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Survival probability of a Brownian motion in a planar wedge of arbitrary angle
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We study the survival probability and the first-passage time distribution for a Brownian motion in a planar
wedge with infinite absorbing edges. We generalize existing results obtained for wedge angles of the form π/n

with n a positive integer to arbitrary angles, which in particular cover the case of obtuse angles. We give explicit
and simple expressions of the survival probability and the first-passage time distribution in which the difference
between an arbitrary angle and a submultiple of π is contained in three additional terms. As an application, we
obtain the short-time development of the survival probability in a wedge of arbitrary angle.
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I. INTRODUCTION

The survival probability, which is the probability not to
have reached a target up to a given time, is a key observable
in the study of Brownian motion. It is the cumulative of the
first-passage time distribution, i.e., the distribution of the time
to reach a target. This quantity [1–5], and as a first step the
mean first-passage time [6], is a standard way to quantify the
efficiency of a search process. It is for example also involved
in the calculation of the covered territory [7,8] and the mean
perimeter of the convex hull of a Brownian motion [9].

Determining the survival probability and the first-passage
time distribution is of particular importance in the wedge
geometry. Recent related studies include last-passage times de-
termination [10], extensions to anomalous diffusion [11] (and
in particular to fractional Brownian motion [12]), and applica-
tions to virus trafficking in cells [13]. Interest in this geometry
resides in part in the possibility to map one-dimensional
diffusion-controlled reaction processes on a wedge domain
[1,14,15]. One important example of this mapping is the
Fisher-Gelfand three-particle problem [1,3,15]. Consider three
diffusing particles on a line, with diffusion constants D1, D2,
and D3. Given the starting positions x1, x2, and x3, what is
the survival probability of the middle particle up to time t ,
that is to say the probability that it has not met the two other
particles up to time t? By writing the Fokker-Planck equation
in coordinates y1 = x1 − x2 and y2 = x2 − x3, and after some
transformations, this problem reduces precisely to the problem
of the survival probability of a single Brownian motion in a 2D
wedge with top angle α = 2 arctan[

√
(1 − γ )/(1 + γ )] where

γ = D2/
√

(D1 + D2)(D2 + D3).
In the general case, the survival probability for regular

diffusion in a wedge domain is written as an infinite sum
of special functions. In the past, special attention has been
devoted to the analysis of the large-time behavior of the
survival probability, which displays a power-law decay with an
exponent continuously depending on the wedge angle [1]. On
the other hand, the analysis of the short-time behavior seems
to have been left aside.

Recently, and in contrast with the standard expression
involving an infinite sum, compact analytical expressions of
the survival probability and the first-passage time distribution
have been obtained for special values of the wedge angle by

using the method of images [16]. These expressions have been
extended to biased diffusion [17]. However, these results have
been limited to specific wedge angles of the form π/n where
n is a positive integer. In particular, they do not apply to obtuse
angles.

Here, focusing on unbiased diffusion, (i) we generalize
these results to arbitrary wedge angles. Note that this covers
in particular the case of obtuse angles, which has proven
to be an essential ingredient in the context of diffusion
growth processes [1,18]. Beyond this, it is crucial to know the
survival probability in a wedge of arbitrary angle to solve the
Fisher-Gelfand problem presented above for general diffusion
coefficients. (ii) The expressions presented here take the form
of a finite sum over generalized images plus an integral only
involving elementary functions, which vanishes for wedge
angles of the form π/(2p + 1). This structure thus explicitly
underlines the difference between a wedge angle π/n and
an arbitrary one. (iii) As an application, we show that the
short-time behavior of the survival probability is conveniently
obtained from this expression.

The manuscript is organized as follows. In Sec. II, we recall
the standard expression of the survival probability and give the
main results of this paper. In Sec. III, we provide the derivation
of the alternative expressions of the survival probability and the
first-passage time distribution for any wedge angle—the most
technical part of the derivation appears in the Appendix—
and compare them with the existing results for special π/n

wedge angles. In Sec. IV, we give the short-time asymptotic
development of the survival probability. Finally, in Sec. V, we
draw our conclusions.

II. BASIC EQUATIONS AND MAIN RESULTS

Let us consider a Brownian motion in a planar wedge of top
angle α with two infinite absorbing edges, starting from a point
(r0,ϕ0) (see Fig. 1). Without loss of generality, we assume that
the starting point is in the inferior part of the wedge (ϕ0 ≤ α/2).
The propagator P (r,ϕ,t |r0,ϕ0) satisfies the diffusion equation

∂P

∂t
= D�P = D

[
∂2P

∂r2
+ 1

r

∂P

∂r
+ 1

r2

∂2P

∂ϕ2

]
, (1)
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FIG. 1. Geometry of the wedge. The starting point is (r0,ϕ0) at
time zero and the position of the walker at time t is (r,ϕ).

with the following initial condition and boundary conditions:

P (r,ϕ,0|r0,ϕ0) = δ(r − r0) = 1

r0
δ(r − r0)δ(ϕ − ϕ0),

P (r,0,t |r0,ϕ0) = P (r,α,t |r0,ϕ0) = 0. (2)

The exact solution of this problem is known [10,13]

P (r,ϕ,t |r0,ϕ0) = 1

αDt

+∞∑
n=1

sin

(
nπϕ

α

)
sin

(
nπϕ0

α

)

× I nπ
α

(
r0r

2Dt

)
exp

(
− r2 + r2

0

4Dt

)
. (3)

where Iν is a modified Bessel function of index ν. The survival
probability, defined by

S(t |r0,ϕ0) =
∫ +∞

0
dr r

∫ α

0
dϕ P (t,r,ϕ|r0,ϕ0), (4)

can be computed by integration by parts, as a function of a
rescaled variable y = r2

0 /(8Dt) and the initial angle ϕ0

S(y,ϕ0) = 2

√
2y

π
e−y

+∞∑
m=0

sin
(
(2m + 1) ϕ0π

α

)
2m + 1

× [Iν(y) + Iν+1(y)], (5)

with ν = (2m + 1)π/(2α) − 1/2.
While this expression is well suited to analyze the

large-time (small y) behavior of the survival probability
S(y,ϕ0) ∝

y→0
yπ/(2α), it is difficult to extract the small-time

(large y) behavior. Indeed, using bluntly the behavior of the
modified Bessel function to large argument

Iν(y) ∼
y→∞

ey

√
2πy

(
1 − 4ν2 − 1

8y

)
(6)

leads to S(y,ϕ0) −→
y→∞ 1 but does not allow one to obtain higher-

order corrections. The main purpose of this paper is to provide
this small-time (large y) asymptotics. We proceed to provide
a compact alternative expression of the survival probability
[summarized in Eqs. (25) and (26)] that is more suitable for
the large y analysis. The result for the large y asymptotics are
summarized in Eqs. (39), (40), and (41). In particular, we show
that for large y,

S(y,ϕ0) ∼
y→∞ 1 − erfc

(√
2y min

(
ϕ0,

π

2

))
(7)

with erfc the complementary error function, and also provide
further subleading corrections.

III. DERIVATION OF THE SURVIVAL PROBABILITY
AND THE FIRST-PASSAGE TIME DISTRIBUTION

The starting point to establish this alternative expression
of the survival probability is the integral representation of the
modified Bessel function Iν

Iν(y) = 1

π

∫ π

0
dϕ ey cos ϕ cos(νϕ)

− sin(νπ )

π

∫ +∞

0
du e−y cosh u−νu. (8)

Plugging this form into Eq. (5), the survival probability
becomes

S(y,ϕ0) =
(

2

π

)3/2√
y e−y(A1 + A2), (9)

with

A1 ≡
∫ π

0
dϕ ey cos ϕ

+∞∑
m=0

(cos(νϕ) + cos ((ν + 1)ϕ))

× sin
(
(2m + 1) ϕ0π

α

)
2m + 1

= 2
∫ π

0
dϕ ey cos ϕ cos

ϕ

2
B1, (10)

with

B1 =
+∞∑
m=0

cos

(
(2m + 1)

πϕ

2α

)
sin

(
(2m + 1) ϕ0π

α

)
2m + 1

(11)

and, replacing ν with its expression,

A2 ≡
∫ +∞

0
du e−y cosh u(e−u − 1)

×
+∞∑
m=0

sin(νπ )
sin

(
(2m + 1) ϕ0π

α

)
2m + 1

e−νu

= 2
∫ +∞

0
du e−y cosh u sinh

u

2
B2, (12)

with

B2 =
+∞∑
m=0

cos

(
(2m + 1)

π2

2α

)
sin

(
(2m + 1) ϕ0π

α

)
2m + 1

e−(2m+1) πu
2α .

(13)

A. Calculation of the term A1

We show in this section that the term A1 can be explicitly
calculated. We first note that the sum B1 can be rewritten as

B1 =
∫ πϕ0

α

0
dx ′

+∞∑
m=0

cos ((2m + 1)x ′) cos

(
(2m+1)

πϕ

2α

)
(14)

with ϕ varying from zero to π . Then, we make use of the
following formula:

+∞∑
m=0

cos

(
(2m + 1)

πy

L

)
cos

(
(2m + 1)

πz

L

)
= L

4
δ(y − z),

(15)
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FIG. 2. (Color online) Integer k is defined in Eq. (16). The
number (2k + 2)α can be either smaller than π (first case), or
greater (second case). In the first case, the interval [(2k + 1)α,π ]
has to be cut again into the two intervals [(2k + 1)α,(2k + 2)α] and
[(2k + 2)α,π ].

valid for 0 ≤ y ≤ L/2 and 0 ≤ z ≤ L/2, for L = π . Note
that special attention must be paid to the ranges of x ′ and
πϕ/(2α) in Eq. (14) in order to use Eq. (15). The condition

0 ≤ x ′ ≤ π/2 is always respected as ϕ0 ≤ α/2. In turn, the
respect of the condition 0 ≤ πϕ/(2α) ≤ π/2 for ϕ in [0,π ]
depends on the value of α.

We first address in detail the case α ≤ π . The key point is
to cut the interval of variation of ϕ into well-chosen intervals
on which, after periodicity and parity manipulations on the
cosine, the formula (15) applies. We define the integer k such
that

(2k + 1)α ≤ π < (2k + 3)α, (16)

that is to say k = 
π/(2α) − 1/2�. We cut the interval [0,π ]
into three: the part [0,α], the part [α,(2k + 1)α], and the part
[(2k + 1)α,π ].

Referring to Fig. 2, we can see that two cases arise,
depending on whether (2k + 2)α is smaller or greater than
π . If (2k + 2)α < π , we cut again the last interval into two
parts: [(2k + 1)α,(2k + 2)α] and [(2k + 2)α,π ]. We can then
write the general relation

∫ π

0
dϕ f (ϕ) =

∫ α

0
dψ f (ψ)︸ ︷︷ ︸

C1

+
k∑

j=1

∫ α

0
dψ(f (2jα − ψ) + f (2jα + ψ))

︸ ︷︷ ︸
C2≡C−

2 +C+
2

+
∫ α

max(0,(2k+2)α−π)
dψ f ((2k + 2)α − ψ)︸ ︷︷ ︸

C−
3

+
∫ max(0,π−(2k+2)α)

0
dψ f ((2k + 2)α + ψ)︸ ︷︷ ︸

C+
3

. (17)

with C+
3 that equals zero in the case where (2k + 2)α ≥ π .

The calculation of the integrals C1, C2, C−
3 , and C+

3 , carried out in the Appendix, leads to the final expression for A1

A1 =
(

π

2

)3/2
ey

√
y

[
erf(

√
2y sin ϕ0) +

k∑
j=1

(−1)j [erf(
√

2y sin(jα + ϕ0)) − erf(
√

2y sin(jα − ϕ0))]

+ (−1)k+1

[
erf

(√
2y sin

(
min

(
(k + 1)α + ϕ0,

π

2

)))
− erf

(√
2y sin

(
min

(
(k + 1)α − ϕ0,

π

2

)))]]
, (18)

where erf is the error function. In the case α ≥ π , the term A1 is obtained by following the same lines:

A1 =
(

π

2

)3/2
ey

√
y

erf

(√
2y sin

(
min

(
ϕ0,

π

2

)))
. (19)

B. Calculation of the term A2

The sum B2 can be rewritten as

B2 = 1

2

[∫ ϕ0π

α

0
dx ′ C+

2 (x ′) +
∫ ϕ0π

α

0
dx ′ C−

2 (x ′)

]
, (20)

where

C±
2 (x ′) =

+∞∑
m=0

cos
(

(2m + 1)

(
x ′ ± π2

2α

))
e−(2m+1) πu

2α . (21)

After simple algebra, we get

C±
2 (x ′) = Re

⎡
⎣ +∞∑

m=0

e(2m+1)(i(x ′± π2

2α
)− πu

2α
)

⎤
⎦ = 1

2 sinh
(

πu
2α

) cos
(
x ′ ± π2

2α

)
1 + sin2

(
x ′± π2

2α

)
sinh2

(
πu
2α

) . (22)
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We integrate over x ′

B2 = 1

4

[
arctan

(
sin

(
π
α

(
ϕ0 + π

2

))
sinh

(
πu
2α

) )
+ arctan

(
sin

(
π
α

(
ϕ0 − π

2

))
sinh

(
πu
2α

) )]
(23)

and, finally,

A2 = 1

2

∫ +∞

0
du e−y cosh u sinh

u

2

[
arctan

(
sin

(
π
α

(
ϕ0 + π

2

))
sinh

(
πu
2α

) )
+ arctan

(
sin

(
π
α

(
ϕ0 − π

2

))
sinh

(
πu
2α

) )]
. (24)

C. Survival probability

1. Expression for an arbitrary angle

We gather the results of the two previous subsections and give the final expression of the survival probability in an acute
wedge of top angle α ≤ π

S(y,ϕ0) = erf(
√

2y sin(ϕ0)) +
k∑

j=1

(−1)j [ erf(
√

2y sin(jα + ϕ0)) − erf(
√

2y sin(jα − ϕ0))]

+ (−1)k+1

[
erf

(√
2y sin

(
min

(
(k + 1)α + ϕ0,

π

2

)))
− erf

(√
2y sin

(
min

(
(k + 1)α − ϕ0,

π

2

)))]

+
(

2

π

)3/2√
y

e−y

2

∫ +∞

0
du e−y cosh u sinh

u

2

[
arctan

(
sin

(
π
α

(
ϕ0 + π

2

))
sinh

(
πu
2α

)
)

+ arctan

(
sin

(
π
α

(
ϕ0 − π

2

))
sinh

(
πu
2α

)
)]

(25)

and in an obtuse wedge of top angle α ≥ π

S(y,ϕ0) = erf

(√
2y sin

(
min

(
ϕ0,

π

2

)))

+
(

2

π

)3/2 √
y

e−y

2

∫ +∞

0
du e−y cosh u sinh

u

2

[
arctan

(
sin

(
π
α

(
ϕ0 + π

2

) )
sinh

(
πu
2α

)
)

+ arctan

(
sin

(
π
α

(
ϕ0 − π

2

) )
sinh

(
πu
2α

)
)]

(26)

with k = 
π/(2α) − 1/2� and y = r2
0 /(8Dt). We condense Eqs. (25) and (26) into the following expression:

S(y,ϕ0) = erf

(√
2y sin

(
min

(
ϕ0,

π

2

)))

+
k+1∑
j=1

(−1)j
[

erf

(√
2y sin

(
min

(
jα + ϕ0,

π

2

)))
− erf

(√
2y sin

(
min

(
jα − ϕ0,

π

2

)))]

+
(

2

π

)3/2 √
y

e−y

2

∫ +∞

0
du e−y cosh u sinh

u

2

[
arctan

(
sin

(
π
α

(
ϕ0 + π

2

) )
sinh

(
πu
2α

)
)

+ arctan

(
sin

(
π
α

(
ϕ0 − π

2

) )
sinh

(
πu
2α

)
)]

. (27)

This expression is valid for any arbitrary wedge angle and generalizes the expression of Dy and Esguerra that requires wedge
angles of the form π/n with n an integer [16], as we proceed to show in the next paragraph. Note that the case of obtuse wedges
was not covered by their approach.

2. Particular cases π/n

We check that in the particular cases of wedge angles of the form π/n with n an integer, we recover the expressions of Dy
and Esguerra [16,17]. First, if n = 2p + 1, the integral part of the survival probability disappears, as easily seen in Eq. (9). In
this case, k = p, and

min

(
(k + 1)α ± ϕ0,

π

2

)
= π

2

so the expression becomes

S(y,ϕ0) = erf(
√

2y sin ϕ0) +
p∑

j=1

(−1)j [erf(
√

2y sin(jα + ϕ0)) − erf(
√

2y sin(jα − ϕ0))] (28)
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=
n−1∑
k=0

(−1)k

4
[erf(

√
2y sin(kα + ϕ0)) + erf(

√
2y sin(−kα + ϕ0))

+ erf(
√

2y sin((k + 1)α − ϕ0)) + erf(
√

2y sin((1 − k)α − ϕ0))]. (29)

Equation (28) matches the one of Dy and Esguerra [16] recalled in Eq. (29).
Then, if the wedge angle is now π/n with n = 2p, we have k = p − 1, so

min

(
(k + 1)α + ϕ0,

π

2

)
= π

2
,

min

(
(k + 1)α − ϕ0,

π

2

)
= (k + 1)α − ϕ0 = π

2
− ϕ0

and the survival probability can be rewritten

S(y,ϕ0) = erf(
√

2y sin ϕ0) +
p−1∑
j=1

(−1)j [erf(
√

2y sin(jα + ϕ0)) − erf(
√

2y sin(jα − ϕ0))]

+ (−1)p[erf(
√

2y)−erf(
√

2y cos ϕ0)]+(−1)p
(

2

π

)3/2√
ye−y

∫ +∞

0
du e−y cosh u sinh

u

2
arctan

(
sin(2pϕ0)

sinh(pu)

)
. (30)

This expression can be numerically checked to match the known expression of the survival probability for n = 2 [16]

S(y,ϕ0) = erf(
√

2y sin ϕ0) erf(
√

2y cos ϕ0). (31)

The next values n = 4 and n = 6 have been checked on the first-passage time distribution [17] (see Eq. (33)).

3. Discussion

We make here several comments on the different terms
involved in Eqs. (25) and (26) (summarized in Eq. (27)). The
first term of Eq. (27) is the survival probability in an infinite
half-space delimited by an absorbing infinite plane [1] for
a walk whose starting distance from the plane is given by
r0 sin (min(ϕ0,π/2)). This latter corresponds to the distance of
the starting point of the walk to the closest absorbing boundary
of the wedge (which is the one at ϕ = 0 because of the choice
ϕ0 ≤ α/2) in the original problem. If the wedge is acute, it
is r0 sin ϕ0. If the wedge is obtuse, this distance depends on
whether the projection of the starting point on the axis ϕ = 0
is on the absorbing edge or not (see Fig. 3). In the first case
(corresponding to ϕ0 ≤ π/2), this distance is, like in the acute
case, r0 sin ϕ0. In the second case (for ϕ0 ≥ π/2), the distance
is r0, which is the distance from the starting point to the apex
of the wedge.

Then, by comparison with the expressions of Dy and
Esguerra [16,17], obtained in the particular case of π/n wedge
angles, the sum involved in Eq. (25) can be seen as a sum over

FIG. 3. (Color online) Distance between the starting point and
the wedge. If ϕ0 ≤ π/2 (left), the projection of the starting point on
the wedge is on the absorbing edge and the distance is r0 sin ϕ0. If
ϕ0 ≤ π/2, the projection of the starting point on the wedge is the
apex and the distance is r0.

generalized images (sinks and sources), that only exists for an
acute wedge.

Finally, the integral term and the term k + 1 of the sum
of Eq. (27) are the hallmark of a wedge angle different from
π/(2p + 1) with p an integer.

D. First-passage time distribution

Similar expressions for the first-passage time distribution
are easily obtained from Eq. (27). Knowing that

F (t) = −dS

dt
, (32)

it is found that, for any planar wedge,

F (t) = r0

2
√

πDt3

{
sin

(
min

(
ϕ0,

π

2

))
e− r2

0 sin2 ( min (ϕ0 ,π/2))

4Dt

+
k+1∑
j=1

(−1)j
[

sin

(
min

(
jα+ϕ0,

π

2

))
e−

r2
0 sin2 ( min(jα+ϕ0 ,π/2))

4Dt

− sin
(

min

(
jα − ϕ0,

π

2

))
e− r2

0 sin2 ( min(jα−ϕ0 ,π/2))

4Dt

]

+ 1

2π

∫ +∞

0
dv

(
1 − r2

0

2Dt
cosh2 v

2

)
sinh

v

2
e− r2

0
4Dt

cosh2 v
2

×
[

arctan

(
sin

(
π
α

(
ϕ0 + π

2

) )
sinh

(
πv
2α

)
)

+ arctan

(
sin

(
π
α

(
ϕ0 − π

2

) )
sinh

(
πv
2α

)
)]}

, (33)

with k = 
π/(2α) − 1/2� and y = r2
0 /(8Dt).
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IV. ASYMPTOTIC DEVELOPMENT OF THE SURVIVAL
PROBABILITY AT SHORT TIMES

As an application of the previous results, we now show that
the asymptotic development of the survival probability at short
times (y 
 1) can be conveniently extracted from Eqs. (25)
and (26). The leading order is 1, as expected because a walker
starting from the bulk cannot be on the absorbing boundaries
at time t = 0. We are interested in the corrections induced by
the boundaries, and first address the case of an acute wedge.

Sine being a growing function in [0,π/2],

sin ϕ0 ≤ sin(α − ϕ0) ≤ sin(α + ϕ0)

≤ sin(2α − ϕ0) ≤ · · · ≤ 1. (34)

Moreover, the error function asymptotically grows like

erf (x) ∼
x→∞ 1 − e−x2

P

(
1

x

)
, (35)

with P a polynomial. The term erf(
√

2y sin ϕ0) of Eq. (25)
thus contains the leading order of the survival probability and
a first correction to this value, which turns out to be the main
one. The successive terms of the sum involved in Eq. (25) can
be shown to be smaller and smaller corrections by using the
inequalities (34) and the asymptotic expansion (35). Last, we
evaluate the large y asymptotics of the integral term

I ≡
(

2

π

)3/2 √
y

e−y

2

∫ +∞

0
du e−y cosh u sinh

u

2

×
[
arctan

(
sin

(
π
α

(
ϕ0 + π

2

) )
sinh

(
πu
2α

)
)

+ arctan

(
sin

(
π
α

(
ϕ0 − π

2

) )
sinh

(
πu
2α

)
)]

. (36)

Using Laplace’s method, we have to distinguish the
two following cases: (i) when sin (π (ϕ0 + π/2) /α) and
sin (π (ϕ0 − π/2) /α) have the same sign, and (ii) when they
have opposite signs. In the first case, we approximate the
integral by

I ∼ ± e−2y

√
2πy

. (37)

In the second case,

I ∼ e−2y

4αy

(
1

sin
(

π
α

(
ϕ0 + π

2

) ) + 1

sin
(

π
α

(
ϕ0 − π

2

) )
)

. (38)

In both cases, the leading order of the integral term
is dominated by all the other terms of the sum of error
functions. Finally, the short-time asymptotics of the survival
probability can be defined using a scale of functions based on
complementary error functions

S(t |y,ϕ0) ∼
y→∞ 1 + ψ1(y,ϕ0)

+
k∑

j=1

[ψ2j (y,ϕ0) + ψ2j+1(y,ϕ0)] + R2k+2(y,ϕ0), (39)

FIG. 4. (Color online) Survival probability in a wedge of acute
top angle α = 0.4 rad, with ϕ0 = 0.1 rad (solid line), and the
short-time development cut at different orders. The exact expression
contains here eight terms, including the remainder R8(y,ϕ0). We can
see that as soon as we keep two terms, the short-time development has
a very satisfying range of validity, that can be extended by keeping
more terms in the development.

with for j ≤ k

ψ1(y,ϕ0) = − erfc(
√

2y sin ϕ0),

ψ2j (y,ϕ0) = (−1)j erfc(
√

2y sin(jα − ϕ0)),

ψ2j+1(y,ϕ0) = (−1)j+1 erfc(
√

2y sin(jα + ϕ0)) (40)

and the remainder

R2k+2(y,ϕ0)

= (−1)k+1

[
erfc

(√
2y sin

(
min

(
(k + 1)α − ϕ0,

π

2

)))

− erfc

(√
2y sin

(
min

(
(k + 1)α + ϕ0,

π

2

)))]

+
(

2

π

)3/2 √
y

e−y

2

∫ +∞

0
du e−y cosh u sinh

u

2

×
[

arctan

(
sin

(
π
α

(
ϕ0 + π

2

) )
sinh

(
πu
2α

)
)

+ arctan

(
sin

(
π
α

(
ϕ0 − π

2

) )
sinh

(
πu
2α

)
)]

, (41)

such that ψi(y,ϕ0) = o(ψi−1(y,ϕ0)), and
R2k+2(y,ϕ0) = o(ψ2k+1(y,ϕ0)). See Fig. 4.

The obtuse case is simpler. If ϕ0 ≤ π/2, the error function
term gives the main correction and the integral term is
subdominant, whereas if ϕ0 ≥ π/2, these two terms have the
same exponential decay rate. In Fig. 5, we only illustrate the
first case.

The previous analysis shows that at short times (large y),
for acute wedge angles and obtuse ones where ϕ0 ≤ π/2, the
survival probability is mainly influenced by the edge closest
to the starting point, producing the first correction to the limit
value 1

S(y,ϕ0) ∼
y→∞ 1 − erfc(

√
2y sin ϕ0). (42)

Moreover, for acute wedges, our approach also gives a set
of smaller and smaller corrections, the least correction being
given by the remainder R2k+2(y,ϕ0). We check on Figs. 4 and 5
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FIG. 5. (Color online) Survival probability in an obtuse wedge in
the case ϕ0 ≤ π/2 (solid line) and the term 1 − erfc

(√
2y sin ϕ0

)
(dashed line). The top angle is α = 3.5 rad and ϕ0 = 1.5 rad. The
error function term provides an accurate approximation of the survival
probability with a large range of validity.

that the short time development is accurate and has a significant
range of validity that increases, in the case of acute angles, with
the number of correcting terms taken into account. In practice,
it means that unless we need to describe the very long times
(small y), the integral term, which is the most complicated to
compute, can be dropped.

V. CONCLUSION

In this paper, we established simple expressions of the
survival probability and the first-passage time distribution in
a planar wedge with infinite absorbing boundaries. The result
holds for any top angle of the wedge, and in particular covers
the case of obtuse wedges. It thus generalizes the expressions
obtained by Dy and Esguerra [16,17], which were limited to
wedge angles of the form π/n with n a positive integer. The
final expression only involves a finite sum of error functions,
that can be seen as a sum over generalized images, and an
integral of elementary functions.

The expression given here naturally displays a development
of the survival probability at short times, whereas the standard
form of the survival probability, that is written as an infinite
sum of special functions, does not allow one to get this
expansion. Moreover, this short-time development has a large
range of validity.

The case of biased diffusion in an arbitrary wedge (consid-
ered in [17] for specific angles of the form π/n) would be a
natural extension of the formalism developed in this work.
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APPENDIX A: CALCULATION OF THE INTEGRALS
INVOLVED IN THE TERM A1

We give here details of the calculation of the term A1, which
is the sum of the four integrals C1, C2 ≡ C+

2 + C−
2 , C−

3 and

C+
3 . The first one is

C1 = 2
∫ α

0
dψ ey cos ψ cos

ψ

2

∫ πϕ0
α

0
dx ′

×
+∞∑
m=0

cos((2m + 1)x ′) cos

(
(2m + 1)

πψ

2α

)
, (A1)

and using Eq. (15) of the main text,

C1 = 2
∫ α

0
dψ ey cos ψ cos

ψ

2

∫ πϕ0
α

0
dx ′ π

4
δ

(
x ′ − πψ

2α

)
.

(A2)

The integral over x ′ is π/4 if πψ/(2α) ∈ [0,πϕ0/α], i.e.,
if ψ ∈ [0,2ϕ0], and zero otherwise. Thus, as we have by
definition 2ϕ0 ≤ α, the part ψ ∈ [2ϕ0,α] gives zero and

C1 = π

2

∫ 2ϕ0

0
dψ ey cos ψ cos

ψ

2
. (A3)

We change the variables u = √
2y sin(ψ/2) and get

C1 =
(

π

2

)3/2
ey

√
y

erf(
√

2y sin ϕ0). (A4)

The second integral C2 is the sum of C+
2 and C−

2 , given by

C±
2 = 2

k∑
j=1

∫ α

0
dψ ey cos(2jα±ψ) cos

(
jα ± ψ

2

) ∫ πϕ0
α

0
dx ′

×
+∞∑
m=0

cos ((2m + 1)x ′)cos

(
(2m + 1)jπ±(2m+1)

πψ

2α

)

= 2
k∑

j=1

(−1)j
∫ α

0
dψ ey cos(2jα±ψ) cos

(
jα ± ψ

2

)

×
∫ πϕ0

α

0
dx ′

+∞∑
m=0

cos((2m + 1)x ′) cos

(
(2m + 1)

πψ

2α

)
.

(A5)

Following the same lines, we obtain

C2 = C−
2 + C+

2 =
k∑

j=1

(−1)j
(

π

2

)3/2
ey

√
y

× [erf(
√

2y sin(jα + ϕ0)) − erf(
√

2y sin(jα − ϕ0))].

(A6)

Finally, we compute carefully the last two integrals, because
of their integration limits

C−
3 = (−1)k+1 π

2

∫ α

max(0,(2k+2)α−π)
dψ ey cos((2k+2)α−ψ)

× cos

(
(k + 1)α − ψ

2

)∫ πϕ0
α

0
dx δ

(
x − πψ

2α

)
. (A7)

As previously, the integral over x is equal to 1 if ψ ∈ [0,2ϕ0],
and zero otherwise. If the inferior limit is larger than 2ϕ0, the
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integral is zero. We can then rewrite it as

C−
3 = (−1)k+1 π

2

∫ max(2ϕ0, max (0,(2k+2)α−π))

max(0,(2k+2)α−π)
dψ

× ey cos((2k+2)α−ψ) cos

(
(k + 1)α − ψ

2

)
. (A8)

As ϕ0 ≥ 0, we notice that

max (2ϕ0, max (0,(2k + 2)α − π ))

= max(2ϕ0,(2k + 2)α − π ). (A9)

Moreover, as − max(a,b) = min(−a, − b), we obtain

C−
3 = (−1)k+1

(
π

2

)3/2
ey

√
y

×
[

erf

(√
2y sin

(
min

(
(k + 1)α,

π

2

)))

−erf

(√
2y sin

(
min

(
(k + 1)α − ϕ0,

π

2

)))]
.

(A10)

We proceed similarly for the last integral:

C+
3 = (−1)k+1 π

2

∫ max(0,π−(2k+2)α)

0
dψ ey cos((2k+2)α+ψ)

× cos

(
(k + 1)α + ψ

2

)∫ πϕ0
α

0
dx ′δ

(
x ′ − πψ

2α

)
,

(A11)

which is zero if max(0,π − (2k + 2)α) = 0. We can then
rewrite

C+
3 = (−1)k+1 π

2

∫ π−(2k+2)α

min(0,π−(2k+2)α)
dψ ey cos((2k+2)α+ψ)

× cos

(
(k + 1)α + ψ

2

)∫ πϕ0
α

0
dx ′ δ

(
x ′ − πψ

2α

)
(A12)

and end the calculation as before to get

C−
3 = (−1)k+1

(
π

2

)3/2
ey

√
y

×
[

erf

(√
2y sin

(
min

(
(k + 1)α + ϕ0,

π

2

)))

−erf

(√
2y sin

(
min

(
(k + 1)α,

π

2

)))]
. (A13)

Summing Eqs. (A4), (A6), (A10), and (A13) leads to Eq. (18)
of the main text.
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