonequi-
librium processes. Similar to thermal operations, we consider a
time-independent system Hamiltonian H and a unitary V on a
composite system-ancilla Hilbert space with [V,H ⊗ 1A] = 0.
In this process the total change of the system’s internal
energy is zero, as is the work (due to the Hamiltonian’s time
independence). Consequently, the (conventional) heat must
also vanish. The ergotropy of the state, however, can change
during such a process.

For illustration we first consider an example where the
system and ancilla are both given by a qubit and the evolution
happens according to an interaction Hamiltonian Hint = σz ⊗
σz for 0 � t � τ . Starting with a generic state ρ0 = (p c

c∗ 1 − p)

and an ancilla state σ0 = (1/2 0
0 1/2), the dynamics can be

solved exactly:

ρ(t) =
(

p c cos 2t

c∗ cos 2t 1 − p

)
. (12)

It is apparent that while the state’s internal energy does not
change (for a local Hamiltonian in the σz eigenbasis) the
ergotropy decreases due to a loss of coherence (periodic revival
occurs at times t = n

2 π ). According to the main result of this
paper, the negative change in ergotropy is compensated by an
operational heat flow into the system, i.e., �W = −〈Q〉op.

It can be shown that this holds true more generally for
systems of arbitrary dimension and all interaction Hamiltoni-
ans, time independent or not, that commute with the system
Hamiltonian [Hint,H ⊗ 1A] = 0. The populations of the state
remain the same, but the coherences decrease over time due
the open systems dynamics leading to a change in ergotropy,
which is compensated by operational heat.

Note that dephasing channels such as qubit dynamics
governed by a master equation in Linblad form

ρ̇ = γ (t)(σzρσz − 2ρ) (13)

are a prominent subset of such dynamics. With this intuition
for the operational heat in mind, we now relate the operational
first law to an operational second law of thermodynamics.

VII. CONNECTING FIRST AND SECOND LAWS

Interestingly, a second law for CPTP maps is well known
[11]. In the context of equilibrium thermodynamics, the

Clausius inequality states that the thermodynamic entropy of
any system and its environment is nondecreasing. For systems
in equilibirum, owing to the notions of temperature β−1,
thermodynamic entropy �S, and heat 〈Q〉 being well defined,
the second law can be stated as �S � β〈Q〉.

To generalize this to the quantum regime, von Neumann
entropy S(ρ) := tr[ρ log(ρ)] is considered in the place
of thermodynamic entropy (being equivalent for thermal
states). The second law for arbitrary states undergoing CPTP
evolution is a direct consequence of the fact that relative
entropy, defined as [16]

S[ρ‖σ ] := tr[ρ log(ρ) − ρ log(σ )], (14)

obeys contractivity under CPTP maps [17]

S[ρ‖σ ] � S[M(ρ)‖M(σ )]. (15)

Since we are interested in the change in entropy �S :=
S[M(ρ)] − S(ρ), we have the choice of a reference state σ .
The obvious choice of σ is the fixed point e of the map M , i.e.,
M(e) = e. Rearranging the contractivity inequality, we arrive
at the quantum version of the Hatano-Sasa inequality [11,18]

�S � −tr[{M(ρ) − ρ} log(e)]. (16)

While the first law relates to the partitioning of energy into
heat and work, the (Clausius form of the) second law relates
only to the increase in entropy. Specifically, the quantum
Hatano-Sasa inequality is valid for CPTP evolution where
neither heat nor temperature is a well-defined quantity. Hence,
in general it is difficult to verify the internal consistency
between a quantum generalization of the first law and a similar
generalization of the second law that is applicable to arbitrary
CPTP dynamics. However, we establish a relation between the
two laws by considering thermal maps.

Thermal maps

We call a map thermal if it has a thermal state for a fixed
point e = τβ = exp(−β{H − F }) at some temperature β−1,
where F is the (Helmholtz) free energy. Such maps, sometimes
also called Gibbs preserving maps, are a superset of thermal
operations (as is easy to show and further elaborated in [19]).
Consequently, all results related to thermal maps presented
here equally apply to the popular set of thermal operations. We
remind the reader that all thermal states are passive. In order
to make the connection to the second law, a cyclic process is
considered, i.e., H = H ′. The input and output states ρ and
ρ ′ are not restricted and can both be out of equilibrium. The
quantum Hatano-Sasa inequality now reduces to the familiar
version of the second law

�S = S(ρ ′) − S(ρ) � −tr[(ρ ′ − ρ) log(e)]

= β tr[(ρ ′ − ρ)(H − F )]

= β(�W + 〈Q〉op), (17)

with the change in ergotropy playing the role of heat along
with 〈Q〉op. This restatement of the quantum Hatano-Sasa
inequality is interesting in that it sets a lower bound on the
entropic change by the sum of two terms, the change in
ergotropy and the operational heat, which are both measurable
and operationally well defined.
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VIII. MAJORIZATION, ENTROPY, AND HEAT

In order to give a condition for when heat 〈Q〉op is positive
(negative), we now introduce the concept of majorization:
A state ρ is said to majorize ρ ′ (written ρ � ρ ′) if the
eigenvalues of the two states satisfy

n∑
m=1

rm �
n∑

m=1

r ′
m ∀n, (18)

where ρ ′ = ∑
m r ′

m|r ′
m〉〈r ′

m| with r ′
m+1 � r ′

m. Note that not
all pairs of states obey a majorization relation: Some states
are incomparable. In those cases we cannot make a statement
about operational heat based on the states alone: It will also
depend on the level spacings.

Majorization provides a sufficient criterion for operational
heat to be positive (negative): If ρ � ρ ′ = M(ρ) (ρ ≺ ρ ′ =
M(ρ)) then 〈Q〉op � 0 (〈Q〉op � 0). Since the eigenvalues of
the states do not change during ergotropy extraction ρ � ρ ′
implies π � π ′. Examining the expression for 〈Q〉op we have

〈Q〉op = tr[π ′H ] − tr[πH ] =
∑

(r ′
n − rn)εn

=
∑

n

(εn+1 − εn)
n∑

m=1

(rm − r ′
m), (19)

where each term in the last line is positive.2

Moreover, if π � π ′ then f (π ′) � f (π ) for any Schur
concave function f [20]. The means S(ρ ′) � S(ρ) and there-
fore �S � 0. The implication is rather profound: Majorization
guarantees that both the entropy change and operational heat
are positive simultaneously. This can be thought of as a version
of the second law.

In the context of equilibrium thermodynamics, the second
law guarantees that 〈Q〉 � 0, �S � 0, and the latter is at
least as big as β times the former. However, in the context
of quantum thermodynamics, no such guarantee exists in
general. Consequently, one can have cooling transformations
that reduce the entropy of the states [18]. Majorization strongly
restricts the set of allowed transformations to those with
positive operational heat and increasing entropy.

Unital maps

Unital maps take the maximally mixed state onto
itself: Mu(I/d) = I/d. This simple condition has strong
consequences: The quantum Hardy-Littlewood-Polya
theorem [21] demonstrates that ρ � Mu(ρ) for any ρ if Mu

is unital. As a consequence of the majorization arguments

2In the same way, adiabatic work is positive when H ′ � H . Unlike
for operational heat, there is, however, no connection between the
majorization relations for H and H ′ and the type of map that governs
the process.

above, both 〈Q〉op and �S are thus positive for any input state
ρ and unital map Mu.

For all nonunital maps, such as the thermal ones described
above, there exists at least one state ρ (the maximally mixed
one being a trivial example) that is majorized by the outcome
state ρ ′. In this case the amount of accessible work increases,
i.e., the last term in Eq. (19) is non-positive and therefore
operational heat is less than or equal to zero. The change in
entropy for such a process will also be non-positive. The direc-
tionality that comes with the second law of thermodynamics is
here reflected in the asymmetry between unital and nonunital
maps: A heatlike increase of energy (and entropy) of a state
only requires a unital map, while extraction corresponding
to a negative heatlike contribution necessitates a nonunital
channel. The representation of such a channel in terms of an
ancilla makes it clear that the second law is not violated here.

In addition to unital maps we may define antiunital maps as
those for which any output state majorizes the corresponding
input state. In such a process the operational heat is always
negative.

IX. CONCLUSION

In summary, we have established a relation that gives an
explicit energy balance for all quantum processes that are
completely positive and trace preserving. Crucially, we have
formulated an operational framework for the thermodynamics
of open quantum systems. The important feature of this
framework is that it relies only on general quantum processes
that connect input and output states. Complete positivity
and trace preservation guarantee that output states are in
fact physical. For such processes we have then operationally
defined heat and connected it to an operational second law.
Both heat and change in entropy are shown to be positive when
the input majorizes the output, making a strong connection be-
tween the operational laws. Furthermore, we have pointed out
that the conventional thermodynamic description of quantum
processes in terms of projective energy measurements alone
does not suffice to capture the change in work value when
coherences and excitations of the state are possible. In such
cases a change in extractable work (ergotropy) is compensated
by an (operational) heat flow into the system, thus giving a
concrete meaning to operational heat.
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