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Localization in one-dimensional chains with Lévy-type disorder
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We study Anderson localization of the classical lattice waves in a chain with mass impurities distributed
randomly through a power-law relation s−(1+α) with s as the distance between two successive impurities and
α > 0. This model of disorder is long-range correlated and is inspired by the peculiar structure of the complex
optical systems known as Lévy glasses. Using theoretical arguments and numerics, we show that in the regime
in which the average distance between impurities is finite with infinite variance, the small-frequency behavior
of the localization length is ξα(ω) ∼ ω−α . The physical interpretation of this result is that, for small frequencies
and long wavelengths, the waves feel an effective disorder whose fluctuations are scale dependent. Numerical
simulations show that an initially localized wave-packet attains, at large times, a characteristic inverse power-law
front with an α-dependent exponent which can be estimated analytically.
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I. INTRODUCTION

The spatial distribution of disorder plays a key role on
transport properties in disordered media, allowing anomalous
laws like superdiffusion to arise. This interesting topic has
been the basis of numerous theoretical and experimental
studies in a wide variety of complex systems. Recently, one
of the studies reported on the realization of some engineered
materials named Lévy glasses in which light rays propagate
through an assembly of transparent microspheres embedded in
a scattering medium [1]. If the diameter of the microspheres φ

is designed to have a power-law distribution p(φ) ∼ φ−(α+1),
where α is the so-called Lévy exponent defining the degree
of the heterogeneity of the system, light can indeed perform
superdiffusion. Although a random-walk model is rich and
precise to describe light transport through Lévy glasses and
successfully explains the experimental observations [2], it
cannot address wave properties such as polarization and
interference. Therefore, an open question to understand is how
the interference of waves can affect the propagation and what
might be the possible role of Anderson localization [3,4] in
such materials.

Although our main motivation stems from the above
described setup, it is worth mentioning some related studies of
systems with Lévy-type disorder that include transport in quan-
tum wires [5], photonic heterostructures [6], and disordered
electronic systems [7,8]. The purpose of this work is to provide
a framework to investigate localization in power-law correlated
disordered systems and to illustrate how the localization
length is affected by different characteristic features of the
system such as frequency, degree of heterogeneity, disorder
strength, etc. To address the above issues, we consider a very
simple model, a harmonic chain of coupled oscillators with
random impurities separated by random distances s having a
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power-law distribution p(s) ∝ s−(α+1). This model of disorder
is clearly inspired by the peculiar structure of Lévy glasses.
As usual, the one-dimensional case allows for a detailed study.
In particular, the Lyapunov exponent γ (ω), the inverse of the
frequency-dependent localization length ξ (ω) = γ (ω)−1, can
be computed straightforwardly. Our main result is that, in
the small-frequency regime, the scaling relation γ (ω) ∝ ωα

is numerically estimated for the Lyapunov exponent in the
range 1 � α � 2, i.e., when the variance of the distances 〈s2〉
is infinite. Instead, for α > 2, the usual scaling γ (ω) ∝ ω2,
typical of random uncorrelated disorder [9] is recovered.

The model and some theoretical arguments, based on the
Hamiltonian map formulation of the transfer method, are
presented in Sec. II. We then present and discuss the complete
numerical steady-state analysis in Sec. III of this paper. For
a more comprehensive understanding of the transport in such
disordered media, we investigate and report in Sec. IV the time
evolution of an initially localized wave packet. In particular, we
consider the time- and disorder-averaged energy profile 〈en(t)〉.
Here we show that in the range 1 � α < 2, the asymptotic tails
of the energy profile decay with an α-dependent power-law
exponent. In contrast, for the range α � 2, depending on
the type of the initial excitation, the power-law exponent is
independent of α. Moreover, we pay close attention to the
time evolution of the different moments mν(t) of the 〈en(t)〉
and discuss the α-dependent properties in the range 1 � α < 2.
Finally, we summarize our results in the concluding Sec. V.

II. THEORETICAL DESCRIPTION

A. Model: One-dimensional Lévy-type disordered lattice

We considered a one-dimensional harmonic disordered
lattice of n sites with masses mn. The governing equations
of motion are

mnün = k(un+1 − un) + k(un−1 − un), (1)
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FIG. 1. (Color online) Schematic illustration of the model used to study localization in a one-dimensional lattice with Lévy-type disorder.
Small blue balls represent the background mass of the lattice m and large red balls are the defects with mass M distributed on the
lattice through a power-law relation p(s) ∝ s−(α+1), where s is the number of lattice sites between two successive defects and the index
j = 1, . . . ,Nd . An initial displacement w0 is given to the first site of the lattice to initiate iteration of the transfer matrix over the entire
lattice.

where k is spring constant (k �= 0), un is displacement of the
nth site of the lattice from its equilibrium position, and n =
1,2, . . . ,N .

In the present work, we consider dichotomic disorder
whereby mn assumes two possible values, either m as the
background mass of the lattice or M to represent mass of
the defects. Illustrated in Fig. 1, disordered lattices of length
N were constructed by arrangement of Nd defects through
a power-law distribution p(s) ∝ s−(α+1), where s was the
random number of lattice sites with mass m between two
successive defects. As a direct consequence of such choice
of p(s), the mass of the entire lattice was the parameter
with α-dependent statistical properties. Obviously, its average
density can be written as

〈m〉 = ρM + (1 − ρ)m, (2)

where ρ = Nd

N
is the fraction of defects on the lattice. In the

range 1 � α < 2, 〈ρ〉 is finite. On the other hand, for α <

1, ρ vanishes in the thermodynamic limit N → ∞ since the
average distance between consecutive defects diverges in this
regime. In this paper, we mainly focus on the case α > 1 (in
which 〈s〉 is finite) and will comment only briefly on the case
α < 1, which is somehow more peculiar.

Before proceeding, we recall that random walks on such
class of Lévy structures have been thoroughly studied in
a series of recent papers [10–15] as a minimal model
that includes quenched disorder and anomalous diffusion.
Depending on the value of α, fundamentally different regimes
of transport are achieved: Indeed, walkers superdiffuse for
α < 1. Several distinguished features of the quenched nature of
disorder, like the importance of initial conditions and the con-
sequences on higher-order statistics of the diffusive process,
are discussed in the above mentioned papers. It can be thus
envisaged that also localization properties may display unusual
features.

B. Statistical properties of the disorder

Using the algorithm described in [16], positive integer
power-law random numbers were generated to construct dis-
ordered lattices. For a preliminary statistical characterization,
we computed the ensemble-averaged power spectrum,

S(k) = 1

N

〈∣∣∣∣∣
N∑

n=1

mn exp(−ikn)

∣∣∣∣∣
2〉

, (3)

where the average is over different realization of the disorder.
The low-wave-number behavior of S provides information on
the large-scale decay law of the disorder correlation function
which will be necessary for the subsequent analysis. Figure 2
indicates that, for α < 2, S has a power-law singularity |k|−	

for small k. This implies that the disorder correlation is indeed
decaying as an inverse power of the relative distance with
an exponent 1 − 	. The exponent will be important in the
subsequent analysis: Fitting of the numerical data suggests
the following relation with the Lévy parameter α (see the
inset of Fig. 2):

	(α) =
{
α, if 0 < α < 1,

2 − α, if 1 < α < 2.
(4)

A theoretical justification of the above relation can be given
based on the similarity of this process with the correlation of
a Lévy walk as discussed by Geisel in Ref. [17]. Note that
in all the examined cases 	 < 1, so the power spectrum is
integrable and the associated process can be considered as
stationary for any α.

For what concerns the dependence on the lattice size (data
not shown), by comparing data for different lengths, we
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FIG. 2. (Color online) Power spectra, Eq. (3), for different values
of the exponent α; each spectrum is obtained for sequences of
length 217 over an ensemble of 104 realizations. The inset shows
the dependence of the exponent of the small-frequency singularity
|k|−	 on α.
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found that for α > 1 the spectra are N independent, while
for α < 1 the spectra decrease with increasing N roughly
like Nα−1. This is because the density of defects vanishes
in the thermodynamic limit and almost-ordered realizations
dominate the statistical averages.

To conclude this section, let us mention that a similar
model has been studied in Ref. [18] (see also the related
work [19]). The main differences with our work is that the
sequence of masses is generated as a trace of a fractional
Brownian motion that, by construction, has also a a power-law
singularity at small wave number. It was there shown that in
the nonstationary case (	 > 1 in our notation), a mobility edge
can exist at a finite frequency value.

C. Transfer matrix approach

As is well known, the localization properties can be
studied by the transfer matrix method [20]. Assuming that
un oscillates harmonically in time at an angular frequency ω,
so that un = vne

iωt , Eq. (1) can be written as an eigenvalue
problem,

−mnω
2vn = k(vn+1 − vn) + k(vn−1 − vn), (5)

that, upon defining

wn ≡
(

vn

vn−1

)
; Tn ≡

(
2 − mnω

2/k −1
1 0

)
,

for n = 2,3, . . . ,N − 1 can be recast in the form

wn+1 = Tnwn, (6)

where Tn is a 2 × 2 transfer matrix of the nth site on the lattice.
By iteration of the transfer matrix over the entire lattice and
applying the appropriate boundary conditions of the system,
solutions of Eq. (5) as a function of frequency ω can be
obtained.

The central quantity to be computed is the Lyapunov
exponent γ (ω), which gives the inverse of the localization
length ξ (ω). It is convenient to define a new parameter
Rn = vn/vn−1. Inserting Rn into Eq. (5), one obtains the
following recursive relation [21]

Rn+1 = 2 − mnω
2

k
− 1

Rn

. (7)

Equation (7) can be interpreted as a “discrete time” stochastic
equation. The mass mn plays the role of a noise source (with
bias) whose strength is gauged by the frequency ω. In the
present model, the Lyapunov exponent γ (ω) as the inverse of
localization length can be computed by

ξ (ω)−1 = γ (ω) = 〈ln Rn〉. (8)

Also the integrated density of states I (ω) follows from node
counting arguments, i.e., I (ω) = f , where f is the fraction of
negative Rn values.

For deeper analysis of the systems of interest, let us
rewrite Eq. (5) in a different notation; introducing the new
variables qn = vn and pn = qn − qn−1, the transfer map can
be reformulated as follows. Letting ω2mn = 
2(1 + μn),

2 = ω2〈m〉, and μn = mn/〈m〉 − 1 is a zero-average random
variable and 〈μ2〉 is finite at least for α > 1. Plugging qn and

pn into Eq. (5) and setting k = 1, one finds the following
two-dimensional map [22]:

pn+1 = pn − 
2(1 + μn)qn, (9)

qn+1 = qn + pn+1. (10)

The following transformation relations can be introduced
by using the canonical variables (rn,θn), where rn and θn are
amplitude and phase of the eigenvector at site n, respectively,

pn =
√

2
 rn sin θn; qn =
√

2



rn cos θn. (11)

Substituting Eqs. (11) back into Eqs. (9) and (10) and
neglecting terms of the order 
2 and higher, one then obtains
the following map:(

rn+1

rn

)2

= 1 − μn
 sin 2θn + O(
2), (12)

tan θn+1 = tan(θn − 
) − 
μn. (13)

Equation (13) describes the evolution of the phase as it is
perturbed by disorder and can be approximated as [23]

θn+1 = θn − 
 + 
μn sin2 θn. (14)

Long-range correlations of μn lead to subdiffusive phase
fluctuations. Within the same approximation, the Lyapunov
exponent is obtained by expanding the logarithm

γ = 1

2

〈
ln

(
rn+1

rn

)〉
≈ −1

2

〈μn sin 2θn〉

+ 1

4

2〈μ2

n sin2 2θn〉 + · · · . (15)

The main issue is to estimate the correlators in Eq. (15).
Following the same path as in Ref. [23] [see, in particular,
Sec. (5.2)], it can be shown that

〈μn sin 2θn〉 = 2


∞∑
m=1

〈μnμn−m〉 cos(2
m), (16)

〈
μ2

n sin2 2θn

〉 ≈ 1
2

〈
μ2

n

〉
. (17)

We thus obtain

γ = 1

8

2

〈
μ2

n

〉 [
1 + 2

∞∑
m=1

〈μnμn−m〉〈
μ2

n

〉 cos(2
m)

]
. (18)

Note that this formula agrees with the long-wavelength limit of
Eq. (22) in [24], which was obtained for weak disorder (where

 ≈ k). The sum is basically the Fourier transform of the
correlation function, i.e., the power spectrum of the sequence
of masses studied above. We thus expect three cases.

(i) For short-range correlations as in the case α > 2, the
second term in Eq. (18) is finite and independent of the
frequency. So it just provides a proportionality constant.
The Lyapunov exponent is thus expected to scale, up to
some constant prefactor as in the standard uncorrelated
case [9],

γ (ω) ∝ ω2 〈m2〉 − 〈m〉2

8〈m〉 . (19)
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(ii) For long-range correlations and in the case 1 < α < 2,
the fluctuation spectrum diverges at small frequencies so the
second term in Eq. (18) dominates so that

γ ∼ 
2S(2
). (20)

Using the result [Eq. (4)] that the spectrum goes as kα−2 and
recalling the definition of 
, this means that the Lyapunov
exponent should be proportional to ωα .

(iii) Furthermore, if we assume that the same argument
holds also for α < 1, we may conclude that γ ∼ ω2−α/N1−α ,
which means that γ vanishes for N → ∞. This argument may
not be entirely correct since, in this case, 〈μ2

n〉 also vanishes.
To conclude this section, we mention that John and

Stephen [25] studied a related model of a classical wave
in the continuum limit where the mass fluctuations μ were
quenched random variables but power-law correlated in space
〈μ(x)μ(x ′)〉 ∼ (x − x ′)−2m. According to their Eq. (7.5), in
one dimension the Lyapunov exponent should be

γ (ω) ∼
{
ω2 if m > 1/2,

ω
1

1−m if m < 1/2.
(21)

Although the models are pretty similar at large scales, our
result is different from this last estimate. The origin of the
discrepancy is not clear at this stage; however, it is true that
the approach in Ref. [25] relies on some approximate self-
consistent calculations while the calculations reported here
are asymptotically exact.

III. NUMERICAL RESULTS

In this section, numerical results of the model described
in the previous section are presented. We have carefully
studied the dependence of the Lyapunov exponent on different
characteristic parameters of the systems. Data analysis was
performed mainly for systems with 1 � α < 2, however, some
computations were done for systems with α � 2 to allow
comparison of the behaviors in two different transport regimes.
Throughout the rest of the paper, the spring constant was
assumed to be k = 1 and, unless otherwise stated, the mass
ratio was fixed to M/m = 3.

A. Lyapunov exponent

According to the definition described in Eq. (8), the
Lyapunov exponent is the exponential growth or decay rate
of a vector in the limit N → ∞.

Due to the long-range spatial correlations (especially in the
regime 1 � α < 2), the convergence of the numerical value of
γ could vary from a single realization to another and usually
requires a long series of iterations. In order to ensure that our
obtained results were independent of the disorder realization
(i.e., that self-averaging holds), a series of lattices with a
different number of defects Nd were studied and compared.
Results led us to the conclusion that for Nd � 2 × 106,
fluctuations of γ (ω) versus Nd are relatively small (better
than  ±13%) in the systems with different α parameters.
Clearly, as α approaches 2, even smaller values of Nd can
yield a fast convergence γ (ω). However, to improve stability
of our results even further, Nd = 5 × 106 defects were used
to construct our desired disordered systems. We pursue this
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FIG. 3. (Color online) Variations of the Lyapunov exponent γ (ω)
versus ω for systems with different α parameter, setting Nd = 5 ×
106, M/m = 3, and k = 1. Lyapunov exponents were normalized
after Nit = 5 × 104 iterations of the transfer matrix. Frequency ω

was varied from 0.01 to 0.3. The inset shows the scaling exponent σ

[of the frequency-dependent Lyapunov exponent γ (ω) ≈ ωσ ] versus
α. Numerical results for the scaling are obtained by power-law fits
on the data set for Lyapunov exponent and an excellent agreement
is obtained with the theoretical predictions γ (ω) ≈ ωα in the low-
frequency regime for the range 1 < α < 2.

number consistently in the rest of this paper for the analysis of
very large lattices (asymptotic limit). In all the studied cases,
the same initial displacement w0 must be assigned to start
iteration of the transfer matrix. Note that Lyapunov exponent
has this intrinsic property to be independent of w0 and our
numerical results were in excellent agreement with that.

Since we mostly focus on the behavior of the Lyapunov
exponent in the small frequency regime, we first checked that
in all the presented cases the integrated density of states is
linearly changing with the frequency, I (ω) ∼ ω. The physical
interpretation of this fact is simply that the spectrum is
effectively equivalent to an ordered chain with a renormalized
wave speed.

In Fig. 3, variations of the Lyapunov exponent γ (ω) versus
frequency ω for systems with different α parameter are shown
in doubly logarithmic scale. In each system, as the frequency
was increased from 0.01 to 0.3, greater values were obtained
for the Lyapunov exponent and, accordingly, localization
length was decreased. As illustrated in the inset of Fig. 3, the
scaling relation predicted in the previous section is in excellent
agreement with the data obtained by power-law fitting on the
small-frequency region of the curves. In some cases, we also
checked that the fit that includes the leading order correction
ω2 follows the data in the whole range, giving further support
to the theoretical arguments above.

Another interesting physical effect that should be assessed
is the dependence of the Lyapunov exponent on disorder
strength or, equivalently, mass ratio M/m in our model.
In an intuitive picture, one expects that higher mass ratio
leads to stronger disorder, shorter localization length, and
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γ (ω) versus ω for systems with α = 1.5 and N = 14 648 365 but
different mass ratios M/m. Other parameters such as Nd , Nit ,
and the frequency range are the same as those used to generate
Fig. 3.

thereby greater Lyapunov exponents. In addition to that,
the scaling of γ (ω) ∝ ωσ intrinsically depends on transport
properties of the system and hence should be independent
of the mass ratio. In other words, the mass ratio should, at
most, change the prefactor in the above scaling relation. To
confirm this prediction, four different mass ratios, M/m =
0.5,2,3,5, were considered in a system with α = 1.5 and
length N = 14 648 365 composed of Nd = 5 × 106 defects.
As shown in Fig. 4, scaling of the Lyapunov exponent with
frequency ω (slope of the curves) is independent of the mass
ratios. However, larger values of M/m yield an increase in the
Lyapunov exponent by orders of magnitude, indicating that
the prefactor changes rapidly with M/m.

Figure 5 shows and compares dependence of the Lyapunov
exponent on the Lévy exponent α at two fixed frequen-
cies, ω1 = 0.05 and ω2 = 0.24. Upon decreasing α, γ was
initially increased. This is in agreement with the intuition
that the localization is enhanced by increasing fluctuations
of the distances between defects. However, by approaching
α = 1, γ started decreasing and a peak was observed in
both curves. We can therefore conclude that in the range
1.2 � α � 1.3, a transition occurs in the behavior of the
Lyapunov exponent. The value of α, at which the transition
happens, depends slightly on the frequency ω. According to
our numerical data, the transition appeared at α = 1.2 for ω1

and at α = 1.24 for ω2 (see the inset in Fig. 5, showing the
Lyapunov exponents normalized by their maxima). Moreover,
no appreciable dependence on the lattice length is observed
in this regime. Although it seems plausible that γ vanishes
below α = 1, the origin of the peak is not clear. A possibility
is that sample-to-sample fluctuations become so important that
averaging over a much larger ensemble of lattices would be
required.
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and ω2 = 0.24 (orange triangles). The inset shows that by increasing
the frequency, the peak of the Lyapunov exponent is shifted to right.
For better illustration, the two curves are normalized by their maxima.

B. Eigenfunctions

Moreover, it is interesting to look at eigenfunctions of a
Lévy-type disordered system. In general, spatial part of the
frequency-dependent solutions of Eq. (1) can be obtained by
solving

(K + ω2Λ)u = 0, (22)

where Λ is the diagonalized mass matrix Λ = diag(mn) and
K is the matrix of spring constants expressed by

K =

⎛
⎜⎜⎜⎜⎝

−2k k 0 0 . . .

k −2k k 0 . . .

0 k −2k k . . .
...

. . .
0 . . . 0 k −2k

⎞
⎟⎟⎟⎟⎠

N×N

.

Stationary eigenfunctions of disordered systems can be
obtained by numerically solving Eq. (22). For a system with
α = 1.1 and length N = 1187 consisting of Nd = 200 defects,
eigenfunctions un at three different frequencies are presented
in Fig. 6. The top panel shows distribution of mass mn on
the entire system which is a step function of mn = 1 or 3.
Eigenfunctions of the systems at three different frequencies
are depicted in the other panels. According to our results
at ω = 0.479 25 and ω = 1.6853, eigenfunctions are almost
extended in a long space between two successive defects.
At ω = 0.9083, however, eigenfunctions are localized in a
small region inside the system. Note that because of the
computational difficulties to diagonalize the system matrix, for
this analysis we could only study finite systems with limited
number of defects.
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FIG. 6. (Color online) The top panel shows distribution of the
mass on a system with α = 1.1 and length N = 1187 composed of
Nd = 200 defects (red curve). Other panels (from top to bottom)
show eigenfunctions of the system at ω = 0.479 25 (black curve),
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C. Phase dynamics

Next we present our numerical results for the spatial
evolution of the phase that, using Eq. (11) and the definition
pn = qn − qn−1, can be computed during the iteration of the
transfer matrix by the following relation

θn = tan−1

(
qn − qn−1


qn

)
. (23)

The computed phase has to be unwrapped to the real axis.
The top panel in Fig. 7 illustrates variations of θn in systems
of equal length N = 4 × 105 and different Lévy exponents
α = 1.5,1.7,2.5, at ω = 0.1.

For the statistical analysis, the average drift rate a of the
phase (a ≈ 
) was numerically computed and removed by
defining φn = θn − an. In order to study evolution of φn over
the entire system, the lattice was divided into 50 sublattices of
length ns = 8 × 103. For each sublattice, the quantity (φn −
φ1)2, where n = 1,..,ns was computed. Averaged over all the
sublattices, evolution of the rms phase 〈φ2

n〉 was consequently
obtained as shown in the bottom panel of Fig. 7. According to
the data, growth of 〈φ2

n〉 is faster in systems with smaller values
of α. This can be explained by the fact that disorder fluctuations
become stronger, which is in agreement with the superdiffusive
behavior of the corresponding random-walk problem [13].
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unwrapped phase θn versus n for three different systems with α =
1.5,1.7,2.5 and length N = 4 × 105 at a fixed frequency ω = 0.1. In
the bottom panel, variations of 〈φ2

n〉 over a sublattice of length ns =
8 × 103 are presented and compared for the studied systems. Note
that 
1.5 = 0.1297, 
1.7 = 0.1329, and 
2.5 = 0.1383, respectively.

IV. EVOLUTION OF WAVE PACKETS

In this section, we investigate the consequences of the above
results on the spreading of an initially localized perturbation
on an infinite lattice. Although every single eigenstate is
exponentially localized, the wave propagation can be nontrivial
as low-frequency states form a continuum with arbitrarily large
localization lengths.

The starting point of this analysis is a Hamiltonian
formulation of the system

H =
∑

n

[
P 2

n

2mn

+ 1

2
k(un+1 − un)2

]
, (24)

where un and Pn are displacement and momentum of the mass
mn, respectively. From the Hamiltonian, time evolution of any
excitation of interest can be derived. Evidently, local energy at
each site of the lattice at time t can be written as

en(t) = ekin
n (t) + epot

n (t), (25)

ekin
n (t) = 1

2mnu̇n(t)2, (26)

epot
n (t) = 1

2k[un(t) − un−1(t)]un(t)

− 1
2k[un+1(t) − un(t)]un(t), (27)

where ekin
n (t) and e

pot
n (t) represent kinetic and potential

energies, respectively. Together with the equation of motion
[Eq. (5)], these relations constitute the set of governing
equations of one-dimensional linear discrete systems.

In our analysis, disordered lattices of length N = 8 × 103

with an excitation at the center n0 = N/2 were studied. Two
different types of excitation were applied: (i) displacement
excitation with un(0) = Aδn,n0 and Pn(0) ≡ 0; (ii) momentum
excitation with Pn(0) = Bδn,n0 and un(0) ≡ 0. As is known,
these classes of initial condition yield different asymptotic
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FIG. 8. (Color online) Spreading of the energy density after t =
3 × 103 averaged over 2 × 103 realizations. Results are comparisons
for two systems with equal lengths N = 8 × 103 but different
Lévy exponents α = 1.5,2.5 with an excitation at n0 = N/2. (a)
Momentum excitation with B = 2. In the inset, obtained energy
density data of the system with α = 1.5 are fitted by |n − n0|−5/3

in the asymptotic regime. (b) Displacement excitation with A = 2.
In the inset, obtained energy density data of the system with α = 1.5
are fitted by |n − n0|−3 in the asymptotic regime.

properties due to the fact that the mode energy distribution
is different in the two cases [26]. Based on the conservative
dynamics of the system and by using a fourth-order symplectic
algorithm [27], the set of coupled governing equations were
numerically solved. We mainly focused on lattices with α =
1.5 and α = 2.5 to enable comparison of the two different
regimes of transport. Note that the number of defects Nd on
the considered lattices were different as N was kept fixed.
Obtained results were then averaged over 2 × 103 realizations.
Figure 8 presents spread of the averaged energy density over
the two systems after t = 3 × 103 for both momentum and
displacement excitations. In addition to a faster spread of
energy, a broadening appeared around the excitation for the
system with α = 1.5.

Following the analytical approach of Ref. [28] and assum-
ing the frequency-dependent localization length as ξα(ω) ∝
ω−α in the small-frequency regime (ω → 0), the time- and
disorder-averaged energy in a Lévy-type disordered system
for a displacement excitation can be written as

〈en(t)〉 ∝
∫ ∞

0
ω2+αe−|n−n0|ωα

dω, (28)

which asymptotically decays as |n − n0|−(1+3/α). For a
momentum excitation, 〈en(t)〉 can be similarly described
by

〈en(t)〉 ∝
∫ ∞

0
ωαe−|n−n0|ωα

dω, (29)

with asymptotic behavior as |n − n0|−(1+1/α). The insets in
Fig. 8 show that our numerical results are consistent with the
analytical predictions of the α-dependent power-law decay,
at least in the region far enough from the initial excitation.
Actually, some sizable deviations at a shorter scale are
observed, which are presumably due to the subleading terms
neglected in the estimation of Eqs. (28) and (29). In the
case of momentum excitation, data for α = 1.5 are fitted by
|n − n0|−5/3 with a goodness of 95%, as shown in the inset
in Fig. 8(a). For the displacement excitation, data for α = 1.5
are fitted by |n − n0|−3 with a goodness of 95%, which is
illustrated in Fig. 8(b).

Moreover, another interesting entity is time evolution of the
moments of the Hamiltonian, which can be defined as [26,28]

mν(t) =
∑

n |n − n0|νen(t)

H
, (30)

where ν is a positive number and mν(t) represents the νth
moment of the Hamiltonian at time t . The second moment
quantifies degree of the spreading of the wave packet.

In Fig. 9, time evolution of different moments 〈mν(t)〉
of a wave packet are shown and compared for the two
systems. Beyond the clear signature of the growth of the
disorder-averaged moments over time, it was observed that
around t ≈ 103, the growth exponent suddenly changed in
the system with α = 1.5. At shorter times, however, we
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FIG. 9. (Color online) Time evolution of the moments 〈mν(t)〉
averaged over 2 × 103 realizations for systems with length N =
8 × 103. Different colors represent different index ν varying from
ν = 0.5 (solid blue line, bottom) to ν = 4 (dashed red line, top)
with step �ν = 0.5. Momentum excitation (B = 2) was applied
at n0 = N/2 on a system with Lévy exponent (a) α = 1.5 and (b)
α = 2.5. Displacement excitation (A = 2) was applied at n0 = N/2
on a system with Lévy exponent (c) α = 1.5 and (d) α = 2.5.
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FIG. 10. (Color online) Comparison of β(ν) for the two systems
with Lévy exponent α = 1.5 (blue circles) and α = 2.5 (red squares).
Data are obtained by performing power-law fits on 〈mν(t)〉. Dotted
black lines show the numerical solutions of analytical Eqs. (31)
and (32) for each system. (a) Momentum excitation (B = 2); (b)
displacement excitation (A = 2).

may assume that correlation effects are not yet strong and
the system behaved like a short-range correlated one. Note
that such an effect is even more emphasized in the case of
displacement excitation. To numerically estimate the scaling of
〈mν(t)〉 ∝ tβ(ν), a power-law fit was performed on the averaged
moments. The obtained results shown in Fig. 10 reveal that
β(ν) is smaller in the system with α = 1.5 in comparison with
α = 2.5.

As already shown and discussed, β(ν) is different in systems
with different Lévy parameters. In an effort to determine a
general analytic relation for β(ν,α) that describes dependence
on both parameters ν and α, the asymptotic forms of Eqs.
(28) and (29) were inserted into Eq. (30). Later, by defining an
upper cutoff for the summation in the numerator at the ballistic
distance |n − n0| = ct , it can be shown that for displacement
excitation

β(ν,α) =
{
ν − 3

α
, αν > 3,

0, αν < 3,
(31)

while for momentum excitation

β(ν,α) =
{
ν − 1

α
, αν > 1,

0, αν < 1.
(32)

As shown in Fig. 10, there is an excellent agreement between
the theoretical estimates, [according to Eqs. (31) and (32)],
and the numerical data obtained by power-law fits on 〈mν(t)〉
in the long-time regimes.

V. SUMMARY AND CONCLUSION

In this paper, we have studied the localization properties
of classical lattice waves in the presence of a power-law
correlated disorder. The model is mathematically simple and
the choice of the disorder is motivated by the samples known
as Lévy glasses [1]. In the first part, we computed frequency-
dependent localization length and analyzed how different char-
acteristic parameters can affect it. Using theoretical arguments
and numerics, we have shown that in the regime 1 � α < 2,
γ (ω) ∼ ωα so that γ mostly decreases as α increases and this

trend remains the same even in the regime α > 2. The physical
interpretation of this result is that, for small frequencies and
long wavelengths, the waves see an effective disorder whose
fluctuation is scale dependent. More precisely, on distances of
the order of the wavelength, the variance of the disorder grows
according to some power-law depending on α. In other words,
the disorder strength grows upon decreasing α, yielding an
anomalous dependence of the localization length on frequency.
This is a manifestation of the fact that the disorder is, by
construction, scale free.

Large ordered regions can exist inside the system depending
on the Lévy exponent α. As expected, we showed that
eigenfunctions of the system are localized where the density
of disorder is high and extended in the large dilute spaces
inside the system. Moreover, due to the superdiffusive nature
of the transport in the range 1 � α < 2, we showed that the
spatial growth of the root-mean-squared phase 〈φ2

n〉 is greater
in systems with smaller values of α.

The anomalous localization properties reflect in the prob-
lem of wave packet spreading. An initially localized perturba-
tion attains at large times a characteristic power-law decay as
in the uncorrelated case [28,29]. However, in the present case,
the exponent of the decay depends on the exponent α of the
disorder distribution. This implies that the disorder-averaged
momenta 〈mν(t)〉 must diverge with time, although the initial
local energy excitation does not spread completely. The
predictions are clearly supported by the numerical results. As a
matter of fact, it should be remarked that consideration of m2(t)
alone is not sufficient to conclude that the energy diffuses.
Clearly, the origin of such a growth is drastically different
from a genuinely (possibly anomalous) diffusive processes
observed in nonlinear oscillator chains [30–33] and just stems
from the slowly decaying tails.

In the present work we mostly focused on the case α > 1.
As argued in Sec. II C, the case α < 1 should probably
correspond to a vanishing Lyapunov exponent. This may
indicate that the localization in this regime is not standard.
This is further supported by the similarity of the problem with
the perturbation growth in strongly intermittent dynamical
systems, which indeed yields a vanishing Lyapunov exponent
and a subexponential growth of perturbations [34]. Moreover,
the divergence of the variance of the distances should lead
to huge sample-to-sample fluctuations. Some preliminary data
confirm this expectation, suggesting that this case deserves a
more detailed future study.

Finally, a natural question regards the extension to higher
dimensions. Provided one is able to extend the definition of
disorder, we expect the problem to be considerably more diffi-
cult in view of the nature of the predicted essential singularity
of the localization length at vanishing frequencies [25].
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