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Fractional diffusion on a fractal grid comb
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A grid comb model is a generalization of the well known comb model, and it consists of N backbones. For
N = 1 the system reduces to the comb model where subdiffusion takes place with the transport exponent 1/2.
We present an exact analytical evaluation of the transport exponent of anomalous diffusion for finite and infinite
number of backbones. We show that for an arbitrarily large but finite number of backbones the transport exponent
does not change. Contrary to that, for an infinite number of backbones, the transport exponent depends on the
fractal dimension of the backbone structure.
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I. INTRODUCTION

The comblike models have been introduced to investigate
anomalous diffusion in low-dimensional percolation clusters
[1–4]. It means that the mean square displacement (MSD) has
power-law dependence on time 〈x2(t)〉 � tα [5]. An elegant
form of equation which describes the diffusion on a comblike
structure was introduced by [4]

∂

∂t
P (x,y,t) = Dxδ(y)

∂2

∂x2
P (x,y,t) + Dy

∂2

∂y2
P (x,y,t),

(1)

where P (x,y,t) is the probability distribution function (PDF),
Dxδ(y) is the diffusion coefficient in the x direction with
physical dimension [Dx] = m3/s, and Dy is the diffusion
coefficient in the y direction with physical dimension [Dy] =
m2/s. The δ function in the diffusion coefficient in the x

direction implies that the diffusion along the x direction occurs
only at y = 0. Thus, this equation can be used to describe
diffusion in the backbone (at y = 0) where the teeth play the
role of traps.

Nowadays, comb models have many applications. They
have been used for the understanding of continuous [6–8]
and discrete [9] non-Markovian random walks. There are
generalizations of this equation by introducing time fractional
derivatives and integrals in Eq. (1) [10,11]. Such generalized
comblike models have been used to describe anomalous
diffusion in spiny dendrites, where the MSD along the x

direction has a power-law dependence on time [10,11], or for
describing subdiffusion on a fractal comb [12], the mechanism
of superdiffusion of ultracold atoms in a one dimensional
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polarization optical lattice [13] as a phenomenology of
experimental study [14], and to describe diffusion processes
on a backbone structure [15]. Different generalizations of
the comb model have been shown to represent more realistic
models for describing transport properties in discrete systems,
such as porous discrete media [16], electronic transport in
semiconductors with a discrete distribution of traps, cancer
development with definitely fractal structure of the spreading
front [17,18], infiltration of diffusing particles from one
material to another [19], description of diffusion of active
species in porous media [20], etc. Furthermore, in Ref. [21] it
is shown that in a comblike model a negative superdiffusion
occurs due to the presence of an inhomogeneous convection
flow.

In this paper we consider a generalization of Eq. (1) where
we allow that diffusion along the x direction may occur on
many backbones, located at y = lj , j = 1,2, . . . ,N , 0 � l1 <

l2 < · · · < lN . This means that we have a comb grid where N

can be arbitrarily large, even infinity. The governing equation
for such a structure is given by

∂

∂t
P (x,y,t) = Dx

N∑
j=1

wjδ(y − lj )
∂2

∂x2
P (x,y,t)

+Dy

∂2

∂y2
P (x,y,t), (2)

where wj are structural constants such that
∑N

j=1 wj = 1. The
initial condition is given by

P (x,y,t = 0) = δ(x)δ(y), (3)

and the boundary conditions for P (x,y,t) and ∂
∂q

P (x,y,t),
q = {x,y}, are set to zero at infinity, x = ±∞, y = ±∞. One
can easily verify that for l1 = 0, w1 = 1, and w2 = w3 = · · · =
wN = 0 Eq. (2) becomes (1). The physical dimensions of Dx

and Dy for a finite number of backbones are the same as
those in Eq. (1). The case of a fractal structure of backbones
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will be described by an appropriate generalization of Eq. (2).
The motivation to introduce such a model is to describe the
diffusion of solvents in thin porous films [22]. Such a product
structure of backbones times comb is an idealization of more
complex comblike fractal networks, as they may appear, e.g.,
in certain anisotropic porous media or anisotropic biological
tissue.

The paper is organized as follows. In Sec. II we analyze
the PDF and the MSD in both directions for the force free
case. Anomalous diffusive behavior 〈x2(t)〉 � t1/2 appears
in the x direction due to the comb structure of the system.
General results for the MSD in the case of a finite number
of backbones N are presented. We also investigate the effects
of an external constant force, applied along the backbones,
on the particle behavior. In Sec. III we consider an infinite
number of backbones. It is shown that an infinite number
of backbones, different from the case of a finite number of
backbones, changes the transport exponent. Deviations from
the standard MSD 〈x2(t)〉 � t1/2 were observed recently in
combs with ramified teeth as well, due to teeth with a fractal
structure [23]. The summary is given in Sec. IV.

II. FINITE NUMBER OF BACKBONES: MSD

We apply a Laplace transform (L[f (t)] = f̂ (s)) to Eq. (2),
and then a Fourier transform with respect to the x(Fx[f (x)] =
f̃ (κx)) and y(Fy[f (y)] = f̄ (κy)) variables. Thus, we obtain

¯̂̃
P (κx,κy,s) =

¯̃P (κx,κy,t = 0)

s + Dyκ2
y

−
∑N

j=1 wj
˜̂P (κx,y = lj ,s) exp(iκylj )

s + Dyκ2
y

Dxκ
2
x ,

(4)

where ¯̃P (κx,κy,t = 0) = 1. From relation (4), the inverse
Fourier transform with respect to κy yields

˜̂P (κx,y,s)

=
exp

(−√
s
Dy

|y|)
2
√
Dys1/2

−
Dxκ

2
x

∑N
j=1 wj

˜̂P (κx,y = lj ,s) exp
(−√

s
Dy

|y − lj |
)

2
√
Dys1/2

.

(5)

In the setting of a comb model, the nontrivial and interesting
motion is along the backbones, i.e., along the x direction, while
the y direction is an auxiliary subspace. Therefore, integrating
the motion in the y direction, we analyze the PDF p1(x,t) =∫ ∞
−∞ dyP (x,y,t). By integration of Eq. (2) with respect to y

and performing the Laplace transform with respect to time t ,
and the Fourier transform with respect to x, one obtains

˜̂p1(κx,s) = 1

s

⎡
⎣1 − Dxκ

2
x

N∑
j=1

wj
˜̂P (κx,y = lj ,s)

⎤
⎦ . (6)

From the PDF (6) we calculate the MSD along the x

direction by the following formula:

〈x2(t)〉 = L−1

[
− ∂2

∂κ2
x

˜̂p1(κx,s)

]∣∣∣∣
κx=0

. (7)

From relations (5)–(7) for the MSD we derive

〈x2(t)〉 = Dx√
Dy

L−1

⎡
⎣s−3/2

N∑
j=1

wje
−
√

s/Dy |lj |

⎤
⎦

= Dx√
Dy

N∑
j=1

wj

[
2√
π

t1/2e−|lj |2/4Dy t

− |lj |√
Dy

erfc

( |lj |√
4Dyt

)]
, (8)

where erfc(x) is the complementary error function erfc(x) =
2√
π

∫ ∞
x

due−u2
[24].

For l1 = 0 it follows that

〈x2(t)〉 = 2w1Dx√
Dy

t1/2

�
(

1
2

) + Dx√
Dy

×
N∑

j=2

wj

[
2√
π

t1/2e−|lj |2/4Dy t

− |lj |√
Dy

erfc

( |lj |√
4Dyt

)]
. (9)

For the long time scale when |lj |√
Dy t

� 1, j = 2,3, . . . ,N ,

the MSD reads

〈x2(t)〉 = 2
∑N

j=1 wjDx√
Dy

t1/2

�
(

1
2

) , (10)

which means that all backbones contribute in the MSD. In
contrast to this, on a short time scale, when |lj |√

Dy t
� 1, j =

2,3, . . . ,N , one finds that the main contribution in the MSD is
due to the first backbone, i.e.,

〈x2(t)〉 � 2w1Dx√
Dy

t1/2

�
(

1
2

) . (11)

This result is expected since for short times the particles move
mainly in the first backbone because they had not enough
time to reach the other ones by diffusion in the y direction.
This can be easily verified by considering diffusion along the
y direction. We analyze the PDF p2(y,t) = ∫ ∞

−∞ dxP (x,y,t),
for which we find that

¯̂p2(κy,s) = 1

s + Dyκ2
y

, (12)

i.e., p2(y,t) = 1√
4πDy t

exp(− y2

4Dy t
). For the MSD along the

y direction one finds a linear dependence on time 〈y2(t)〉 =
2Dyt , i.e., normal diffusion along the y direction. Therefore,
the probability to find the particle at the first backbone is
p2,1(y,t) = 1√

4πDy t
(l1 = 0), while at the second backbone it

is p2,2(y,t) = 1√
4πDy t

exp(− l2
2

4Dy t
), and so on. Since for the
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FIG. 1. (Color online) Graphical representation of the MSD (9)
on log-log scale. The blue solid line (upper solid line) corresponds
to the MSD in the case of two backbones, l1 = 0, l2 = L = 1, and
w1 = w2 = 1/2. The blue dot-dashed line describes the asymptotic
behavior of the MSD for short times, given by (11). The red solid line
(lower solid line) corresponds to the MSD in case of five backbones,
lj = (j − 1)L, j = 1,2, . . . ,5, L = 1, wj = 1/5. The red dotted line
corresponds to its asymptotic behavior for short times, given by (11).
The MSDs in both cases have the same asymptotic in the long time
limit given by (10), i.e., 〈x2(t)〉 = 2Dx√

Dy

t1/2

�(1/2) (green dashed line).

Diffusion coefficients are set to 1; Dx = Dy = 1.

short time scales, p2,1(y,t) � p2,2(y,t) � . . ., we conclude
that the main contribution in the MSD for short times is due to
the displacements in the first backbone.

From relation (9) for w1 = 1, w2 = w3 = · · · = wN = 0,
and l1 = 0 (which means one backbone) we obtain the MSD
for the comblike model (1),

〈x2(t)〉 = 2Dx√
Dy

t1/2

�
(

1
2

) . (13)

These results are supported by graphical representation in
Fig. 1 of the MSD in the case of two backbones and five
backbones. It is assumed that the first backbone is at y = 0
and all the other backbones are at distances equal to L, 2L,
3L, 4L.

From relations (10) and (11) we conclude that any finite
number of backbones does not change the transport exponent
in the short and long time limit. In the intermediate times there
is more complicated behavior of the MSD given by relation
(9). The crossover time scales separating the behavior at short,
intermediate, and long times are given by tshort = min{l2

j ,j >

1}/2Dy = l2
2/2Dy and tlong = max{l2

j }/2Dy = l2
N/2Dy .

In the presence of a constant external force F along the
backbones we arrive at the following Fokker-Planck equation

∂

∂t
P (x,y,t) =

N∑
j=1

wjδ(y − lj )

[
−ηF

∂

∂x
+ Dx

∂2

∂x2

]

×P (x,y,t) + Dy

∂2

∂y2
P (x,y,t), (14)

where η is the mobility. One can compute the first moment as
a function of time,

〈x(t)〉F = ηF

2
√
Dy

L−1

⎡
⎣s−3/2

N∑
j=1

wje
−
√

s/Dy |lj |

⎤
⎦ , (15)

where by comparing it with relation (8) we conclude that the
generalized Einstein relation is fulfilled [5],

〈x(t)〉F = F

2kBT
〈x2(t)〉F=0, (16)

where ηkBT = Dx .

III. FRACTAL STRUCTURE OF BACKBONES

To introduce a fractal structure of the backbones we go back
to Eq. (2) and replace the summation

∑N
j=1 wjδ(y − lj ) with

summation over a fractal set Sν , i.e.,
∑

lj ∈Sν
δ(y − lj ), which

means that the backbones are at positions y which belong to
the fractal set Sν with fractal dimension 0 < ν < 1.

A simple toy example, which corresponds to an infi-
nite fractal set, can be treated as follows. In relation (8)

we calculate
∑N

j=1 wje
−
√

s/Dy |lj | → ∑
lj ∈Sν

e−
√

s/Dy |lj |. One
should recognize that fractal sets (like a Cantor set) are
uncountable. Therefore, the last expression is purely formal
and its mathematical realization corresponds to integration to
fractal measure μν ∼ lν such that

∑
lj ∈Sν

δ(l − lj ) = 1
�(ν) l

ν−1

is the fractal density [25,26], and dμν = 1
�(ν) l

ν−1dl. Here
we note that Dx is a generalized diffusion coefficient with
physical dimension [Dx] = m3−ν/s that absorbs the dimension
of fractal volume or measure μν . That finally yields the
following integration:

1

�(ν)

∫ ∞

0
dl lν−1e−

√
s/Dy l =

(Dy

s

)ν/2

. (17)

For the MSD, we obtain from (8)

〈x2(t)〉 = Dx

D(1−ν)/2
y

t (1+ν)/2

�
(
1 + 1+ν

2

) , (18)

i.e., anomalous diffusive behavior with the transport exponent
equal to 1

2 < 1+ν
2 < 1. Thus, the fractal set Sν of the infinite

number of backbones changes the transport exponent, from
1/2 to 1+ν

2 . For ν = 1 the MSD becomes 〈x2(t)〉 � t , which
is consistent with expectations, and for ν = 0, we are back to
the finite-N case. Indeed, the fractal dimension of any finite
number of discrete points is ν = 0.

We further consider a random fractal set Sν ∈ [a,b], with
finite limits. From relation (8), in the same way as in Eq. (17),
for a finite integration in [0,L], one finds a result in the form
of an incomplete γ function γ (a,x) = ∫ x

0 dt ta−1e−t [24],

1

�(ν)

∫ L

0
dl lν−1e−

√
s/Dy l =

(Dy

s

)ν/2
γ (ν,L)

�(ν)
. (19)

Thus, the MSD becomes

〈x2(t)〉 = Dx

D(1−ν)/2
y

γ (ν,L)

�(ν)

t (1+ν)/2

�
(
1 + 1+ν

2

) . (20)
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Again, for ν = 1 the normal diffusive behavior along the x

direction appears, i.e., 〈x2(t)〉 � t .
Here we note that the result for the MSD (18) can be

obtained in the framework of fractional integration as well.
By integration of Eq. (2) over y and using the summation on
the fractal set as above in this section, for the PDF p1(x,t) one
obtains

∂

∂t
p1(x,t) = Dx

∑
lj ∈Sν

∂2

∂x2
p(x,y = lj ,t). (21)

The Laplace transform to (21) yields

sp̂1(x,s) − p1(x,t = 0) = Dx

∑
lj ∈Sν

∂2

∂x2
p̂(x,y = lj ,s). (22)

By representing the solution p(x,y,s) in the follow-

ing way: p̂(x,y,s) = ĝ(x,s)e−
√

s/Dy |y|, i.e., p̂(x,y = lj ,s) =
ĝ(x,s)e−

√
s/Dy |lj |, for the p̂1(x,s) we find

p̂1(x,s) =
∫ ∞

−∞
dyp(x,y,s) = 2ĝ(x,s)

√
Dy

s
. (23)

From the other side, by using the previous approach of
summation, we have∑

lj ∈Sν

p̂(x,y = lj ,s) = ĝ(x,s)
1

�(ν)

∫ ∞

0
dllν−1e

√
s/Dy l

= ĝ(x,s)

(Dy

s

)ν/2

= 1

2D(1−ν)/2
y

s(1−ν)/2p̂1(x,s). (24)

By substituting relation (24) in Eq. (22), we obtain

s(1+ν)/2p̂1(x,s) − s(1+ν)/2−1p1(x,t = 0)

= Dx

2D(1−ν)/2
y

∂2

∂x2
p̂1(x,s). (25)

From this, the inverse Laplace transform yields the following
time fractional diffusion equation:

∂ (1+ν)/2

∂t (1+ν)/2
p1(x,t) = Dx

2D(1−ν)/2
y

∂2

∂x2
p1(x,t), (26)

where ∂ (1+ν)/2

∂t (1+ν)/2 is the Caputo time fractional derivative of order
1
2 < 1+ν

2 < 1 [27,28]. From here we easily obtain the MSD
〈x2(t)〉 = ∫ ∞

−∞ dxx2p1(x,t) that is of form (18). The solution
for the PDF p1(x,t) can be represented in terms of the Fox H

function Hm,n
p,q (z) [29,30],

p1(x,t) = 1

2|x|H
1,0
1,1

[
|x|√

Dν t (1+ν)/2

∣∣∣∣∣ (1,(1 + ν)/4)
(1,1)

]
,

(27)

where Dν = Dx/2D(1−ν)/2
y is the generalized diffusion coeffi-

cient with physical dimension [Dν] = m2/s(1+ν)/2. Therefore,
as shown, the infinite number of backbones changes the
transport exponent.

The asymptotic behavior of p1(x,t) (27) for |x|√
Dν t (1+ν)/2

� 1

is of the form [5,30]

p1(x,t) � 1√
2(3 − ν)π

(
1 + ν

4

)(ν−1)/(3−ν)

|x|(ν−1)/(3−ν)(Dν t
(1+ν)/2)−1/(3−ν)

× exp

[
−3 − ν

4

(
1 + ν

4

)(1+ν)/(3−ν)

|x|4/(3−ν)(Dν t
(1+ν)/2)−2/(3−ν)

]
, (28)

i.e., it has non-Gaussian behavior. For ν = 1 it turns to
Gaussian behavior as it is expected and as it was shown by
analysis of the MSD.

Additionally to the MSD we calculate the qth moment
〈|x|q〉 = 2

∫ ∞
0 dx xqp1(x,t), for which one finds [5,30]

〈|x|q〉 = (Dν t
(1+ν)/2)q/2 �(1 + q)

�
(
1 + 1+ν

2
q

2

) . (29)

Thus for the fourth moment it follows that

〈|x|4〉 = 24D2
ν

t1+ν

�(2 + ν)
= 6

D2
x

D1−ν
y

t1+ν

�(2 + ν)
. (30)

The calculation of the fourth moment is useful to discriminate
subdiffusive processes with identical MSDs, e.g., subdiffusion
due to different fractal structures or different mechanisms [31]

(see also [32]). For the even moments we obtain

〈|x|2n〉 = (2n)!
Dn

ν t
(1+ν)n/2

�
(
1 + (1+ν)n

2

) , (31)

from which we can find the following interesting relation:
∞∑

n=0

〈|x|2n〉
(2n)!

=
∞∑

n=0

Dn
ν t

(1+ν)n/2

�
(
1 + (1+ν)n

2

) = E(1+ν)/2(Dν t
(1+ν)/2),

(32)

where Eα(z) = ∑∞
n=0

zn

�(αn+1) is the one parameter Mittag-
Leffler function [29].

IV. WEIERSTRASS FUNCTION AND FRACTIONAL
RIESZ DERIVATIVE

Finally, we show how the fractal structure Sν relates to
the fractional Riesz derivative [25]. Let us consider the fractal
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structure of backbones in Eq. (2) separately. In the Fourier-
Fourier (κx,κy) space it reads

−Dxκ
2
x

∞∑
j=1

wje
iκy lj ¯̃P (κx,y = lj ,t)

= −Dxκ
2
x

∞∑
j=1

wje
iκy lj

1

2π

∫ ∞

−∞
dκ ′

y
¯̃P (κx,κ

′
y,t)e

−iκ ′
y lj

= −Dxκ
2
x

1

2π

∫ ∞

−∞
dκ ′

y�
(
κy − κ ′

y

) ¯̃P (κx,κ
′
y,t), (33)

where �(κy − κ ′
y) is the Weierstrass function [33]. It can be

obtained by the following procedure [34]: Let us use wj =
l−b
b

( b
l
)j , where l,b > 1, l − b � b. Thus

∞∑
j=1

wj = l − b

l

∞∑
j=0

(
b

l

)j

= 1. (34)

Now l and b are dimensionless scale parameters. Therefore

�(z) = l − b

b

∞∑
j=1

(
b

l

)j

exp

(
i
z

lj

)
, (35)

where lj = L/lj , and z = (κy − κ ′
y)L, and for convenience,

we choose l1 = L. From here one obtains

�(z/l) = l

b
�(z) − l − b

b
exp

(
i
z

l

)
. (36)

Neglecting the last term since l − b � b, therefore the scaling

�(z/l) � l

b
�(z), (37)

means that �(z) ∼ 1
z1+ν , where ν = ln 1

b
/lnl is the fractal

dimension. Thus, for relation (33) we have

−Dxκ
2
x

L−1−ν

2π

∫ ∞

−∞
dκ ′

y |κy − κ ′
y |−1−ν ¯̃P (κx,κ

′
y,t). (38)

This integration is the Riesz fractional derivative [25].

V. SUMMARY

In this paper we introduce a diffusion equation for a
comb structure where the displacements in the x direction
are possible along many backbones, even an infinite number
of backbones, and we call this system by grid comb. We
analyze the MSD and we show that by adding a finite number
of backbones, the transport exponent in the long time limit
does not change. Differently from that, an infinite number
of backbones changes the transport exponent. Considering a
fractal structure of backbones with fractal dimension ν we
obtained the dependence of the transport exponent on ν. We
stress that the performed analysis is exact—more precisely,
that the evaluation of the contribution of the fractal structure
Sν to anomalous diffusion is exact. Note that the first attempt to
take into account a fractal structure of traps was performed in
Ref. [12] in the framework of a coarse graining procedure
of the Fokker-Planck equation that leads to the fractional
differentiation in the real space. In contrast to that, in the
present analysis we are able to perform an exact analysis for
the fractal structure Sν . This also relates to exact fractional
differentiation in the reciprocal Fourier space.

In conclusion, it should be admitted that a comb model
is a toy model that can be solved exactly and establishes a
relation between geometry and the transport exponent. As
is recently found it also corresponds to the real physical
realization in experiments on calcium transport in spiny
dendrites (see [10,11] and references therein). The grid-comb
model, suggested here as the generalization of the comb model,
establishes an exact relation between a complicated fractal
geometry and the transport exponent as well. Another strong
motivation of the model, also related to the result, is that
in the framework of this model it is possible to infer an
exactly fractional derivative related to fractal geometry. All
these points are important for the understanding of anomalous
transport in heterogeneous material, in particular to describe
diffusion of solvents in thin porous films [22], or in another
two-dimensional material like graphene [35].
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