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Edwards’s statistical mechanics of crumpling networks in crushed self-avoiding sheets with finite
bending rigidity
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This paper is devoted to the crumpling of thin matter. The Edwards-like statistical mechanics of crumpling
networks in a crushed self-avoiding sheet with finite bending rigidity is developed. The statistical distribution of
crease lengths is derived. The relationship between sheet packing density and hydrostatic pressure is established.
The entropic contribution to the crumpling network rigidity is outlined. The effects of plastic deformations and
sheet self-contacts on crumpling mechanics are discussed. Theoretical predictions are in good agreement with
available experimental data and results of numerical simulations. Thus, the findings of this work provide further
insight into the physics of crumpling and mechanical properties of crumpled soft matter.
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I. INTRODUCTION

Crumpling of thin matter is ubiquitous in both nature and
engineering, starting from folding of graphene nanosheets [1]
to geological formations [2]. Accordingly, crumpling phenom-
ena have attracted much interest in science and technology
[3–5]. A remarkable characteristic of thin materials is that their
bending rigidity is much lower than the stretching one. For this
reason, the curvature imposed on a thin sheet is concentrated
in sharp creases and developable cones, whereas a major
fraction of sheet area remains relatively flat and unstrained
[6–8]. Under increasing confinement of crushed sheet the
crumpling creases asymptote to almost linear ridges which
meet at pointlike vertices and form a branched crumpling
network accumulating a major part of deformation energy
[9–11]. Consequently, the crumpling behavior of self-avoiding
sheets with finite bending rigidity is governed by an evolving
network of crumpling ridges. This is reflected in anomalously
large resistance of folded sheets to hydrostatic compression
[12–15], whereas their resistance to shear and axial loads is
quite low [15–20].

Another noteworthy feature of crumpling networks in
randomly crushed thin sheets is their statistical scale invariance
within a wide range of length scales [21,22]. This gives rise
to the fractal geometry of both a crumpled sheet configuration
[22–26] and a set of balls folded from sheets of different sizes
under the same confinement force [1,13,14,20,27–31]. The
relationships between the fractal dimensions of a crumpling
network and sheet configuration were established in Ref. [22].
In this context, it is pertinent to point out that the fractal
dimensions of ball configuration and the fractal dimension of
a set of balls folded by the same forces are generally different
due to elastic strain relaxation after the confinement force
is withdrawn [23]. It was also recognized that both fractal
dimensions are independent of the sheet elastic properties
[20–30], but may change due to plastic deformations of
the sheet material [26,28,31]. Consequently, although the
crumpling processes appear quite haphazard, the crumpling
behavior is well defined in a statistical sense and rather well
reproducible in experiments [13–20,32]. Moreover, almost
all thin materials display nearly the same scale invariant
crumpling behavior [22]. This has allowed the authors of
Ref. [28] to model graphene-based nanosheets crumpled by

capillary forces with the help of relations established in
Ref. [13] for randomly folded aluminum foils. Furthermore,
acoustic emission from hand crushed paper reproduces some
essential attributes of seismic events [33]. Therefore, a better
understanding of crumpling processes in simple model sys-
tems has tremendous importance from the fundamental and
applied standpoints.

The crumpling behavior of thin sheets is strongly dependent
on the confinement mode [15,22] and sheet geometry [22,34].
One of the basic modes is the crumpling of a thin sheet
subjected to isotropic confinement [22,29–31,35]. Under
increasing hydrostatic pressure (P ) an initially flat square sheet
is folded into an approximately spherical ball of diameter R

with the packing density

ρ = 6hL2

πR3
� 1, (1)

where h and L are the sheet thickness and edge
size, respectively. As the compaction ratio K = L/R in-
creases, the packing density increases up to ρ = 1 at
Kmax = (πL/6h)1/3. Experiments [12–15], theoretical con-
siderations [9–13,15,22,28,36], and numerical simulations
[29–31,35,36,37] suggest that once K exceeds the threshold
value Kth (Kth ≈ 1.7 [29,30]) the sheet packing density
exhibits a power-law dependence on P . That is,

ρ = AP 1/η, (2)

where A is the material-dependent constant, whereas the
scaling exponent η � 2 [22]. In the case of linearly elastic self-
avoiding sheets with finite bending rigidity, numerical simu-
lations [29–31] and theoretical arguments [22] suggest that
the scaling exponent η = 2 is universal. Plastic deformations
and friction were considered as possible origins for effective
softness of crumpled materials [13,14,31]. The increase of η

for elastoplastic sheets was observed in experiments [14] and
further reproduced by numerical simulations [31]. Further-
more, more recent experiments [38] and molecular dynamics
simulations [37,39] reveal that isotropically confined self-
avoiding sheets obey the scaling behavior (2) only within a
bounded range of packing density,

ρth = 6hK3
th/πL � ρ � ρ1 ≈ 0.5, (3)
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whereas at larger ρ the rate ∂ρ/∂P decreases almost exponen-
tially. In Ref. [29] the change in the functional dependence of
ρ(P ) was attributed to the effect of sheet self-contacts at high
packing density. Further, in Ref. [38] the increase of ∂ρ/∂P

was linked with the appearance of long-range correlations in
the cluster structure of a crumpled sheet (see Ref. [26]). Based
on this finding, the authors of Ref. [38] have proposed the
mechanical bundled-layer model which provides a good fit
to experimental pressure-packing density behavior without an
account for the contribution of sheet self-contacts.

At the same time, in numerical simulations [30] and experi-
ments [40] it was observed that under increasing external con-
finement the configuration of the crumpling network evolves
to a state with either minimum elastic energy or maximum
entropy. Hence, one might expect that the mechanical response
of randomly crumpled sheets can be explained within a
framework of the Edwards’s statistical mechanics of crumpling
networks (see Refs. [17,19,41,42]). Although the Edwards’s
statistical mechanics was originally developed to deal with
granular matter and spin glasses [42,43], its applicability to
cellular systems and crumpling networks with jammed states
has been already discussed in Refs. [17,18,41,42,44].

In this paper, the Edwards-like statistical mechanics of
crumpling networks is developed and the statistical distribution
of ridge lengths in a self-avoiding sheet with finite bending
rigidity is derived. This allows us to establish the relationship
between the sheet packing density and hydrostatic pressure.
The paper is organized as follows. In Sec. II the scaling
properties of crumpling ridges and crumpling networks are
outlined. The minimum and maximum ridge lengths and the
total number of ridges in a sheet crushed into a spherical
ball are deduced. Section III is devoted to the Edwards-like
statistical mechanics of crumpled sheets. The ridge length
distribution is established and thermodynamic potentials of a
crumpling network are defined. The pressure-packing density
relationship is derived in Sec. IV. Some relevant conclusions
are outlined in Sec. V.

II. CHARACTERISTIC FEATURES OF CRUMPLING
RIDGES AND A CRUMPLING NETWORK

When a thin sheet is confined to a ball of diameter R

much smaller than the sheet size L (see Fig. 1) nearly all
the deformation energy is concentrated in a network of almost
straight ridges that meet at sharp vertices. The boundary-layer
analysis of the ridge singularity in a thin plate suggests that
the width of a crumpling ridge (w) is related to its length (l) as

w = l2/3(κ/Y2)1/6, (4)

where κ and Y2 are the effective bending and stretching moduli
of sheet [6]. Both moduli of an elastic sheet are dependent on
the sheet thickness h [45,46], whereas the apparent stretching
modulus of an elastoplastic sheet is thickness independent
[34,47]. Specifically, the effective bending and stretching
moduli of elastic and elastoplastic sheets are equal to

κ = Y2h
2

12(1 − μ2)
= Y3h

3

12(1 − μ2)
∝ h3 and κ = Y2h

2

9
∝ h2,

(5)

FIG. 1. Illustration of the definition of vectors �ri1, �ri2, and �li in
the crumpling network of a folded sheet.

respectively, where γ3 is the three-dimensional Young modulus
and μ is the Poisson ratio of the sheet material [46,47].

The solution of von Kármán equations suggests that the
elastic energy stored in the crumpling ridge consists of similar
amounts of bending (εb) and stretching (εs) energy and
depends on the ridge length l as

ε ≈ κ(l/h)1/3, (6)

whereas the ratio of the bending and stretching energies stored
in the ridge is determined by the virial theorem [6b]. For
sheets with larger dimensionless Föppl–von Kármán number
χ = (L/h)2 � 1 and l � h, the ratio εb/εs has been predicted
to have the universal value of εb/εs = 5 [6b].

In a thin sheet confined into a ball the lengths of crumpling
ridges vary in the interval of lmin � l � lmax, where lmin and
lmax are the minimum and maximum ridge lengths [48–50].
Furthermore, it is easy to understand that the minimum width
of a crumpling ridge in a confined sheet is wmin = πh.
Therefore, from Eqs. (4) and (5) it follows that the minimum
ridge length is equal to

lmin = [12π6(1 − μ2)]
1/4

h = ωh, (7)

where the constant ω varies from 10.4, if μ = 0, to 9.6, if
μ = 0.5, whereas for elastoplastic sheets ω = 9.6. Notice that
Eq. (7) is consistent with the results of experimental studies
[17,21,22,40,48–50] and molecular dynamics simulations
[29–31,37].

On the other hand, it is easy to understand that the maximum
ridge length is always less than or equal to the folded ball
diameter. Furthermore, it is a straightforward matter to deduce
that in the limit of ρ → 1 the width of all ridges is equal to
wmin = πh and so lmax → lmin. Consequently, in this limit, the
total number of ridges is expected to be equal to

N0 = L2

wminlmin
= 1

πω

(
L

h

)2

≈ 0.03χ. (8)
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The scale invariance of crumpling networks implies that
under increasing isotropic confinement K � Kth the total
number of ridges scales with the sheet packing density (1)
as

N = N0ρ
α, (9)

where the overline denotes the ensemble average and α is the
material-dependent exponent, while the packing density ρth �
ρ � 1. The statistical scaling invariance of the crumpling
network also leads to the scaling relation N ∝ lD2

max, where D2

is the fractal dimension of the crumpling network impression
on the unfolded sheet [22]. Therefore, one can expect that the
ratio lmax/lmin scales with the packing density (1) as

lmax/lmin = (N/N0)1/D2 = ρ−ϕ, (10)

where ϕ = α/D2. However, questions about the crumpling
ridge length distribution and, consequently, its effect on
the crumpling mechanics remain still open (see discussion
in Refs. [3,17–19,21,22,29–31,37,41,48–51,52]). The gamma
distribution is commonly used to fit the crumpling length distri-
butions obtained either in experiments [17,21] or by numerical
simulations [48]. Alternatively, a log-normal distribution
was also suggested to represent the statistical distribution
of crumpling ridge lengths [3,29,48]. Besides, some other
statistical distributions were used to fit specific data sets (see
Refs. [50,51]). In this regard, in view of a crumpling network
self-similarity, we can assume that in an isotropically confined
sheet the ratio of distribution mode (l mod ) to the maximum
ridge length is independent of packing density. That is, in a
thin sheet crumpled under isotropic confinement,

lmax/l mod = k, (11)

where k can be a function of the Föppl–von Kármán number
χ . Furthermore, it was shown that the fractal dimension of
a crumpling network in the folded state (D) is related to the
fractal dimension D2 as

D = D2Db/2, (12)

where Db is fractal dimension of ball configuration [22]. For
a given confinement mode (e.g., axial, radial, and isotropic
compression, or hand crumpling [22]) of purely elastic sheets
the fractal dimensions D2, Db, D, and the scaling exponent
α are expected to be material independent. Specifically, for
isotropically confined purely elastic self-avoiding sheets, it
was suggested that D2 = 11/6, Db = 8/3, D = 22/9, and α =
11/9 [22], and so ϕ = 2/3. This is consistent with the results of
numerical simulations in which it was found that 1.13 � α �
1.33 [29,31] and so, numerically, ϕ = α/D2 = 0.67 ± 0.06.

III. STATISTICAL MECHANICS OF CRUMPLING
NETWORKS

As a thin sheet is confined, the configuration of the
crumpling network changes due to sudden buckling of existing
and formation of new crumpling ridges [6,17,40,53]. In this
regard, it was found that the energy of a ridge can change
by no more than a finite fraction before it buckles [6b]. So,
the crumpling process can be viewed as a stepwise sequence
of nonequilibrium jammed states of the crumpling network.
Furthermore, it was shown that in a crumpled sheet two

ridges with comparable lengths and dihedral angles have
comparable energies, even though they have different loads
[6b]. Therefore, a jammed state of a crumpling network can
be completely defined by a set of vectors {�rij } pointing to
each end of every ridge, where i = 1,2, . . . ,N counts the
ridges (N � N0), while j = 1,2 enumerates extremes of each
ridge (see Fig. 1). This allows us to construct the Edwards-like
statistical mechanics of evolving crumpling networks.

The Edwards’s approach (see Refs. [42–44]) may be sum-
marized as follows. For a given configuration attained dynam-
ically, physical observables can be obtained by averaging over
the usual equilibrium distribution at the corresponding volume,
energy, etc., but restricting the sum to inherent states defined
as the stable configurations in the potential energy landscape.
The strong ergodic hypothesis that all jammed configurations
of a given volume can be taken to have equal statistical
probabilities leads to definition of the configurational entropy
(S) as the logarithm of the number of jammed configurations
with a given number of ridges (N ), volume (V ), and energy
(E). Specifically, the configurational entropy of crumpling
networks can be defined in a straightforward manner as

S(p) = −
∫

dμ{rij }p{rij } ln p{rij }, (13)

where p{rij } is the probability density of network configu-
ration {�rij } and dμ{�rij } is the volume element in a fractal
configuration space, such that∫

dμ{�rij }p{�rij } = 1 (14)

whereas the mean total number and length of all ridges in the
crumpling network are equal to

N =
∫

dμ{�rij }p{�rij }ℵ{�rij } and

(15)

 =
∫

dμ{�rij }p{�rij }�{�rij },

respectively, where ℵ{�rij } and �{rij } = ∑ℵ
i=1 |�ri2 − �ri1| are the

number of ridges and the sum of ridge lengths for a given
configuration of the crumpling network.

The maximization of entropy (13) leads to

p(�{�rij },ℵ{�rij }) = 1

Z
exp(−β�{�rij } − ζℵ{�rij }), (16)

where Z is the partition function that normalizes p(�,ℵ),
whereas the Lagrange multipliers β and ζ play the role of the
inverse effective temperature and external force, respectively.

A. Statistical distribution of ridge lengths in a crumpling
network

The marginal probability density function of ridge length
can be calculated in a straightforward way as follows:

p(l) =
∫

dμp(�{�rij },ℵ{�rij })

= 1

Z

∫
dμ exp (−β� − ζℵ) × δ (l − |�rk2 − �rk1|)

×
∫

dNδ (N − ℵ)
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= 1

Z

∫
dμ exp (−ζℵ) × exp (−β�) δ (N − ℵ)

× δ (l − |�rk2 − �rk1|)
= 1

Z

∫
dN exp (−ζN )� (l,N ) , (17)

where the delta function δ(l − |�rk2 − �rk1|) accounts for the
sheet self-avoidance, whereas δ(N − ℵ) restricts the configu-
rational space {�rij } to the space {�rij }N with exactly N ridges,
while

�(l,N )=
∫

dμ{�rij }N exp(−β�{�rij }N )δ(l − |�rk2 − �rk1|) (18)

is the marginal counting integral. Following to Refs. [43,44],
integral (18) can be presented in the following form:

�(l,N ) = 1

N !

∫ N∏
i=1

dμ (�ri2,�ri1)�{�rij }N

× exp(−β�{�rij }N )δ (l − |�rk2 − �rk1|)

= 1

N !

∫ N∏
i=1

dμ(�ri1)dμ(�li)�({�ri1,�li}N )

× exp

⎛
⎝−β

N∑
j=1

lj

⎞
⎠ δ (l − lk) , (19)

where dμ{�rij } = ∏N
i=1 dμ{�ri2,�ri1}/N!, �li = �ri2 − �ri1, li =

|�li |, �{�rij } = ∑N
i=1 li , and

dμ{�ri1,�ri2} = dμ(�ri1)dμ(li), (20)

while �({�ri1,�li}N ) = ∏N
i �(li − lmin)�(lmax − li) is a con-

straint function restricting the integral to the ensemble of
admissible configurations of the crumpling network with
lmin � li � lmax, and �(· · · ) denotes the step function.

Taking into account the scale invariance of crumpling net-
work, the fractional volume element (20) can be presented in
spherical coordinates as dμ = dμ(li)dμ(�ri1), where dμ(li) =
lD−1
i dli and dμ(�ri1) = d�D−1 [54], while 2 < D < 3 is the

fractal dimension of the crumpling network (12). Accordingly,
the marginal counting integral (19) takes the following form:

�(l,N ) = VDIN−1

N !
exp (−l) lD−1, (21)

where VD = ∫
dμ{�rij } and I = ∫

dμ(�l)�(lmin − l)
�(l − lmax) exp(−βl). Consequently, after the substitution of
Eq. (21) into Eq. (17) and application of the normalization
condition ∫ lmax

lmin

p(l)dl = 1, (22)

we get the statistical distribution function of ridge lengths in
the following form:

p(l) =

⎧⎪⎨
⎪⎩

βDlD−1 exp (−βl)

γ (D,βlmin,βlmax)
, if lmin � l � lmax

0, otherwise

, (23)

where γ (s; x1,x2) = ∫ x2

x1
t s−1e−t dt = �(s; x1) − �(s; x2) is

the generalized incomplete gamma function, while �(s; xi) is
the upper incomplete gamma function.

The mode of distribution (23) is l mod = (D − 1)/β. Ac-
cordingly, using relations (10) and (11), the generalized effec-
tive temperature of the crumpling network can be expressed
as the function of packing density (1) as

β−1 = l mod

D − 1
= lmax

a
= chρ−ϕ, (24)

where coefficients

a = (D − 1)lmax/l mod (25)

and c = ω/a can be functions of the Föppl–von Kármán
number χ , sheet geometry, and confinement mode. Notice
that for purely elastic self-avoiding sheets ϕ = 2/3 and so
β ∝ ρ2/3 ∝ K2.

The mean ridge length in the crumpling network obeying
the statistical distribution (23) decreases with increase of β as

〈l〉 =
∫ lmax

lmin

lp(l)dl = γ (D + 1; βlmin,a)

γ (D; βlmin,a)
β−1, (26)

where lmin, lmax, β, and a are defined by Eqs. (7), (10), (24),
and (25), respectively. Figure 2 shows the graphs of β〈l〉 versus
βlmax for different βlmin. One can see that in the limit of low
compactivity (βlmax → ∞) the mean ridge length depends on
the generalized effective temperature as

〈l〉 = lmin + Dβ−1, (27)

whereas in the limit of high packing density (ρ → 1) the
mean ridge length 〈l〉 → l mod → lmax → lmin. Figures 2 and
3 show the graphs of the probability density distribution
(23) along with the conventional gamma distribution. It is
instructive to note that in the limit of βlmax → ∞ the statistical
distribution (23) is converted into the conventional shifted

FIG. 2. Probability density distribution (23) of normalized ridge
length βl in crumpling networks the same D = 22/9 = 2.44, βlmin =
0.1, and mode βl mod = (D − 1) = 1.44, but different maximum
ridge length βlmax = 3 (1), 5 (2), 10 (3), and the gamma distribution
(4). Inset shows the graph of normalized ridge length β〈l〉 versus
βlmax.
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FIG. 3. Statistical distributions of ridge length in a crumpling
network formed in hand crushed paper of edge size L = 100 mm
and thickness h = 0.068 mm with the packing densities (a) ρ =
0.072 (R = 26.3 mm) and (b) ρ = 0.295 (R = 16.4 mm). Bins: ex-
perimental data from Ref. [17] (notice the misprint in Fig. 8 of
Ref. [17], where the ridge length is actually measured in pixels);
curves: data fittings by (a) log-normal distribution (dashed curve: shift
0.179 mm, scale parameter 1.19 mm, and shape parameter 0.88) and
by Eq. (23) with lmin = 0.204 mm, lmax = 6 mm, β−1 = 0.446 mm,
and D = 2.42 (solid curve); (b) gamma distribution (dashed curve:
shift 0.28 mm, β−1 = 0.338 mm and D = 2.18) and by Eq. (23) with
lmin = 0.204 mm, lmax = 4.1 mm, β−1 = 0.273 mm, and D = 2.82
(solid curve).

gamma distribution commonly used to fit the experimental
data for ridge lengths distribution. In this regard, although
the distribution (23) is experimentally indistinguishable from
a conventional gamma distribution when βlmax = a > 10,
while βlmin < 0.1 (see Fig. 4), we found that distribution
(24) provides the best fit to available data for experimental
crumpling length sets with βlmax = a < 5 (e.g., see Fig. 3).

B. Thermodynamic potentials of a crumpling network

The elastic energy stored in the crumpling network is equal
to E = ∑N

i εi , where εi is the elastic energy (6) stored in a
single ridge of length li [6]. Accordingly, in the thermodynamic
limit of N → ∞,

E = N

∫
dlε(l)p(l) = κN

∫ lmax

lmin

(l/h)2/3p(l)dl = N 〈ε〉 ,

(28)

FIG. 4. Normalized mean ridge length β〈l〉 versus βlmax for dif-
ferent βlmin = 0.0001 (1), 0.1 (2), 0.5 (3), 0.99 (4). Inset shows β〈l〉
versus βlmin for βlmax � 1.

where ε(l) is given by Eq. (6) and the distribution function
p(l) and number of ridges N (ρ) are defined by Eqs. (23) and
(9), respectively.

Within the Edwards’s approach (see Refs. [42–44]), an
infinitesimal change of configurational entropy S(N,E,V ) =
Ns(ε,v) between two jammed states of the crumpling network
can be presented in the form dS = T −1

conf(dE − μdN ) +
X−1dV , such that

ds = T −1
conf(dε − 〈ε〉N−1

dN ) + X−1dv, (29)

where v = V/N , V = L2hρ−1 is the volume of the crumpled
ball, and

μ = (∂E/∂N )V,S = 〈ε〉 (30)

is the chemical potential of the crumpling network, whereas

T −1
conf = (∂s/∂ε)V,N and X−1 = (∂s/∂v)E,N , (31)

are the configurational temperature and compactivity, respec-
tively (see Refs. [43]), while s(β) = − ∫ lmax

lmin
p(l) ln[p(l)]dl +∫ lmax

lmin
p(l)s(l)dl and β(v) is defined by Eq. (24). Using the

distribution function (23), it is a straightforward exercise to
derive the expression

s(β) = 1 + γ (D + 1; βlmin,a)

γ (D; βlmin,a)

+ ln

[
VD

2[N !]1/N
γ (D; βlmin,a)

]
, (32)

where

β−1 = (∂ 〈l〉 /∂s) = (∂ε/∂ 〈l〉)−1Tconf, (33)

whereas ζ = T −1
confμ and the analog of the Helmholtz free

energy of the crumpling network is F = E − TconfS, such
that S(β) = β2(∂F/∂β)ζ,E . In this way, all thermodynamic
potentials of the crumpling network can be defined within the
framework of Edwards’s statistical mechanics.
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IV. PRESSURE-PACKING DENSITY RELATIONSHIP

Generally, the mechanical behavior of a randomly crumpled
sheet on external loads is governed by the crumpling network
response on changes of number of ridges, network volume,
and shape. In particular, the crumpling network responses
to shear or axial compression are controlled by the shape
dependence of the configurational entropy [17], whereas
the mechanical behavior of a randomly folded sheet in a
three-dimensional stress state is dominated by the volume
dependence of elastic energy stored in the network [22], at
least in the range (2) of packing density variation. However, as
the packing density increases, the entropic contribution to the
sheet resistance to hydrostatic pressure can become relevant.
It is a straightforward matter to derive the relation between the
sheet packing density ρ = L2h/V and hydrostatic pressure

P = −
(

∂E

∂V

)
S,N

+ 〈ε〉
(

∂N

∂V

)
E,S

+ Tconf

(
∂S

∂V

)
E,N

. (34)

Accordingly, using Eqs. (9), (28), (32), and (33), and
taking into account that asymptotically P → ∞ as ρ → 1,
the pressure-packing density relationship can be presented in
the following form:

P = Aρη

{
1 + (a)D exp (−a)

3γ (D; aρϕ,a)

}
, (35)

where the scaling exponent η is equal to

η = α − ϕ/3 + 1, (36)

such that for purely elastic self-avoiding sheets crumpled into
balls (α = 11/9 and ϕ = 2/3) the scaling exponent η = 2
coincides with the result of numerical simulations in Ref. [28],
whereas the material-dependent constant A coincides with that
in Eq. (2).

Notice that the first term on the right-hand side of Eq. (35)
accounts for the change of number of ridges and total elastic en-
ergy stored in the crumpling network, whereas the second term
accounts for the change in the network entropy. Accordingly,
from graphs in Fig. 5 one can see that as long as the packing
density is in the range of Eq. (3), the sheet compressibility
is governed by an increase of elastic energy and P (ρ) obeys
Eq. (2). For larger packing densities, the entropic contribution
becomes relevant and then it becomes dominant as ρ → 1.
Figure 6 shows the normalized pressure-packing density
curves for an elastic sheet (D = 22/9, ϕ = 2/3, η = 2) with
different ratio lmax/l mod = a/(D − 1). Notice that as the ratio
lmax/l mod increases, the interval (3) of power-law behavior
(2) increases, but the deviation from the power-law at higher
packing densities becomes more abrupt, as was observed in
numerical simulations reported in Ref. [39].

Plastic deformations of elastoplastic sheets lead to increase
of ϕ [22] and η [14,22,31,38]. In this regard, it should be
emphasized that the parameter a = (D − 1)lmax/l mod and
scaling exponent ϕ = α/D2 can be determined from studies
of crumpling networks. Specifically, these parameters can be
obtained from the tomographic [25], or electron microscopy
[28] studies of crumpled sheets. Furthermore, such parameters
as lmax, l mod , D2, α, and ϕ can be determined in studies
of crumpling network impressions on unfolded sheets (see
Refs. [21,22,48,50,55]). So, the master curve P/A versus ρ can

FIG. 5. Log-log plots of normalized pressure (P/A) versus
packing density (1) along with the energetic (2) and entropic (3)
contributions into P (ρ) behavior (35) for an elastic self-avoiding
sheet with a = 5.2 (D = 22/9 and ϕ = 2/3).

be calculated without any mechanical measurement. This may
be very useful especially for studies of crumpled nanosheets,
e.g., as performed in Ref. [28].

On the other hand, in practice, Eqs. (35) and (36) can be
used to fit experimental data available in the range (3) and
then extrapolate them to higher pressures and larger packing
densities. Figure 7 illustrates that Eq. (35) provides an excellent
fit of experimental pressure-packing density curve for the
aluminum foil crumpled under hydrostatic compression [38].

FIG. 6. Log-log plots of normalized pressure (P/A) versus
packing density (ρ) for purely elastic sheets with different ratios
lmax/l mod = 3.37 (1), 8.47 (2), and 15.25 (3); the straight line (4)
shows the power-law behavior of Eq. (2). Inset amplifies the deviation
of P (ρ) curve from the power law.
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FIG. 7. Log-log plot of packing density (1) versus pressure for
the aluminum sheet of thickness h = 0.016 mm and edge size L =
150 mm. Circles: experimental data from Fig. 2 of Ref. [38], dashed
line: power-law asymptotic (2), and solid curve is calculated by
Eqs. (35) and (36) with A = 6.776 MPa, a = 10.08, (10) D = 2.64,
and ϕ = 0.817. For visual appreciation of the fit quality we use the
same scales as in Fig. 2 of Ref. [38].

In this regard, it is also pertinent to point out that in Ref. [38]
experimental data for sheets of different sizes made from
different elastoplastic materials were collapsed into the same
master curve P/Aρη versus ρ [56], so the good quality of data
fitting in Fig. 7 permits to assume that the contribution from
sheet self-contacts into pressure-packing density behavior
can be neglected [57]. Nonetheless, comprehensive molecular
dynamics simulations are required to validate the finding of
this work.

V. CONCLUSIONS

In summary, we develop the Edwards-like approach to
statistical mechanics of crumpling networks in randomly
crushed self-avoiding sheets with finite bending rigidity. The
ridge length distribution function is derived. It is shown that
this distribution provides the best fit to available experimental
data for hand crushed papers and is consistent with numerical
simulations reported in the literature. For the case of isotropic
confinement, the maximum and mean ridge lengths are
expressed in terms of sheet dimensions and the confinement
ratio. This allows us to establish the pressure-packing density
relationship, which elucidates the entropic nature of deviation
from the power-law behavior. The effect of plastic deforma-
tions on the crumpling mechanics is discussed. It is shown
that theoretical relationship P (ρ) is consistent with available
results of molecular dynamics simulations and provides an
excellent fit to available experimental data in the full range
of packing density variation. In this way, it is emphasized
that all fitting parameters of the pressure packing can be
determined by the study of crumpling networks on unfolded
elastoplastic sheets. These findings provide further insight
into the physics of crumpling and mechanical properties of
crumpled soft matter. So, we expect that this paper will
stimulate experimental research and numerical simulations of
crumpling phenomena.
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[11] J. A. Åström, J. Timonen, and M. Karttunen, Crumpling
of a stiff tethered membrane, Phys. Rev. Lett. 93, 244301
(2004).

[12] K. Matan, R. B. Williams, T. A. Witten, and S. R. Nagel,
Crumpling a thin sheet, Phys. Rev. Lett. 88, 076101 (2002).

[13] A. S. Balankin, I. Campos Silva, O. A. Martı́nez, and O. Susarrey
Huerta, Scaling properties of randomly folded plastic sheets,
Phys. Rev. E 75, 051117 (2007).

032109-7

http://dx.doi.org/10.1103/PhysRevB.84.205451
http://dx.doi.org/10.1103/PhysRevB.84.205451
http://dx.doi.org/10.1103/PhysRevB.84.205451
http://dx.doi.org/10.1103/PhysRevB.84.205451
http://dx.doi.org/10.1016/j.tecto.2012.09.020
http://dx.doi.org/10.1016/j.tecto.2012.09.020
http://dx.doi.org/10.1016/j.tecto.2012.09.020
http://dx.doi.org/10.1016/j.tecto.2012.09.020
http://dx.doi.org/10.1016/S0378-4371(02)01260-8
http://dx.doi.org/10.1016/S0378-4371(02)01260-8
http://dx.doi.org/10.1016/S0378-4371(02)01260-8
http://dx.doi.org/10.1016/S0378-4371(02)01260-8
http://dx.doi.org/10.1088/0953-8984/17/20/001
http://dx.doi.org/10.1088/0953-8984/17/20/001
http://dx.doi.org/10.1088/0953-8984/17/20/001
http://dx.doi.org/10.1088/0953-8984/17/20/001
http://dx.doi.org/10.1103/RevModPhys.79.643
http://dx.doi.org/10.1103/RevModPhys.79.643
http://dx.doi.org/10.1103/RevModPhys.79.643
http://dx.doi.org/10.1103/RevModPhys.79.643
http://dx.doi.org/10.1021/nn302818j
http://dx.doi.org/10.1021/nn302818j
http://dx.doi.org/10.1021/nn302818j
http://dx.doi.org/10.1021/nn302818j
http://dx.doi.org/10.1016/S1369-7021(12)70114-1
http://dx.doi.org/10.1016/S1369-7021(12)70114-1
http://dx.doi.org/10.1016/S1369-7021(12)70114-1
http://dx.doi.org/10.1016/S1369-7021(12)70114-1
http://dx.doi.org/10.1021/jp400237m
http://dx.doi.org/10.1021/jp400237m
http://dx.doi.org/10.1021/jp400237m
http://dx.doi.org/10.1021/jp400237m
http://dx.doi.org/10.1016/j.msea.2013.01.031
http://dx.doi.org/10.1016/j.msea.2013.01.031
http://dx.doi.org/10.1016/j.msea.2013.01.031
http://dx.doi.org/10.1016/j.msea.2013.01.031
http://dx.doi.org/10.1039/c3tb21462a
http://dx.doi.org/10.1039/c3tb21462a
http://dx.doi.org/10.1039/c3tb21462a
http://dx.doi.org/10.1039/c3tb21462a
http://dx.doi.org/10.1126/science.270.5241.1482
http://dx.doi.org/10.1126/science.270.5241.1482
http://dx.doi.org/10.1126/science.270.5241.1482
http://dx.doi.org/10.1126/science.270.5241.1482
http://dx.doi.org/10.1103/PhysRevE.55.1577
http://dx.doi.org/10.1103/PhysRevE.55.1577
http://dx.doi.org/10.1103/PhysRevE.55.1577
http://dx.doi.org/10.1103/PhysRevE.55.1577
http://dx.doi.org/10.1038/43395
http://dx.doi.org/10.1038/43395
http://dx.doi.org/10.1038/43395
http://dx.doi.org/10.1038/43395
http://dx.doi.org/10.1103/PhysRevE.65.016603
http://dx.doi.org/10.1103/PhysRevE.65.016603
http://dx.doi.org/10.1103/PhysRevE.65.016603
http://dx.doi.org/10.1103/PhysRevE.65.016603
http://dx.doi.org/10.1103/PhysRevE.71.016612
http://dx.doi.org/10.1103/PhysRevE.71.016612
http://dx.doi.org/10.1103/PhysRevE.71.016612
http://dx.doi.org/10.1103/PhysRevE.71.016612
http://dx.doi.org/10.1103/PhysRevLett.106.074301
http://dx.doi.org/10.1103/PhysRevLett.106.074301
http://dx.doi.org/10.1103/PhysRevLett.106.074301
http://dx.doi.org/10.1103/PhysRevLett.106.074301
http://dx.doi.org/10.1103/PhysRevLett.78.1303
http://dx.doi.org/10.1103/PhysRevLett.78.1303
http://dx.doi.org/10.1103/PhysRevLett.78.1303
http://dx.doi.org/10.1103/PhysRevLett.78.1303
http://dx.doi.org/10.1103/PhysRevLett.87.206105
http://dx.doi.org/10.1103/PhysRevLett.87.206105
http://dx.doi.org/10.1103/PhysRevLett.87.206105
http://dx.doi.org/10.1103/PhysRevLett.87.206105
http://dx.doi.org/10.1103/PhysRevLett.93.244301
http://dx.doi.org/10.1103/PhysRevLett.93.244301
http://dx.doi.org/10.1103/PhysRevLett.93.244301
http://dx.doi.org/10.1103/PhysRevLett.93.244301
http://dx.doi.org/10.1103/PhysRevLett.88.076101
http://dx.doi.org/10.1103/PhysRevLett.88.076101
http://dx.doi.org/10.1103/PhysRevLett.88.076101
http://dx.doi.org/10.1103/PhysRevLett.88.076101
http://dx.doi.org/10.1103/PhysRevE.75.051117
http://dx.doi.org/10.1103/PhysRevE.75.051117
http://dx.doi.org/10.1103/PhysRevE.75.051117
http://dx.doi.org/10.1103/PhysRevE.75.051117


ALEXANDER S. BALANKIN AND LEONARDO FLORES-CANO PHYSICAL REVIEW E 91, 032109 (2015)

[14] Y. C. Lin, Y. L. Wang, Y. Liu, and T. M. Hong, Crumpling under
an ambient pressure, Phys. Rev. Lett. 101, 125504 (2008).

[15] S. Deboeuf, E. Katzav, A. Boudaoud, D. Bonn, and M. Adda-
Bedia, Comparative study of crumpling and folding of thin
sheets, Phys. Rev. Lett. 110, 104301 (2013).

[16] A. S. Balankin, D. Samayoa Ochoa, E. Pineda León, R.
C. Montes de Oca, A. Horta Rangel, and M. A. Martı́nez
Cruz, Power law scaling of lateral deformations with universal
Poisson’s index for randomly folded thin sheets, Phys. Rev. B
77, 125421 (2008).

[17] A. S. Balankin and O. Susarrey Huerta, Entropic rigidity of a
crumpling network in a randomly folded thin sheet, Phys. Rev.
E 77, 051124 (2008).

[18] A. S. Balankin, O. Susarrey Huerta, F. Hernández Méndez, and
J. Patiño Ortiz, Slow dynamics of stress and strain relaxation
in randomly crumpled elastoplastic sheets, Phys. Rev. E 84,
021118 (2011).

[19] A. S. Balankin, O. Susarrey Huerta, and V. Tapia, Statistics of
energy dissipation and stress relaxation in a crumpling network
of randomly folded aluminum foils, Phys. Rev. E 88, 032402
(2013).

[20] C. Hui, Y. Zhang, L. Zhang, R. Sun, and F. Liu, Crumpling of a
pyrolytic graphite sheet, J. Appl. Phys. 114, 163512 (2013).

[21] A. S. Balankin, O. Susarrey Huerta, R. C. M. de Oca, D.
S. Ochoa, J. M. Trinidad, and M. A. Mendoza, Intrinsically
anomalous roughness of randomly crumpled thin sheets, Phys.
Rev. E 74, 061602 (2006).

[22] A. S. Balankin, A. H. Rangel, G. G. Pérez, F. G. Martinez,
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[30] T. Tallinen, J. A. Åström, and J. Timonen, Deterministic
folding in stiff elastic membranes, Phys. Rev. Lett. 101, 106101
(2008); T. Tallinen, J. A. Aström, and J. Timonen, Discrete
element simulations of crumpling of thin sheets, Comput. Phys.
Commun. 180, 512 (2009).
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and J. Brujić, Fundamental problems in statistical physics
of jammed packings, ibid. 330, 61 (2003); S. F. Edwards,
New kinds of entropy, J. Stat. Phys. 116, 29 (2004); R.
Blumenfeld and S. F. Edwards, Granular entropy: explicit
calculations for planar assemblies, Phys. Rev. Lett. 90, 114303
(2003); T. Aste, T. Di Matteo, M. Saadatfar, T. J. Senden,
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