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Behavior of the dielectric constant of Ar near the critical point
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The fundamental question of the behavior of the dielectric constant near the critical point is addressed using
Ar as the probe system. The neighborhood of the liquid-vapor critical point of Ar is accessed by classical
Monte Carlo simulation and then explicit quantum mechanics calculations are performed to study the behavior
of the dielectric constant. The theoretical critical temperature is determined by calculating the position of the
discontinuity of the specific heat and is found to be at T Theor

c = 148.7 K, only 2 K below the experimental value.
The large fluctuations and the inhomogeneity of the density that characterize the critical point rapidly disappear
and are not seen at T = T Theor

c + 2 K. The structure of Ar obtained by the radial distribution function is found
to be in very good agreement with experiment both in the liquid phase and 2 K above the critical temperature.
The behavior of the dielectric constant is then analyzed after calculating the static dipole polarizability and using
a many-body Clausius-Mossotti equation. The dielectric constant shows a density-independent behavior around
the critical density, 2 K above the critical temperature. At this point, the calculated value of the dielectric constant
is 1.173 ± 0.005 in excellent agreement with the experimental value of 1.179.
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I. INTRODUCTION

The critical point of a fluid is located in the phase diagram
at the end of the coexistence line between the gas and the liquid
phases. As such it is the convergence point of the increasing
density of the gas and the decreasing density of the liquid and is
characterized by large fluctuations and density inhomogeneity.
This point is the subject of intense experimental and theoretical
interests, with emphasis on the behavior of the important ther-
modynamic functions. Some properties, such as the specific
heat, are known to present singular behavior [1] near the critical
point and to be characterized by universal critical exponents
[2]. The behavior of the dielectric constant at the critical point
of a fluid is less certain and has been a subject of great interest
for many years where much still remains to be clarified. In
previous studies Stell and Høye [3] have theoretically found
that the dielectric constant of nonpolar fluids should remain
finite at the critical point but exhibit singularities as a function
of temperature. Several theoretical and experimental studies
were made aiming at clarifying the existence and nature of the
possible singularity [4–7]. Naturally, there is also interest in the
density dependence of the dielectric constant and its behavior
near the critical point. The behavior of the dielectric constant at
the critical point is a fundamental problem with some pending
answers. The subject is controversial and a singularity has not
been detected in some specific experimental investigations [7].
Theoretical studies of the critical behavior of fluids have been
conducted mostly by universal scaling functions [8–10] and
renormalization theories [9,11].

It is conceivable that looking at the problem with different
techniques may clarify otherwise difficult points from the
conventional perspective. With this in mind we adopt one
alternative procedure that could allow a more close view with a
microscopic quantum mechanical consideration. In this work
we analyze the static dielectric constant of Ar slightly above the
critical point by looking explicitly at the electronic structure of
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the system. We use a multiscale approach combining classical
simulation and quantum mechanics. Classical Monte Carlo
(MC) simulations are performed to generate the configurations
(position of the atoms) of the fluid at a given thermodynamic
condition and quantum mechanical (QM) calculations are
performed subsequently to obtain the electronic structure
properties. Thus the QM calculations are made on configura-
tions that are associated to a given thermodynamic condition.
This procedure follows the successful multiscale approach
that combines classical and quantum mechanical methods,
originally devised by Levitt and Warshel [12] for treating
enzymatic chemical reactions. It can be extended for the study
of liquid and fluid systems [13] with thermodynamic condition
imposed by the classical simulation and subsequent quantum
mechanical calculations giving the electronic structure. This
present work gives explicitly calculated values of the dielectric
constant in the close vicinity of the critical point (T > Tc).
Thus, the behavior of the dielectric constant, only slightly
above the critical point, is determined using first-principle
quantum mechanical calculations.

II. METHODS AND RESULTS

We use a sequential QM-MC approach [13], first generating
the atomic configurations of the fluid and performing QM
calculations using these configurations. The Metropolis MC
simulations are performed in the NVT ensemble, which is
more convenient for the analysis of the results as a function
of the density. In some specific cases the NPT ensemble will
also be used. We adopt the standard procedures [14], such
as the image method combined with the periodic boundary
conditions of a cubic box of size L, the cutoff radius (rc = L/2)
and the long range correction of the energy beyond the rc

assuming a uniform radial distribution [G(r) ≈ 1]. The Ar
atoms interact via the conventional Lennard-Jones potential
with the parameters devised by Maitland and Smith [15]
(ε = 0.2378 kcal/mol and σ = 3.41 Å). As we will see, this
potential gives an accurate description of the configuration
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of Ar fluid in the vicinities of the critical point. All MC
simulations were performed with the DICE program [16].

As we will approach the critical point it is important to
determine its location in the phase diagram of Ar associated
with this classical potential. Instead of the conventional
and laborious procedure of calculating isotherms in the P-V
diagram we will look for the specific heat cv . This was obtained
after the MC simulation using the expression [14]

〈cv〉 = 3

2
kBT + (〈U 2〉 − 〈U 〉2)

NkBT
, (1)

where the first term comes from the equipartition theorem, the
second term comes from the fluctuation of the potential energy
U, and kB is the Boltzmann constant. We note that the potential
of Maitland and Smith [15] adopted here reproduces well the
value of the specific heat cv for various thermodynamic condi-
tions. For instance, for T = 120 K and density 1.166 g/cm3

we calculate the value of cv as 4.32 ± 0.12 cal/mol K in
very good comparison with the experimental [17] result of
4.30 cal/mol K. Hence we will attempt to determine the critical
temperature by looking at the singularity of the specific heat.
In Fig. 1 we then show the calculated specific heat cv , using
Eq. (1), along the isochoric ρc = 0.531 g/cm3. The divergence
of the critical point cannot be seen with a reduced number of
particles. With 1500 Ar atoms there appears the indication
of the critical point but the divergence is clear only for a
large number of particles. Using 2500 Ar atoms the calculated
value of cv at 148.7 K is ∼105 kcal/mol K. This very large
value is outside the scale of Fig. 1 and the dashed line is
intended to guide the eye. Therefore, it is possible to discern
the divergence of cv characterizing the theoretical critical
temperature, T Theor

c = 148.7 K. This critical temperature is
2 K below the experimental value of 150.7 K. The large
fluctuations at the critical point are known to rapidly disappear
as we increase the temperature. Thus to avoid the large
fluctuations and density inhomogeneity of the critical point

FIG. 1. The calculated specific heat cv of Ar along the critical
isochoric ρc = 0.531 g/cm3. The calculated value of cv at 148.7 K
is ∼105 kcal/mol K. This very large value is outside the scale. The
lines are drawn only to guide the eye through the points for 1500 Ar
(solid) and 2500 Ar (dashed). For simplicity the standard deviations
are presented only for the 2500 Ar simulations.

FIG. 2. The calculated radial distribution functions of Ar at the
liquid phase (top) and 2 K above the critical point (bottom) and
comparison with experimental results [20].

and at the same time remain in the close vicinity we analyze
the dielectric constant of Ar at T = T Theor

c + 2 K.
In every case, after equilibration, 12.5 × 106 MC steps are

performed to obtain the atomic arrangements at given ther-
modynamic conditions. The configurations are then sampled
for the subsequent QM calculations. For every thermodynamic
condition adopted, 150 configurations are extracted from the
MC simulation with less than 10% of statistical correlation.
These are separated for the subsequent QM calculations. The
statistical correlation is obtained calculating the autocorre-
lation function of the energy [18,19]. The QM calculations
are made using the first coordination that is composed of
one central reference Ar surrounded by an additional 13 Ar
atoms. This corresponds to the first solvation shell at the liquid
condition of T = 91.8 K and P = 1.8 atm. For consistency,
we use this number of atoms even in the low-density regime.
For instance, near the critical point (T Theor

c + 2 K and ρc =
0.531 g/cm3) this corresponds to including all atoms around a
central Ar, within a distance of 7.3 Å, thus extending beyond
the first solvation shell that is seen to end at 5.8 Å (Fig. 2) with
a broad but clear solvation shell. Figure 2 shows the calculated
radial distribution function for the liquid condition (T =
91.8 K) and also near the critical point (T = T Theor

c + 2 K) and
compares these with the experimental results obtained from
x-ray diffractions [20]. The experimental studies of Mikolaj
and Pings [20] have considered T also slightly above the critical
point at about 153.1 K (T = T

Expt
c + 2.4 K) and the critical

density of ρ = 0.531 g/cm3 and this is the result shown in
Fig. 2 for comparison. The agreement is seen to be excellent,
corroborating the MC simulation and its accuracy in generating
the configurations of the fluid both in the liquid phase and
close to the critical point. In addition Fig. 2 also shows that
the structure of Ar only 2 K above the critical temperature is
well defined and the agreement between theory and experiment
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is excellent. At this temperature the structure is indeed well
described and statistically converged results will be obtained
for the calculated dielectric constant.

For nonpolar gaseous systems the Clausius-Mossotti (CM)
equation relates the static (frequency-independent) dipole
polarizability to the static dielectric constant. The validity
and accuracy of the CM equation for imperfect gases, liquids,
and dense systems has been analyzed on different occasions,
since the early days [21]. Experimentally, Amey and Cole
[22] systematically noted that the difference in the CM
equation between liquid and gaseous Ar is mild and it could
be associated with the effective polarizability produced by
the interaction with the neighbor atoms. The overlap of the
electron densities, in particular, should be considered when
treating liquid systems. This is expected because the increased
density of the liquid imposes the need for explicit consideration
of the atomic interaction. Zwanzig and co-workers [23] have
analyzed analytically the correction to the related Lorentz-
Lorenz equation at the critical point of Ar and concluded that
it is very small.

In this work atom-atom interaction will be included natu-
rally by considering the Schrödinger equation for the system,
composed by 14 Ar atoms. The wave function is determined
for the entire system in each configuration sampled in every
thermodynamic condition, being antisymmetric with respect
to the interchange of electrons of all Ar atoms. This allows
the wave function to delocalize over the system including also
overlap and exchange interaction between the different Ar
atoms. Hence, our procedure calculates the density-dependent
dipole polarizability of the Ar atom in the specific thermody-
namic condition and the dielectric constant is obtained from the
all-electron CM equation. Analyzing the density dependence
of the dielectric constant we may corroborate the experimental
evidences and theoretical expectations. For each configuration
i that is sampled from the MC simulation (i = 1, 150) the
dipole polarizability αi of the central Ar atom in the explicit
presence of the 13 nearest neighbors is determined. For each αi

obtained by QM calculation, we calculate the corresponding
dielectric constant εi by using the CM equation:

εi − 1

εi + 2
= 4π

3
αiρ

NA

M
i = 1150, (2)

where ρ is the density, NA is the Avogadro number, and
M is the molar mass. Hence, the distribution of values for
the dielectric constant, {εi}, in a specific thermodynamic
condition is calculated and from this distribution we obtain
also the average value of 〈ε〉 and the standard deviation, σ .
Therefore, all the values described by 〈ε〉 ± σ have the 68%

of confidence determined by Gaussian distributions. Different
thermodynamic conditions are used and in every one a total of
150 configurations composed of one central and an additional
13 Ar atoms are used to obtain the statistically converged
average dielectric constant. Considering all thermodynamic
conditions of this work, more than 3000 QM calculations
were performed. The QM density-functional calculations are
performed using the Kohn-Sham approach [24]. We have used
the Becke [25] three-parameter functional with the exchange
correlation due to Perdew [26], combined with the aug-cc-
pVDZ basis set [27], B3P86/aug-cc-pVDZ. At some specific
points we have also used the dispersion-corrected wB97-D
functional [28] with the same basis set. But the calculated
dipole polarizabilities differ by less than 0.04 a3

o , equivalent to
the standard deviation. All QM calculations were made using
the GAUSSIAN-09 program [29].

The selection of the QM level adopted is based on the
calculated values of the dielectric constant of isolated (i.e.,
noninteracting system corresponding to the very low density
of the gas phase) Ar and also in the liquid phase. For instance, at
T = 91.8 K and P = 1.8 atm we obtain a calculated density of
1.362 ± 0.015 g/cm3 compared to the experimental value [20]
of 1.365 g/cm3. The corresponding average dielectric constant
is 1.519, in close agreement with the experimental value [30]
of 1.521, obtained at T = 87.4 K and P = 1.0 atm. This gives
great credence to the present model and the approximations
involved.

Before considering the critical point we discuss the results
of the calculated values of the dielectric constant in the
isothermal situation with varying values of pressure. In such
cases the MC simulations are made using the NPT ensemble.
Table I shows the different values of pressure used for a
constant temperature of 91.8 K. We see in this table that
increasing the pressure by a factor of nearly 20, only small
changes in the calculated density and in the static polarizability
are obtained. Hence, the dielectric constant is seen to be
insensitive to great variations of pressure when in the liquid
phase. For an indication of the reliability of these calculated
results we compare with experiment. For instance, at 1.8 atm,
the theoretical results for the density and dielectric constants
are 1.362 g/cm3 and 1.519. These results are in excellent
agreement with the corresponding experimental values [20,30]
of 1.365 g/cm3 and 1.521, respectively.

Now we consider the thermodynamic condition 2 K above
T Theor

c and density ρc = 0.531 g/cm3. QM calculations are
made to obtain the static dipole polarizability αi for each of
the 150 configurations. The statistically converged average
value at this point is then obtained as α = 10.878 ± 0.030 a3

o .

TABLE I. Calculated values for the density, static dipole polarizability, and dielectric constant for temperature T = 91.8 K and different
pressures. Standard deviations are 0.015 g/cm3, 0.030 a3

o , and 0.005 for the density, polarizability, and dielectric constants, respectively.

Pressure, P (atm) Density, ρ (g/cm3) Polarizability, α(a3
o ) Dielectric constant, ε

1.8a 1.362 11.529 1.519
17 1.368 11.544 1.523
22 1.368 11.544 1.523
27 1.370 11.548 1.524
32 1.372 11.543 1.520

aWith pressure of 1.8 atm the experimental value of the density [20] is 1.365 g/cm3 and the dielectric constant [30] is 1.521.
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FIG. 3. Statistical distribution of values calculated for the di-
electric constant. Top shows the specific values and bottom shows
the corresponding histogram and Gaussian distribution with average
value of 1.173 and the standard deviation of 0.005.

For each value of the polarizability αi a corresponding
dielectric constant εi is obtained using Eq. (2). Figure 3
shows the distribution of these values with εi , ranging between
a maximum and a minimum, within 1.185 and 1.155. The
calculated values follow a Gaussian distribution also shown
in Fig. 3 (bottom), and with an average value ε = 1.173 and
standard deviation σ = 0.005. This is our theoretical value
of the dielectric constant of Ar in the close vicinity of the
critical point, only 2 K above it. Experimental results for
the dielectric constant are somewhat difficult to obtain due
to possible spurious effects such as temperature gradients
[31]. For the case of Ar, the experimental value [32] has been
carefully determined from the density dependence of the static
(infinite wavelength) refractive index as 1.179, a value that is
in excellent agreement with our result of 1.173 ± 0.005.

III. DISCUSSIONS ON THE BEHAVIOR OF THE
DIELECTRIC CONSTANT

After a successful description of the dipole polarizability
and the dielectric constant at different thermodynamic condi-
tions we now consider their behavior near the critical point at
the one-phase region (T > Tc), thus avoiding the possibility of
phase transition. Using the same procedure we have obtained
the dielectric constant near the critical point. Figure 4 (top)
shows the behavior of the dielectric constant as a function

FIG. 4. Variation of the calculated dielectric constant of Ar with
the density. The behavior is linear for T = 190 K but shows a different
characteristic close to the critical point (T = T Theor

c + 2 K and ρc =
0.531 g/cm3).

of the density. Each point in this diagram corresponds to an
average value of the dielectric constant obtained from 150
QM calculations using configurations sampled from the MC
simulation in the particular thermodynamic condition (NVT
ensemble with fixed density and temperature). The results are
also shown numerically in Table II, and it can be seen that
there is a linear behavior of the dielectric constant with the
density outside the region of close proximity to the critical

TABLE II. Calculated values for the static dipole polarizabil-
ity and dielectric constant for temperature T = T Theor

c + 2 K and
different densities. Standard deviations are 0.030 a3

o and 0.005 for
the polarizability and dielectric constants, respectively. Experimental
value [32] of the static dielectric constant at the critical point
(Tc = 150.7 K and ρc = 0.531 g/cm3) is 1.179.

Density, ρ (g/cm3) Polarizability, α(a3
o ) Dielectric constant, ε

0.330 10.617 1.099
0.430 10.717 1.134
0.500 10.837 1.172
0.531 10.878 1.173
0.560 10.874 1.172
0.630 10.943 1.187
0.730 11.038 1.251
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FIG. 5. (Color online) Phase diagram showing the calculated
points corresponding to the varying densities of Fig. 4 along the two
isotherms (T = T Theor

c + 2 K and T = 190 K). Pressures are obtained
directly from the NVT simulation. For T = 190 K all points are in the
supercritical region.

point. For the low density ρ = 0.33 g/cm3 the calculated
dielectric constant is 1.099 ± 0.005 whereas for the relatively
high density ρ = 0.73 g/cm3 it is 1.251 ± 0.005. However, as
it can be seen around ρc = 0.531 g/cm3, within the theoretical
accuracy, the dielectric constant becomes insensitive to small
changes in the density. The calculated dielectric constants
have the same value within the standard deviation. This is
in clear contrast (Fig. 4, bottom) when considering the density
dependence in the bulk of the supercritical region with T =
190 K. In this case the dielectric constant increases linearly
for all values of the density within the range considered. This
linear increase is in line with the linear increase of the average
polarizability and hence in agreement with the experiments
of Johnston et al. [22] that determined this linear increase
of the Clausius-Mossotti function for Ar, N, and CH4 at
pressures below 100 atm. The present results (Fig. 4, top)
show that the dielectric constant around the critical point has

a peculiar behavior exhibiting a regime where it is density
independent. This is also in keeping with the experiments
performed by Chan [7] for the Ne case where the dielectric
constant was found to be insensitive to the density within the
interval |(ρ − ρc)/ρc| � 0.05. In fact, Chan [7] has conducted
a careful experimental investigation of the dielectric constant
of Ne near its liquid-vapor critical point. Their measurements
indicate that within the experimental accuracy the dielectric
constant is density independent in the proximities of the critical
point. Our approach with first-principle quantum mechanical
calculations gives that slightly above the vapor-liquid critical
temperature the dielectric constant around the critical isochoric
becomes insensitive to small changes in the density, opposite to
what is obtained aside this thermodynamic condition, where it
increases linearly with the density. It can be seen in Fig. 4 (top)
that there are two different inclinations for the linear increase
before and after the critical point. This is an indication of
the change of regime at the one-phase region (T > Tc) where
the pressure variation along the isotherm (T = T Theor

c + 2 K)
indicates a change from the supercritical to the gas condition.
The situation is clearly demonstrated in Fig. 5 where the two
isotherms are shown in the calculated phase diagram, using
the values calculated for the pressure in each case.

IV. SUMMARY AND CONCLUSIONS

We have addressed the fundamental question of the behav-
ior of the static dielectric constant near the liquid-vapor critical
point using Ar as the probe system. Our multiscale results
obtained by combining statistical mechanics and first-principle
quantum mechanics indicate that the dielectric constant of Ar
only 2 K above Tc and around the critical isochoric becomes
density independent, and our calculated value of 1.173 ± 0.005
is in excellent agreement with the experimental value of 1.179.
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