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Integrodifferential formulations of the continuous-time random walk for solute transport
subject to bimolecular A + B → 0 reactions: From micro- to mesoscopic
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We develop continuous-time random walk (CTRW) equations governing the transport of two species that
annihilate when in proximity to one another. In comparison with catalytic or spontaneous transformation
reactions that have been previously considered in concert with CTRW, both species have spatially variant
concentrations that require consideration. We develop two distinct formulations. The first treats transport
and reaction microscopically, potentially capturing behavior at sharp fronts, but at the cost of being strongly
nonlinear. The second, mesoscopic, formulation relies on a separation-of-scales technique we develop to
separate microscopic-scale reaction and upscaled transport. This simplifies the governing equations and
allows treatment of more general reaction dynamics, but requires stronger smoothness assumptions of the
solution. The mesoscopic formulation is easily tractable using an existing solution from the literature (we
also provide an alternative derivation), and the generalized master equation (GME) for particles undergoing
A + B → 0 reactions is presented. We show that this GME simplifies, under appropriate circumstances, to
both the GME for the unreactive CTRW and to the advection-dispersion-reaction equation. An additional
major contribution of this work is on the numerical side: to corroborate our development, we develop an
indirect particle-tracking–partial-integro-differential-equation (PIDE) hybrid verification technique which could
be applicable widely in reactive anomalous transport. Numerical simulations support the mesoscopic analysis.
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I. INTRODUCTION

A. Fundamentals

The continuous-time random walk (CTRW) formalism has
proven to be a valuable tool in the modeling of both con-
servative and reversibly sorbing solute transport in heteroge-
neous media, underpinning both Eulerian (integrodifferential
equation) and Lagrangian (particle tracking) approaches to
transport modeling. More recently, there has been interest
in modeling reactive transport, and Lagrangian CTRW-based
computer models have been successfully applied to these prob-
lems. However, a corresponding Eulerian theory is desirable.

In an unreactive context, the CTRW equations are essen-
tially a pair of convolution relationships relating two different
quantities: PA(x,t) and RA(x,t). PA(x,t) is the amount of
some species A at (discrete) site x at (continuous) time t , and
RA(x,t) is the time rate of arrival of species A at site x at time
t . It has been shown [1] that the following relations hold:

RA(x,t) =
∑
x ′

∫ t

0
ψA(x − x ′,t − t ′)RA(x ′,t ′)dt ′, (1)

where ψA(�x,�t ) is a probability rate for transitions of length
�x made by a particle after delay �t , and

PA(x,t) =
∫ t

0
�A(t − t ′)RA(x,t ′)dt ′, (2)

where we define �A(�t ) ≡ 1 − ∑
�x

∫ �t

0 ψA(�x,τ )dτ as the
probability of the walker remaining at a given site for �t .
Our goal is to adapt these to a reactive context, where there is
another species, B, whose movement is governed by its own
ψB , and where particles that are “near” one another feature a
probability of reaction that is nonzero. These modified equa-
tions have the potential to drive analysis of a variety of reactive
solute transport phenomena at a variety of scales, including

reaction rate reduction due to island formation at the pore
scale, and the interplay of reaction and plume development in
heterogeneous media at the bench and field scales.

The interplay of transport and reaction has been a topic of
considerable recent research interest. Classically, A + B → C

reactive transport has been considered by adding a nonlinear,
“mass action law” reaction term of the form �PAPB onto the
governing transport equations that would obtain for PA and
PB in the absence of reaction. It has long been recognized,
however, that nonidealities are present, and that the combined
effects of reaction and diffusion cause fronts to emerge that
limit the rate of mixing, and thus reaction [2,3]. Many theo-
retical studies have examined the interplay of pure diffusion
and reaction; considering the propagation of reaction fronts
under various types of reaction, including A + B → 0 [4] and
A + A → 0 [5]. More recently, new particle tracking methods
have been developed for the diffusion-reaction equation [6,7],
and the island formation behavior has been studied in detail.

B. Interplay of reaction and anomalous transport

Recent studies have also looked at how anomalous trans-
port, in particular, affects the development of fronts under
subdiffusion and types of reactions. These approaches have
differed on whether they apply the anomalous transport
operator to the mass action term [8] or not [9]. Other authors
have considered (an A + B → 2A conversion) reaction under
subdiffusion by means of asymptotic methods [10], and
avoided explicitly formulating a governing anomalous reactive
transport equation. Other recent works have examined the
effects of superdiffusion on reaction by means of fractional
spatial derivatives [11,12]. Another recent approach derives
potentially anomalous governing equations for A + B → C

reactions at the mesoscopic scale by upscaling ordinary
diffusion-reaction equations at the pore scale [13,14].
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The above-mentioned works may be thought of as examina-
tions of how transport, and particularly anomalous transport,
affects reaction. At the same time, there has been interest
in the converse phenomenon: the extent to which reaction
influences anomalous transport. Many theoretical studies have
called into question the use of a mass action term attached
to the generalized master equation (or, in some cases, a
fractional advection-dispersion equation) that would obtain
in the unreactive case, contrary to some of the theoretical
approaches mentioned above.

A common method for studying the effect of reaction
on transport is to derive a CTRW-style integrodifferential
generalized master equation (GME) that describes the overall
probability (or equivalently, mass) dynamics in the system.
This has the advantage of also illustrating how transport
affects reaction, since the exact system dynamics are derived
essentially from first principles. (For example, the front
formation in the A + B → 2A reaction under subdiffusion
mentioned above has been studied using such an approach [15],
although without developing a closed-form solution.)

A number of works in this spirit have dealt explicitly
with the case of first-order exponential decay, examining the
interplay of transport and first-order, linear A → 0 decay and
subdiffusion, under different assumptions, including associat-
ing decay events with transitions [16] or alternatively with the
time spent in waiting between transitions [17,18]. It is seen
in the former case that the process can still be treated as a
CTRW with an added reaction term, analogous to the ADE.
Other authors considered the problems of first-order reversible
A � B reactions [19]. In all of these works, the governing
equations remain linear, and so are amenable to solutions using
the Laplace and Fourier-Laplace techniques that are employed
to solve ordinary CTRW equations. These works show an
interplay between reaction and transport, where the effect of
reaction alters the transport term in the master equation, as
well as adding an explicit decay term. A generalization to
the decay expressions analyzed above was later developed
when the probability of reaction over a transition from point
x ′ and time t ′ to point x at time t can be expressed as a ratio
f (x,t)/f (x ′,t ′) for some arbitrary f [20].

In parallel, a number of studies have developed inte-
grodifferential governing equations for anomalous diffusion
in the presence of more general reaction terms, where the
instantaneous rate of reaction is a function of one or more
concentrations. In [21], the authors allowed an instantaneous
reaction rate which was an arbitrary, not necessarily ex-
ponential, function of the time at a site, f (t − t ′). More
generally, [22] developed an integrodifferential governing
equation for general multispecies nonlinear reactions that was
not based on the usual CTRW relations, but rather based
on an explicit particle age formulation due to [23]. Their
formulation accounts for an instantaneous reaction rate of
the form f (PA(x,t)PB(x,t) . . . ), for an arbitrary number of
components and an arbitrary f . An alternative derivation
employing the same age-based conception was also derived
by [24] using a reaction model in which reaction is guaranteed
whenever potentially reactive particles become adjacent.

Later, [25] enhanced the approach of [17] to account for
arbitrary, nonlinear A → B conversion reactions, where the
instantaneous reaction rate is f (PA(x,t)), for some arbitrary

f . Like [22], he succeeded in deriving an integrodifferential
master equation, although this approach varied from that of the
earlier paper in that waiting times were not reset to zero for
newly converted particles. More recently, a similar analysis
to [25] increased the generality of that result by rewriting
f (PA(x,t)) as β(x,t) and including drift [26].

These integrodifferential approaches have very recently
begun to be applied in the context of environmental solute
transport, with a first order linear decay chain being considered
in the context of plume development [27]. Whereas many the-
oretical results in the physics literature concerning anomalous
transport focus on anomalous diffusion in particular (and are
derived in the subdiffusive limit), the pre-asymptotic behavior
of transport that will eventually become Gaussian is potentially
more relevant in geophysical and environmental systems. In
such systems, we consider transport in a biased, heterogeneous
field that drives advection and dispersion in addition to
diffusion. The CTRW is a useful tool for understanding
the early time “anomalous dispersion” behavior (i.e., plume
asymmetry) in such systems, and so adding reactions to the
CTRW framework has the potential to be fruitful.

Motivated by this, we develop integrodifferential equations
which describe reactive solute transport in natural media by
adding a non-mass-conservative complication to the standard
CTRW treatment to capture the behavior of the continuous
movement of two species of particles, A and B, which are
capable of chemically reacting with each other according
to the irreversible reaction A + B → 0. The connection of
reaction to transport lies in the fact that particles must become
sufficiently close in order to react.

The interplay of transport and reaction is relevant across
scales, and we develop a scale-independent framework for
incorporating reaction. We then consider two models of
reactive solute transport that each apply at different scales,
and write down the governing equations for both. A crucial
point is the dependence of the mathematical formulation on
the respective length scales at which transport and reactions
are modeled. At the smaller (“microscopic”) resolution, where
both reaction and transport are modeled at the same scale
and collocation of particles is taken to guarantee reaction,
the equation is strongly nonlinear, and it is not apparent
how to develop a generalized master equation with reactions.
Considering a larger-scale (“mesoscopic”) case, we introduce a
latching upscaling scheme to upscale the treatment of transport
and thereby essentially separate it from the small-scale motion
which triggers reaction. This maneuver exploits the flexibility
in what constitutes a “transition” in the context of continuously
moving solute and also depends on certain assumptions about
the temporal smoothness of PA and PB . This done, it is possible
to straightforwardly obtain a mesoscopic integrodifferential
master equation in the face of A + B → 0 reactions.

From a theoretical point of view, we are especially
interested in delineating the spatial distributions of the parent
species A and B, and understanding how reaction affects their
evolution over time. We show the effect of reaction is to reduce
the amount of “memory” in the integrodifferential master
equations, leading to particle distributions less anomalous than
those which would develop in the same environment in the
absence of reaction. We also manipulate the mesoscopic master
equation and show how, in the case of pure advection and
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diffusion, it collapses into the advection-dispersion-reaction
equation (ADRE), and how, in the case of no reaction, it
collapses into the familiar CTRW GME.

C. Numerical solution

So far, we have discussed equation formulation; ideally
one wishes to obtain an analytical or numerical solution.
Surprisingly, in light of the variety of bimolecular reactions
considered and the large amount of relevant literature, the ex-
isting literature does not appear to treat mesoscopic CTRW for
anomalous transport with bimolecular reactions between two
species with independent, spatially variant concentrations.

In the absence of reaction, solution of the CTRW master
equation is possible either by means of the Fourier-Laplace
transformation [28] or, in a special case, by recognizing the
CTRW’s equivalence in the long time limit, for pure power
law ψ , to the fractional diffusion equation (FDE) [17]. (The
latter has a known solution in terms of Fox’s H function.)
In the presence of reaction, however, the governing equations
are nonlinear and cannot be attacked with integral transforms.
Analytic solutions do exist in the case of first-order irreversible
A → B reactions [17] and reversible A � B reactions where
both species share the same power law ψ [29]. In these cases,
it is relatively straightforward to modify the Green’s function
for unreactive transport to generate the Green’s functions for A

and B. However, analytic solutions do not seem to have been
developed in other, more general cases.

Since we are working in a Eulerian realm, in the absence
of analytic solutions for direct evaluation of the probability
dynamics master equation, finite difference numerical tech-
niques are desirable. For the special case of the FDE with a
first-order decay (i.e., CTRW for unbiased transport, in the
long time limit, with a pure power law ψ and a decay term
outside the operator), numerical methods have been presented
by [22] and others. Techniques also exist to account for biased
operators [30]. However, it has been established in the case of
pure decay [17], as we will show for bimolecular reactions,
that in the domain of anomalous transport, reaction alters
the transport operator. This breaks the correspondence of
the CTRW to the fractional derivative operator, and so the
relevance of these numerical methods to modeling reactive
anomalous transport is unclear.

As the probability dynamics master equation for both
unreactive and reactive transport is a Volterra partial integrod-
ifferential equation (PIDE), it is also reasonable to consider
general numerical techniques for these types of equations.
In the numerical analysis literature, there appear to be some
solution techniques for Volterra PIDE with certain forms of
convolution kernel (e.g., [31]), but no general techniques
for integration were found analogous to the many that
exist for differential equations. Furthermore, in the authors’
own explorations with finite difference schemes for biased
transport operators (where the memory was summarized using
a trapezoidal rule approximation), numerical stability came at
the expense of excessively coarse spatial resolution, suggesting
this may not be a promising avenue.

At present we are thus left, for general simulations, with
Monte Carlo particle tracking. This Lagrangian approach
generates stochastic realizations of the underlying CTRW

transitions and reactions for a large number of particles, rather
than integrating the Eulerian probability dynamics master
equation. This technique has been widely used in the reactive
transport literature with nearest neighbor transitions on a lattice
and particle transitions drawn from a suitable ψ . The method
is clearly described in [32]. For incorporating bimolecular
reactions within a microscopic picture, the technique has
been employed for pure diffusion by [3] and for power law
ψ by [33]. It has also been used for monomolecular decay
simulations (where there is no real distinction between micro-
and mesoscopic) by [18]. For incorporating bimolecular
reactions within a mesoscopic picture, it has been used for
pure diffusion by [34] and for power law ψ by [33]. Particle
tracking simulations of anomalous reactive transport have also
been run without a lattice, where particles move freely in space
and react probabilistically if within a certain proximity [35,36].

While Monte Carlo approaches are relatively simple to
implement and have been used successfully by many authors,
they do not provide direct numerical support for a given
probability dynamics master equation. Given that we build
up to a mesoscopic integrodifferential equation in which the
transport operator is affected by reaction, going against some
prior treatments, numerical support is invaluable. To support
the Eulerian master equation, we develop a hybrid finite
difference–particle tracking technique. We generate gridded
data via a reactive mesoscopic particle tracking simulation,
and then apply finite difference operations to the data which
mimic both sides of our reactive integrodifferential master
equation. By showing that these remain equal over time, we
validate our equation while avoiding the numerical accuracy
and stability problems that arise from time stepping finite
difference numerical evaluation of a Volterra PIDE with a
long memory.

II. MODIFIED JUMP DISTRIBUTIONS

Imagine that a solute particle of species S has a probability
per unit time of another solute particle reacting with it (either
because the other particle transitioned from another site, or
because they have both been at the same site for a while,
and they finally interact) when it is at location x at time t .
Our objective is to modify the jump distributions ψS(�x,�t )
that are determined for species S (where S stands in for
either A or B) in the absence of reaction. The calibrated
jump distribution is mass-conservative, with all particles
eventually jumping to some other site (which we always
imagine as representing a small volume in space). This is
to say that

∫ ∞
0

∑
�x ψS(�x,�t ) = 1. We can thus handle

reaction in a manner similar to that of Seki et al. [37], by
modifying the jump distribution so that reacted particles are
essentially permanently trapped. In the presence of reaction,∫ ∞

0

∑
�x ψ∗

S (�x,�t ) < 1.
For greater clarity: particles are imagined as moving

continuously through space, which is partitioned into small,
imaginary, disjoint volumes, each of which is considered a
“site.” Immediately, when a particle enters a new volume, it
is considered to have completed a transition. In the context of
solute transport, these transitions are essentially bookkeeping
devices, and we do not imagine that particles are actually
stationary for periods of time before making instantaneous
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jumps. However, in porous and other natural media, the
presence of slow and fast pathways means that transport
is typically anomalous, necessitating the use of equations
such as (1) and (2) to capture behavior rather than a simple
advection-diffusion equation [1].

It is worth noting that because we have defined a transition
as always between sites, our mathematical treatment of ψ∗
does not distinguish particles that are stationary for all time
from particles that react and are thus annihilated. However,
the particles are constantly moving in any real system, and the
probability that they remain within some finite volume for all
time is zero, so we neglect this possibility.

We define the following statements:
(1) M: The particle arrives at volume x at time t ′ and moves

to the volume centered at x + �x in the interval [t ′ + �t,

t ′ + �t + dt].
(2) NL: The particle never leaves the volume of its own

accord during [t ′,t ′ + �t ].
(3) NR: The particle never reacts during [t ′,t ′ + �t ].
It follows that the jump distribution determined in the

absence of reaction is defined ψS(�x,�t )dt = Pr(M,NL), and
ψ∗

S (�x,�t ; x ′,t ′)dt = Pr(M,NL,NR). We add the parameters
x ′ and t ′ because NR generally depends on external factors
which may vary across space and time. It seems reasonable to
assume in a number of scenarios that NR is probabilistically
independent of M and NL, so

ψ∗
S = ψS × Pr(NR). (3)

We define TS(x,�t,t ′) to be the survival probability for a
particle of type S, arriving at x at t ′ and remaining there
for time �t without reacting. Then, it follows that Pr(NR) =
TS(x,�t ,t

′), and that TS(x,t,t ′) satisfies the governing equation

dTS

dt
(x,t,t ′) = −ρS(x,t)TS(x,t,t ′), (4)

where ρ(x,t) is the probability rate of a given S particle
reacting at exactly time t , which we will term the extinction
probability. Then it follows that

TS(x,�t ,t
′) = exp

{
−

∫ �t

0
ρS(x,t ′ + τ )dτ

}
, (5)

and by substitution into (3) that

ψ∗
S (�x,�t ; x

′,t ′) = ψS(�x,�t ) exp

{
−

∫ t ′+�t

t ′
ρS(x ′,τ )dτ

}
.

(6)

An analogous relationship exists for both species, where S

stands in for either species A or B. Unlike the relationship for
the reaction-free case, an absolute clock time t ′ figures as a
variable as well, complicating analysis in Laplace space. Using
the above modified transition distribution analysis, we develop
(to different degrees) two approaches, one microscopic and
one mesoscopic. Both are similar, but each employs different
definitions for the extinction probabilities ρA and ρB and
models transport with different transition lengths.

The microscopic approach is based on a reaction re-
gion approach [7]. We imagine discrete linear, square, or
cubic volumes that fill space (respectively depending on
the dimensionality of the system) centered on a lattice of

sites, and identify them with the reaction regions (so in
this approach, particle transition lengths are on the scale of
the reaction “radius”). We stipulate reaction to occur (and
occur instantaneously) if and only if an A and a B particle
are simultaneously located in the same volume (i.e., “at the
same site”). The particles are thought of as zero dimensional
points, which are “at” the site corresponding to the volume
they are within, and which make an instantaneous site-to-site
transition at the instant they pass into an adjacent volume. The
lattice is fine enough that most of its sites will be empty at
any given time, a few will contain one particle, and fewer
will contain two. Since reaction is taken as assured when
two potentially reactive particles are at the same site, the
probability of three different particles (of any combination
of species) being simultaneously at the same site is implicitly
taken to be negligible. In this approach, transitions are allowed
to neighboring sites only.

The mesoscopic approach, by contrast, separates the scales
of reaction and (potentially anomalous) transport. The trans-
port (described by the CTRW equations) is modeled at the
coarser of the two scales, where each site at the scale of the
coarse lattice is taken to represent a volume much larger than
a particle’s reaction region. This conceptual picture allows for
multiple A and B particles to be present at a given site at
a given time, but imagines that there are at most negligible
concentration gradients across any given volume at the coarse
scale. The probability of reaction of a given A particle per
unit time is taken to be proportional to the concentration of
B particles at that site at that time, and vice versa. Again,
transitions are allowed to neighboring sites only.

III. MODELING TRANSPORT AT MICROSCOPIC SCALE

We first consider a microscopic conception, in which the
walkers are taken as analogs to individual reactant molecules,
with reaction assured on collocation. The microscopic model
is illustrated in Fig. 1. On this conception, we equate the
probability rate of arrival of a B particle at a site containing an
A particle with the probability rate of reaction, so ρA(x,t) =
RB(x,t), [and similarly ρB(x,t) = RA(x,t)]. This means that
we write

ψ∗
A(�x,�t ; x

′,t ′)=ψA(�x,�t ) exp

{
−

∫ t ′+�t

t ′
RB(x ′,τ )dτ

}
.

(7)

The probability dynamics are described by two equations.
The first is simply (2), where �A is replaced by

�∗
A(�t ; x

′,t ′) ≡
[

1 −
∫ �t

0
ψA(t)dt

]

×
[

exp

{
−

∫ t ′+�t

t ′
RB(x ′,τ )dτ

}]
. (8)

The second is the following recurrence relation:

[1 + PB(x,t)]RA(x,t)

=
∑
x ′

∫ t

0
ψ∗

A(x − x ′,t − t ′; x ′,t ′)RA(x ′,t ′)dt ′, (9)
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FIG. 1. (Color online) Schematic of A (black) and B (light-
colored) particles undergoing CTRW relative to the volumes (each
small square surrounded by dotted lines represents a volume) at the
microscopic scale. Each particle is taken to be at the “site” located at
the center of the volume that contains its centroid.

where the ψ∗
A accounts for A particles that have B particles

arrive before they (the A particles) make their next transition,
and the [1 + PB(x,t)] accounts for A particles that survive
and then transition to sites that already contain B particles.
In the microscopic scheme, each reaction occurs with one
particle transitioning onto a site, and another particle already
being there. So it is necessary to remove probability mass
from the system both while the particle is waiting at a site
x ′ (via the modified distribution ψ∗), and also immediately
on arrival at a new site. If ψA = ψB and the particles are
initially randomly distributed, then around half the reactions
that A particles participate in will be on account of their own
transition, and half due to transition of a B particle (and
vice versa). Thus, neither effect can generally be neglected.
Because of the nonlinearity on the left-hand side (LHS) of (9),
it is not clear how to combine the above relations into a single
integrodifferential governing equation. We will not analyze
this case further, but note that it has potential relevance for pore
scale modeling and analysis of reactant segregation. It is also
worth observing that [21] reported a qualitative difference in
the form of integrodifferential probability dynamics equation
in systems where there is a uniform decay rate while at a
site versus in which reaction is triggered on transition. The
microscopic conception involves both dynamics.

IV. UPSCALING FROM MICROSCOPIC TO MESOSCOPIC

In this section, we develop a general modeling approach
that eliminates the fixed reaction region assumption and
yields tractable equations, but at the cost of assuming some
spatial smoothness of PA and PB that is not required in the
microscopic approach. This mesoscopic conceptual approach
models transport and reaction at two different length scales:
transport is represented at a coarse scale by CTRW transition
distributions ψA and ψB , and reaction is imagined as being
driven by much finer-scale movements (as in the microscopic

approach) and captured indirectly, by means of a mass action
law. On this conception, we write ρA(x,t) = �PB(x,t) and
ρB(x,t) = �PA(x,t), where PA and PB are understood as
being defined at the coarse scale, and � is a spatially invariant
rate constant representing the thermodynamics. Essentially,
this amounts to the stipulation that RB(x,t) defined at the fine
(i.e., microscopic) scale can be captured by the mass action
term �PB(x,t) defined at the coarse scale. [Naturally, this
relationship cannot apply for systems described by single scale
CTRW equations, since the relationship (2) would then hold.]
The separation of scales may seem somewhat artificial, but is
actually natural for transport in heterogeneous media, where
reaction rates are limited by diffusion between molecules
which are in the same pore and anomalous transport is naturally
captured over larger scales of heterogeneity. In homogeneous
environments, the approach is still valid. In fact, regardless
of whether there is a natural scale separation, it is possible to
upscale the transport from a microscopic model.

The upscaling (which for simplicity we describe in one
dimension) works by partitioning the microscopic lattice
domain into regions with a grid of evenly spaced parallel lines,
each with its own numeric index n. Mesoscopic “sites” are
taken to correspond to these partition lines, and a transition to
a new site is defined to have occurred the instant when when
the cumulative effect of the walker’s microscopic movements
lead it to cross a partition line with an index different from n.
We term this a latched upscaling scheme because we imagine
the walker “latching” to site n when it crosses a partition line
for the first time after being previously associated with site
n − 1 or site n + 1, whereas subsequent movements across
the same grid line prior to next arrival at site n − 1 or site
n + 1 do not trigger a mesoscopic transition (although they of
course correspond to transitions on a microscopic lattice). This
upscaling approach is conceptually similar to the RP-CTRW
approach recently introduced [38], except both forward and
backward transitions are permitted.

Figure 2 illustrates the upscaling of a 2D microscopic lattice
to a 1D mesoscopic lattice. The solute currently in the region
corresponding to site n is shown. The regions represented by
neighboring mesoscopic sites overlap, and each site of the
coarse lattice is seen as representing a sort of microscopic
model of the type discussed in the last section, with many
A and B particles undergoing small transitions on a fine
lattice. Again, the microscopic lattice is shown for the region
corresponding to site n.

In general, all random walk models capture continuous
movement by a series of discrete transitions, and so periodi-
cally “catch up” with an underlying process. Upscaling from a
microscopic lattice to a coarser one, as illustrated, essentially
amounts to catching up with a process less frequently. If done
properly, the upscaled random walk still captures the same
underlying process. Figure 3 illustrates latching over time
in one dimension for upscaling a random walk model of an
underlying process from a microscopic lattice to a coarser
one (here, the microscopic movements may be thought of as
corresponding to the vertical coordinates of any of the walkers
seen in Fig. 2). Figure 3 shows the latched coarse-scale site
coordinate corresponding to the fine-scale path via the line with
gray shading underneath that makes instantaneous, unit-length
jump transitions to nearest neighbor sites. By connecting these
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FIG. 2. (Color online) Schematic of the latched upscaling
scheme whereby a two-dimensional (2D) microscopic picture is
mapped onto a 1D mesoscopic picture. Each site (dotted, horizontal
line) on the mesoscopic grid represents a surrounding volume in space
that generally contains a number of particles of A and B, colored as in
Fig. 1, and which could potentially be represented by a microscopic
model. The microscopic model corresponding to site n is shown
explicitly.

instantaneous jump transitions (with the dashed line), it is
easy to see that a 1D upscaled model follows the same path
as the fine-scale model, only it is forced to identify with the
underlying process less frequently. This upscaling does not
involve any additional mathematical or physical assumptions.

To generate higher-dimensional mesoscopic realizations, it
is possible to treat each dimension with its own CTRW. Alter-
natively, a 2D mesoscopic lattice could be employed, however
walkers that complete transitions to the same node may be
at different nearby locations in space, so marginalization

FIG. 3. Upscaling of a 1D CTRW (which can be imagined as
the vertical coordinate of a single particle shown in Fig. 2) from
microscopic to mesoscopic scales. Mesoscopic sites are indicated by
horizontal dotted lines. A microscopic scale 1D random walk with
a bias is shown (solid line), and its corresponding mesoscopic scale
random walk is superimposed (dashed line). The current site index at
the coarse scale over time is also shown (gray shading).

over these locations may be required to upscale ψ , and
the exact correspondence of the mesoscopic CTRW to the
microscopic one is not automatic. However, for our purposes
it suffices to know that an upscaled transition is well-defined,
and with regard to capturing transport, upscaled mesoscopic
models may represent the behavior represented by microscopic
models.

It is in capturing reaction that tradeoffs exist. As mentioned,
a major advantage of the mesoscopic approach is that upscaled
transitions play no role in triggering reaction not captured by
�, so there is no need for the sort of nonlinearity seen on
the LHS of (9), and in addition, the fixed reaction region
assumption may be relaxed. However, we introduce the
following assumptions in order to capture reaction with a mass
action term:

(1) Over any volume represented by one site at the coarse
scale, there are negligible gradients in the concentrations PA

and PB ; A and B are essentially uniformly distributed. This
justifies the use of a fixed �.

(2) For adjacent sites x and x ′, �PS(x,t) ≈ �PS(x ′,t).

V. MODELING TRANSPORT AT MESOSCOPIC SCALE

A. CTRW analysis

Exploiting the scale separation arguments presented in the
last section, we modify the transition distribution to take into
account particles that are annihilated before they can move by
writing

ψ∗
A(�x,�t ; x

′,t ′)

= ψA(�x,�t ) exp

{
−

∫ t ′+�t

t ′
�PB(x ′,τ )dτ

}
. (10)

Because the scale separation makes the role of mesoscopic
transitions in triggering reaction negligible, we write the
following general probability dynamics recursive relationship
for RA,

RA(x,t) =
∑
x ′

∫ t

0
ψ∗

A(x − x ′,t − t ′; x ′,t ′)RA(x ′,t ′)dt ′, (11)

which does not have nonlinearity on the LHS found in (9).
Because of this, we can immediately exploit a result derived
in [26] for monomolecular birth-death processes, given a
suitable identification of their death rate with our upscaled
mass-action law, ρ(x,t) [=�PB(x,t)]. (The authors mention
in [34] that birth and death could be a result of reactions
at a site, but this is never given explicit treatment, and
anomalous bimolecular behavior is not analyzed further, either
analytically or numerically.)

We thus arrive at the integrodifferential equation:

∂PA

∂t
(x,t)

=
∑
x ′

∫ t

0

[
φA(x − x ′,t − t ′)e− ∫ t

t ′ �PB (x ′,τ )dτPA(x ′,t ′)

−φA(x ′ − x,t − t ′)e− ∫ t

t ′ �PB (x,τ )dτPA(x,t ′)
]
dt ′

−�PA(x,t)PB(x,t). (12)
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An identical equation, with A and B subscripts permuted,
obtains for species B. Here, the functions φ are those that
would apply in the CTRW generalized master equation (GME)
in the absence of reaction, defined as in the Laplace domain
as (see [1])

φ̃A(�x,u) ≡ uψ̃A(�x ; u)

1 − ∑
x ′′ ψ̃A(x ′′,u)

. (13)

In the Appendix, we present an alternative derivation of (12)
which is similar in spirit to the Scher-Lax characterization of
the GME in the case of unreactive transport [1].

Equation (12) may be put in a more familiar GME form
by defining transition functions φ∗

S based on the transition
functions φS , multiplied by an exponential tempering factor to
account for reaction:

φ∗
A(�x,�t ,x

′,t ′) ≡ φ(�x,�t )e
− ∫ t ′+�t

t ′ �PB (x ′,τ )dτ . (14)

We imagine that there is a single special site at ∞ that
probability mass is transferred to in the case of reaction, from
which probability mass does not return in finite time. We abuse
notation to write explicitly

φ∗(∞,�t ; x
′,t ′) = δ(�t )�PB(x ′,t ′) ∀x ′ 	= ∞,

φ∗(−∞,�t ; ∞,t ′) = 0. (15)

Then substituting these definitions into (12) we arrive at the
following form of modified GME:

∂PA

∂t
(x,t) =

∑
x ′

∫ t

0
[φ∗(x ′ − x,t − t ′; x,t ′)PA(x,t ′)

−φ∗(x − x ′,t − t ′; x ′,t ′)PA(x ′,t ′)]dt ′. (16)

From the point of view of reactive solute transport, it is
important to highlight the degree to which anomalous transport
is affected by the reaction in (12); reaction is more than just
an add-on to the unreactive GME. An interpretation of this
equation is that the exponential decay factors damping the
memory function reduce the number of A particles exchanged
between neighboring sites to account for particles that reacted
in the recent past and were removed from the probability
mass balance before they made a transition to a new site,
whereas the sink term represents A particles that are reacting
presently at the current site x. Similar behavior has been
seen previously in studies of reactive solute transport with
subdiffusion and radioactive decay (with [17] observing that
their approach was adaptable to multiparticle systems) as well
as more general studies which include an arbitrary reaction
rate function. Arguably the conclusion about the bidirectional
interplay of transport and reaction has been implicit in some
theoretical results going back at least to [23]. However, it is
shown explicitly in the context of an A + B → 0 reaction
between two solute species.

B. Two special cases

1. The case of no reaction: Reduction
to the standard CTRW GME

A check on the validity of the above formulation stems
from the fact that if either there are no B particles or � = 0,
then there must be no reaction, and (12) must degenerate to

the GME for the standard CTRW formulation. Substituting in
either PB = 0 or � = 0 immediately yields

∂PA

∂t
(x,t) =

∑
x ′

∫ t

0
[φA(x ′ − x,t − t ′)PA(x,t ′)

−φA(x − x ′,t − t ′)PA(x ′,t ′)]dt ′, (17)

satisfying this requirement. Recall that, as claimed above, the
φ are the same transition functions found in the GME for
transport in the absence of reaction.

2. The case of exponential ψA: Reduction
to the advection-diffusion-reaction equation

It is well established that when the temporal portion of
the waiting probability distribution is exponential, the CTRW
reduces to the form of the ADE. The standard modification of
the ADE in the case of the two-component reaction is to add a
sink term of the form −�PA(x,t)PB(x,t) to represent the loss
due to a chemical reaction, leading to the ADRE:

∂PA

∂t
(x,t) = −v

∂PA

∂x
(x,t)+D

∂2PA

∂x2
(x,t)−�PA(x,t)PB(x,t).

(18)

It is interesting to see whether solution (12) can be placed into
the same form. To do so, consider separable jump distributions
of the form ψA(x,t) = X(x)ke−kt . It is easy to show in
this circumstance that φA(�x,�t ) = X(�x)kδ(�t ). Then it
follows from (12) that

∂PA

∂t
(x,t) = k

∑
x ′

[X(x ′−x)PA(x,t)−X(x−x ′)PA(x ′,t)]

−�PA(x,t)PB(x,t). (19)

Given nearest neighbor transitions on a 1D lattice with
spacing �x , we may divide the transition probability into
a symmetric, diffusive part [S(x) = X(x)+X(−x)

2 ] and an
asymmetric, advective part [A(x) = X(x)−X(−x)

2 ], so X(�x) =
S(�x) + A(�x). We may then write (19) as

∂PA

∂t
(x,t) = kA(�x)[P (x + �x,t) − PA(x − �x,t)]

− kS(�x)[P (x + �x,t) − 2PA(x,t)

+PA(x − �x,t)] − �PA(x,t)PB(x,t). (20)

By defining v = −kA(�x)�x/2 and D = −kS(�x)�2
x , we

arrive, for small �x , at (18), the ADRE.
We saw above, in (12), that an increasing rate of reaction

corresponds to weaker memory, approaching a pure ADRE
in the limit. It is further apparent from our analysis here
that when the ψ function is chosen to correspond to mem-
oryless conditions in the unreactive case that it leads to a
memoryless condition in the presence of reaction, also. These
observations have a reasonable interpretation. Our mesoscopic
analysis imposes a uniform rate of reaction per unit time that
is shared by all particles in a volume (i.e., particles are ex-
changeable and decay is essentially exponential over any short
interval). Reaction acts to make the effective solute transport
less anomalous by preferentially killing off particles that are
waiting a long time to make a transition, relative to particles
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that transition quickly. However, when ψ is exponential, there
is also a uniform-per-unit-time probability that any particle in
the volume will leave the volume, independent of its history. In
that case, both transport and reaction are logically decoupled
processes, and this is reflected in the mathematics as well.

VI. NUMERICAL CORROBORATION

In the above, we presented a closed-form, time-domain
mesoscopic scale equation for anomalous transport under-
going A + B → 0 reaction by employing an approximation
about the spatial smoothness of the solutions for both species.
Since the form of the equation differs from some previous treat-
ments in which reaction and transport were treated by entirely
separate terms, it is desirable to numerically corroborate this
approximation, and also to support our qualitative conclusions
about the interplay of transport and reaction in (12).

Since integrodifferential equations with long memory, such
as (12), are difficult to evaluate in the time domain, we develop
an indirect approach to corroborate the solution. Essentially the
technique is this:

(1) Perform a reactive particle tracking simulation on a
lattice where transitions for each species are chosen according
to the appropriate ψS , and reactions according the appropriate
ρS . For each species, PS(x,t) is recorded over time in a
concentration data matrix MS , whose rows represent spatial
locations and whose columns represent successive times.

(2) Compute an approximation matrix L, corresponding to
the LHS of the integrodifferential equation being examined
[in our case, we consider each of (12) and (17)] by applying a
temporal differentiation matrix Dt , so L ≡ DtMA.

(3) Compute an approximation matrix R to the right-hand
side (RHS) of the integrodifferential equation being examined
by applying a spatial difference matrix Dx and a temporal
integration operator. In the case of (17), where the integral
kernel φ is independent of x and t , it is possible to represent
the integration operator as an upper triangular banded matrix
K , so R ≡ DxMAK . In the case of (12), the kernel is dependent
on space and time, so the integration cannot be represented as
a matrix operation; it must be done procedurally.

(4) Compare the the numerically computed L and R. To
the extent that their entries are the same at a given row and
column (location and time, respectively), the validity of the
integrodifferential master equation is confirmed for the chosen
ψA and ψB .

Here we consider a simple CTRW in one dimension, which
can be thought of as representing advective transport of solute
in heterogeneous media. A series of imaginary, infinite, evenly
spaced parallel planes correspond to the coarse-scale sites in
the development above. In this case, a transition is deemed to
have occurred on arrival of a solute particle at a given plane,
and advection to be a strong enough process that transitions
occur in the down-gradient direction, only.

The algorithm begins at time t = 0, and each particle has
its time of next transition (to a subsequent plane) computed
in Monte Carlo fashion by drawing from the appropriate ψS .
Subsequently, the computer iteratively takes small time steps
of length �t until some final value of t is reached. Particles
that have their next transition time during the present time
step are moved accordingly, and have their time of next

transition recomputed. Also during each step, at each site x, the
reaction probability kA(x,t) for any A particle is determined
by multiplication of a fixed constant �, by �t , by the number
of B particles at that site at time t , divided by the number
of B particles in the system when t = 0. For each A particle,
a uniform random variable on the interval [0,1] is drawn.
If this number is less than kA(x,t), that particle is removed
from the simulation. An identical process is performed for
the B particles. (Because the spatial units are never specified,
neither are the spatial units of �; the only important fact is that
increasing � increases the reaction rate, all else being equal.)

In our particular simulation, we assume that the tran-
sition distribution for both species is the same one-sided
(i.e., β = 1) stable distribution, so ψA(t) = ψB(t) ∼
S(α,β,μ,σ ), where the parametrization α = 0.8, β = 1.0 μ =
2.0, and σ = 1.0 was chosen. This distribution is defined by
its Laplace transform,

ψ̃S(u) = exp{−(σu)α/cos(πα/2) − μu}, (21)

which may be used to directly compute the transition functions
for the CTRW, and also directly inverted to check the validity
of the Monte Carlo generator used (the Math.NET numerics
package), as shown in Fig. 4. We use 50 sites, connected in a
ring. Given this topology, there is no gain or loss of mass at
any boundaries (as there are no boundaries); all mass loss is
due to reaction. Initially, 50 000 particles of A were located at
the site with index 1, and 50 000 particles of B were uniformly
distributed across all the sites. Advection was permitted to
occur exclusively in the direction of increasing site index (i.e.,
each transition was to a site whose index was one higher,
or from site 50 to site 1). The simulation was run t = 300,
with �t = 0.1, where both quantities are in arbitrary units,
consistent with those used to define ψA and �. Our simulation
ended before any significant amount of A reached the largest
index site, so the predictions are indistinguishable from what
would be seen in an infinite domain. A schematic of the system,
with its initial condition shown, is given in Fig. 5.

We began with a test in the case of unreactive A and
B (� = 0) to establish the validity of the memory function

0 5 10 15 20
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0.2

0.3

0.4

Time

P
ro
ba
bi
lit
y
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ity

FIG. 4. Stable distribution, S(0.8,1.0,2.0,1.0), as drawn Monte
Carlo fashion (solid curve; a smoothed histogram is shown), and
directly computed from inverting the Laplace transform (dashed
curve).
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FIG. 5. (Color online) Schematic of site arrangement, direction
of transport, and initial conditions in the numerical simulations.
As in other schematics, A particles are black and B particles are
light-colored.

which was computed using (21) and establish a baseline for
the amount of noise in the numerical simulations ]since in this
case, the governing equations are the known-to-be-accurate
CTRW equations (1) and (2)]. In the case of no reaction,
we can visualize the actual evolution of the concentration in
one spatial dimension and time as the surface plot shown in
Fig. 6. Application of the procedure outlined above was used
to generate L and R matrices. From these, temporal evolution
at three different locations is shown in Fig. 7.

The analysis of the case of reactive A and B (� = 4.5)
proceeded in a similar fashion. Figure 8 shows the actual
evolution of the concentration in one spatial dimension and
time for each of species A and B as surface plots. Application

FIG. 6. (Color online) Surface plot showing the evolution of the
concentration of A through space, over time in the unreactive case.
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FIG. 7. Comparison of numerical computation of LHS (black
points) and RHS (gray points) of (17) over time from Monte Carlo
simulation data at location x = 10 (top), x = 20 (middle), and x = 30
(bottom).

of the procedure outlined above was used to generate L and R

matrices. From these, temporal evolution at three different
locations is shown in Fig. 9, which allows an assessment
of our simplifying assumption. Coherence between L and
R is generally quite good—on par with what is seen in the
known-accurate unreactive case—providing corroboration of
our analysis.

Another informative way to look at the data is to compare
the Monte Carlo–generated plumes of A at the last time of
each simulation: reactive and unreactive. These are shown
on the same axes in Fig.10. It is apparent from examination
of (12) that greater rates of reaction should reduce the temporal
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FIG. 8. (Color online) Surface plots of concentrations of species
A (top) and species B (bottom).

support of the memory function φ∗, and make transport less
anomalous. Indeed, this is exactly what is seen by comparison
of concentration profiles. Since there was an instantaneous
local release of species A, the concentration profiles can be
seen as representative on the propagator for A. In the presence
of reaction the results are seen to be, in fact, more Gaussian.

VII. SUMMARY AND CONCLUSIONS

In this paper, we analyzed A + B → 0 reactions math-
ematically in the context of reactive solute transport. Two
approaches to developing the CTRW governing equations
were formulated at different scales, and the dependence of
the equation form on the respective characteristic lengths at
which reaction and transport are modeled was demonstrated.
The first approach, at the microscopic scale, equates reaction
with two potentially reactive particles being simultaneously
at a site. This yields highly nonlinear CTRW recurrence
relationships that are not obviously tractable: at this scale, there
is a tight, two-way coupling between reaction and transport.
Reaction can prevent particles from making transitions (which
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FIG. 9. Comparison of numerical computation of LHS (black
points) and RHS (gray points) of (12) over time from Monte Carlo
simulation data at location x = 10 (top), x = 20 (middle), and x = 30
(bottom).

is inescapable) but in addition, transitions play a significant
role in triggering reactions.

To yield a more tractable system, we developed an approach
for scale separation of reaction and anomalous transport which
makes the coupling one-way. Thus scale-separated, a meso-
scopic approach easily yields an effective integrodifferential
governing equation, showing the interplay of reaction and
transport for each of the species (12). We then proceeded
to corroborate the integrodifferential probability dynamics
master equation using numerical simulations. Because it is
difficult to numerically implement equations of this sort using
finite difference time stepping, we developed an indirect
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FIG. 10. Comparison of concentration of A at each site when
t = 300 in the unreactive simulation (gray points) and the reactive
simulation (black points), for the same initial conditions.

approach—one that may be applied more broadly to spatial
evolution problems with memory.

The modifications in the mesoscopic integrodifferential
governing equation we arrived at all have an intuitive basis
relative to the standard CTRW solution:

(i) The exponential decay factors damping the transition
function φ essentially reduce the amount of A particles
exchanged between neighboring sites to account for particles
that reacted in the recent past and were removed from the
probability mass balance before they made a transition to a
new site.

(ii) The sink term represents A particles that are reacting
at the current moment, and which are then removed from the
system.

Overall, we see from both analytical concerns and nu-
merical results that an increasing reaction rate leads to a
shorter “memory” than would otherwise be experienced by
unreactive particles in the same system. This is consistent
with what is found in monomolecular studies of particles
undergoing subdiffusion subject to time-homogeneous first-
order decay [17], and with arbitrary decay rates which may
be dependent on space and time [26]. We also see that this
solution degenerates into either an ADE or an ADRE under
conditions where it would be expected to do so on physical
grounds. Strikingly, the integrodifferential governing equation
does not generally take an advection-dispersion-reaction form,
because the reaction directly affects the memory of the
transition function by preferentially eliminating particles with
long site-residency times. Equally important is the realization
that the length scales at which reaction and transport are
modeled determine whether it is even possible to develop an
integrodifferential probability dynamics equation analogous to
the (unreactive) generalized master equation.

We conclude that from the point of view of reactive solute
transport modeling, it is generally not adequate to place
a second-order reaction term onto the generalized master
equation for the same solute in the absence of reaction; the
more involved equation we present here is required. This has
not generally been appreciated in the literature.
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APPENDIX

In the main body of the work, we exploited a result derived
for monomolecular anomalous transport with a general, space-
and-time-dependent decay rate [26] to arrive at our mesoscopic
GME. In this Appendix, we present an alternative derivation
that differs from that presented in the main text, and which the
reader who is familiar with the classic Scher-Lax [28] CTRW
derivation for unreactive transport may find intuitive. We begin
from (11). This relationship has the benefit of not requiring a
nonlinear term on the LHS as in the microscopic case, since
the role of transitions in triggering reaction is negligible in the
two-scale, mesoscopic picture. Substitution of (10) into (11),
multiplying both sides by exp{∫ t

0 �PB(x,τ )dτ }, and using the
idea that �PB(x,t) ≈ �PB(x ′,t) for nearest neighbor sites x

and x ′ leads to

[
e
∫ t

0 �PB (x,τ )dτRA(x,t)
] =

∑
x ′

∫ t

0
ψA(x − x ′,t − t ′)

× [e
∫ t ′

0 �PB (x ′,τ )dτRA(x ′,t ′)]dt ′. (A1)

To simplify analysis, we make the following definitions:

R(x,u) ≡ L
{
e
∫ t

0 �PB (x,τ )dτRA(x,t)
}
(u), (A2)

P(x,u) ≡ L
{
e
∫ t

0 �PB (x,τ )dτPA(x,t)
}
(u). (A3)

Laplace transforming (A1) yields

R(x,u) =
∑
x ′

ψ̃A(x − x ′,u)R(x ′,u), (A4)

where ψ̃A is the Laplace transform of ψA. To relate R to P ,
we employ (2).

When defining ψ∗ in (10), we noted the independence of
the two processes leading to the solute particle’s removal from
its current (coarse-scale) site: departure to an adjacent (coarse-
scale) site and reaction (a fine-scale process). With this in mind,
we define the probability that a particle which arrives at x ′ at
t ′ is still there after �t in the presence of reaction as

�∗
A(�t ; x

′,t ′) ≡
[

1 −
∫ �t

0
ψA(t)dt

]

×
[

exp

{
−

∫ t ′+�t

t ′
�PB(x ′,τ )dτ

}]
. (A5)

Substituting this modified �∗
A (with its explicit dependence on

space and time) into (2) in place of �A, Laplace transforming,
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and then substituting (A2) and (A3) yields

P(x,u) = 1 − ∑
x ψ̃A(x,u)

u
R(x,u). (A6)

It is possible to exactly use the classic analysis for deriving
the CTRW GME in the absence of reaction [1, Appendix A]
to combine (A4) and (A6) into an equation exclusively in P .
Doing this yields the result

uP(x,u) =
∑
x ′

uψ̃A(x − x ′,u)

1 − ∑
x ′′ ψ̃A(x ′′,u)

P(x ′,u)

−
∑
x ′

uψ̃A(x ′ − x,u)

1 − ∑
x ′′ ψ̃A(x ′′,u)

P(x,u). (A7)

Substituting (13) and (A3) into (A7) and then inverting the
Laplace transform yields

∂

∂t

{
e
∫ t

0 �PB (x,τ )dτPA(x,t)
}

=
∑
x ′

∫ t

0

[
φA(x − x ′,t − t ′)e

∫ t ′
0 �PB (x ′,τ )dτPA(x ′,t ′)

−φA(x ′ − x,t − t ′)e
∫ t ′

0 �PB (x,τ )dτPA(x,t ′)
]
dt ′. (A8)

Expanding the derivative on the LHS via the product rule,
multiplying both sides by e− ∫ t

0 �PB (x,τ )dτ , and again using the
idea that �PB(x,t) ≈ �PB(x ′,t) for nearest neighbor sites x

and x ′ yields (12).
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