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Universality classes for thermal transport in one-dimensional oscillator systems
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Two universality classes for thermal transport in one-dimensional oscillator systems are proposed. In class
A the asymptotic behavior of the frequency dependent thermal conductivity is κ(ω) ∼ ω−1/2, whereas the bulk
viscosity is finite. In class B the asymptotic behavior of the thermal conductivity is κ ∼ ω−α , where α < 0.4, and
the frequency dependent bulk viscosity has the same asymptotic behavior as the thermal conductivity. It is further
proposed that the criterion for membership in class A is that the ratio of specific heat capacities γ ≡ cP /cV = 1.
A one-dimensional cubic-plus-quartic coupled oscillator is examined at conditions for which γ = 1 but P �= 0.
It is found that the system belongs to class A, in agreement with the proposed criterion. Additionally, it is
proposed that examination of whether a system has a well-defined bulk Prandtl number is a more reliable way of
determining whether a system is in class A or class B.
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I. INTRODUCTION

Despite decades of research, anomalous thermal transport
in one-dimensional classical systems continues to present
many puzzles. While a few one-dimensional systems are
thought to have finite thermal conductivities [1–3], most
one-dimensional systems exhibit anomalous thermal conduc-
tion [4,5]. This is seen either by noting that the thermal
conductivity depends on the system length or, equivalently, that
the heat current power spectrum diverges at low frequencies ac-
cording to some power law, |jε(ω)|2 ∼ ω−α , where 0 < α < 1.
The criteria for a system to have a finite thermal conductivity
are not currently known. The presence of on-site potentials
appears to be one important criterion [1,6,7]. However, some
systems without on-site potentials [3,8] seem to have finite
thermal conductivities.

One area of recent progress in the study of systems with no
on-site potentials is the recognition that there may be at least
two universality classes of systems with anomalous thermal
conductivity. These have different values of the exponent, α.
The details of these universality classes are still somewhat
unclear. That is, what values are taken on by α in these classes?
What determines to which class a given system belongs? The
current consensus seems to be that described in [5]. However,
a similar but significantly different proposal is contained
in [9,10]. These two proposals agree that there are (at least)
two universality classes. In one, which for brevity we will
call class A, both proposals agree that α = 1/2. In the other,
which we will call class B, there is still much disagreement
about the value of α, but it seems clear that α < 0.4. It should
be noted that there remains some disagreement about the
value of α in class A, with some authors finding evidence
that α = 2/5 [11–13]. Overall, given the lack of consistent
results across systems, it is possible that there are more than
two universality classes.

In [5] and elsewhere it is argued that α = 1/3 in class B. On
the other hand, [9] paints a somewhat more complicated picture
in which α goes through an infinite number of transitions at
different frequencies, going asymptotically to a limiting value
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α∗ = (3 − √
5)/2 which is only observed at inaccessibly low

frequencies.
For the present paper we will work under the assumption

that there are only two universality classes: class A with α =
1/2 and class B with α = 1/3 or a similar value; the exact
value of α in class B is unimportant to the discussion in this
paper except insofar as α � 0.4. We will not entertain the
possibility that α = 2/5 in class A. In part this is because, as
we will show in this paper, the behavior of the system under
study is much more consistent with α = 1/2.

Evidence has been provided [14,15], that the criteria for
membership in class A are:

(1) The interparticle potential is even when expanded about
its minimum.

(2) The system pressure is zero.
Various other authors present evidence for this, or at least

that even interparticle potentials are special.
On the other hand, in [9] theoretical arguments were put

forth that the criterion for membership in class A is that the
system’s specific heat ratio is γ ≡ cP /cV = 1. The argument
in [9] suggests that this should be the criterion for membership
in class A, regardless of the form of the interparticle potential.
The two proposals are strongly overlapping since any system
with an even potential at zero pressure will have γ = 1. The
evidence presented in [15] and [9] is consistent with both
proposals since all examples that have been examined with
γ = 1 have also had even potentials and P = 0. However,
the case of γ = 1 has not been examined for systems with
non-even interparticle potential and non-zero pressure. Thus,
a simple test of the two proposals would be to examine a
system which has γ = 1 but a non-even potential and non-
zero pressure. This is the primary goal of the present paper.
As a secondary goal, we will propose a way of identifying
membership in class B which is more reliable than trying to
determine the value of α.

II. MODE COUPLING THEORY

The argument for γ = 1 resulting in α = 1/2 is contained
within a simple mode coupling theory which was presented
in [9] and [10]. Because the theory is quite fully presented in
those papers we will here present only a brief summary of the
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main features, focusing on the argument regarding the special
nature of γ = 1.

In a classic paper [16], a sophisticated development of mode
coupling was used to show that, in general, the long-time tails
of all of the current correlation functions in a fluid should have
leading terms which go as t−d/2, where d is the dimensionality
of the system. In one dimension, where shear viscosity is
undefined, the relevant expressions from [16] reduce to

Cζ (t) �
[

M+−
(�s)1/2

+ MHH

(2DT )1/2

] (
1

4πt

)1/2

, (1)

Cκ (t) �
[

K+−
(�s)1/2

] (
1

4πt

)1/2

, (2)

where Cζ (t) and Cκ (t) are the momentum current correlation
function and heat current correlation functions, respectively,
m is the mass per particle, ρ is the mass density, cP is the
constant pressure specific heat capacity, cV is the constant
volume specific heat capacity, γ ≡ cP /cV is the ratio of
specific heats, DT = mκ/ρcP is the thermal diffusivity, �s =
(γ − 1)DT + D� is the sound damping coefficient, κ is the
thermal conductivity, D� = (4η/3 + ζ )/ρ is the longitudinal
diffusivity, η is the shear viscosity (which vanishes in 1D)
and ζ is the bulk viscosity. Via Green-Kubo integrals, Cζ (t)
and Cκ (t) are related to the system’s bulk viscosity and thermal
conductivity, respectively. The symbols, M+−, MHH , and K+−
are defined in [16] as

M+− = 1

β2

[
1 − γ − 1

αP T
+ ρ

c

(
∂c

∂ρ

)]
, (3)

MHH = 1

2β2
(γ − 1)2

[
1 − 1

αP cP

(
∂cP

∂T

)
P

+ 1

αP

(
∂αP

∂T

)
P

]
,

(4)

K+− = c2

β2
. (5)

For a system with γ = 1 it was shown in [9] that the
prefactor in square brackets [· · · ] in the momentum current
correlation function is zero. Thus, the possibility exists that
the bulk viscosity of a one-dimensional system with γ = 1 is
well defined, whereas it is anomalous in other one-dimensional
systems in much the same way that the thermal conductivity
is.

A very simple mode coupling theory can be obtained from
the assumption that the sound damping coefficient, �s is
a frequency dependent phenomenological parameter of the
system of the form

�s(ω
′) = γ − 1

ρcp

κ(ω′) + 1

ρ
ζ (ω′), (6)

where κ(ω′) and ζ ′ are the frequency dependent thermal
conductivity and bulk viscosity as defined through Green-
Kubo integrals. Further, the k → 0 limit of the energy current
power spectrum, ˜̂Cε(ω), is shown to be obtainable from this

frequency dependent damping coefficient via

˜̂Cε(ω) = 2c2

Lβ2

∑
k′

�s(ck′)k′2

ω2 + [�s(ck′)k′2]2
, (7)

where k′ is the wave vector and the sum is taken over the whole
reciprocal lattice.

At first sight this theory seems pathological since ˜̂Cε(ω)
depends on �s(ω′), but �s(ω′) in turn depends on ˜̂Cε(ω) via
the Green-Kubo integral for the thermal conductivity. The
theory is saved from this circularity by the fact that Eq. (7)
is dominated by terms due to modes with �s(ck′)k′2 � ω.
As a result, a “mode cascade” results in which the thermal
conductivity at any (sufficiently low) frequency is entirely
determined by the thermal conductivity and bulk viscosity
at much higher frequency.

Two main cases now become evident. If γ = 1 then the
κ(ω′) term in Eq. (6) is zero and the thermal conductivity is
entirely determined by the bulk viscosity. Since, for γ = 1, the
bulk viscosity appears to be finite a simple argument [9] leads
to the prediction that κ(ω) ∼ ω−1/2. This is class A.

On the other hand, if γ �= 1 a more complicated situation
arises. At any frequency, ω, the thermal conductivity, κ(ω), is
determined by the behavior of κ(ω′) and ζ (ω′) at much higher
frequencies, ω′. Meanwhile, due to Eq. (1), the bulk viscosity,
ζ (ω) is determined in a similar way, via both �s and DT by
the higher frequency behaviors of κ and ζ . As is suggested
by the “toy model” in the Appendix of [9], this could lead to
a situation in which both the energy and momentum power
spectra exhibit an infinity of segments with differing exponent
α, separated by “kinks” at which the value of α changes, but
always converging to a universal value α∗ = (3 − √

5)/2 �
0.382. One characteristic of this picture is that, while both κ

and ζ are anomalous, they would have the same power-law
behavior at all sufficiently low frequencies. Thus, the bulk
Prandtl number, Prζ , should be well defined. This distinctive
behavior is observed for the cubic-plus quartic system in [10].
We, therefore, suggest that the existence of a well defined bulk
Prantl number at low frequencies is a good signal that a system
is a member of class B. Given the well known difficulties in
accurately determining the value of α for a system, this may
be a much more reliable way of determining whether a system
belongs to class B.

III. SYSTEM OF INTEREST

One of the best studied one-dimensional oscillator chains
is the FPU-αβ system, which has been studied via simulations
since a number of pioneering papers in the 1960s [17,18].
A variant on this system is the cubic-plus-quartic system
which was examined in [10]. This is simply the FPU-αβ

system with the harmonic coefficient set to zero. It was
argued in [10] that the harmonic term is unimportant in the
context of the mechanisms responsible for heat transport in
oscillator chains. Further, the cubic-plus-quartic system can
be re-expanded about its minimum to recover a harmonic
coefficient, albeit one which is not independent of the cubic
and quartic coefficients. Thus, the cubic-plus-quartic system
can be seen as a restricted set within the parameter space of
the FPU-αβ system, but this restricted set spans behavior from
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harmonic to highly anharmonic. Because it is slightly faster
to numerically integrate than the full FPU-αβ system it is an
ideal test system for our present purposes.

The system is defined by the Hamiltonian

H (p,q) =
N∑

i=0

pi
2

2m
+ A

3
(qi − qi−1 − a)3

+ B

4
(qi − qi−1 − a)4, (8)

where pi and qi are the canonical momentum and position of
the ith particle, N is the number of particles in the system, m is
the particle mass, A and B are the cubic and quartic coefficients
of the interparticle potential, respectively, and a is an arbitrary
interparticle spacing at which the zero (not the equilibrium) of
the potential occurs. In most discussions the cubic and quartic
coefficients are called α and β, but we choose to call them
A and B to avoid confusion with the limiting exponent of
the heat current power spectrum and the inverse temperature,
β = 1/kBT , where kB is Boltzmann’s constant and T is the
temperature.

The thermodynamics of this system are presented in detail
in [10]. We will just summarize some key features of current
interest. Of particular interest in the present paper is the
specific heat ratio, γ ≡ cP /cV . We will wish to find conditions
under which the cubic-plus-quartic system has γ = 1. It is
worthwhile noting the standard thermodynamic identity

γ − 1 = �αP
2γ T

χT cP

, (9)

where � ≡ L/N is the system length per particle, αP is the
thermal expansion coefficient at constant pressure and χT is
the isothermal compressibility. So whenever αP = 0 we should
expect that γ = 1; it may be more intuitively clear how to find
conditions under which a system without even symmetry in its
potential might have αP = 0 than it is to think directly about
when γ = 1.

This gives us a heuristic argument which narrows our
search for conditions under which γ = 1. Consider that at
P = 0 as the temperature of the system is increased the
population of particles on the “shoulder” of the potential
increases. Thus, the system expands if A > 0. But at low
temperatures we could also populate the shoulder by changing
the pressure. Again, if A > 0 then we must put the system
under tension (P < 0) to do this. On the other hand, the
constant pressure, constant temperature distribution function
is exp [−β(H − PL)]. As the temperature is increased the
energy increases and the PL in the exponent becomes
insignificant. So the infinite temperature limit of the particle
distribution function is independent of the pressure. This can
be seen explicitly by examining the expectation value of
the interparticle distance. So, it should be possible to find
pressures far enough from zero that the system contracts as
the temperature increases. Thus, for any finite temperature
there must be some intermediate pressure at which the system
neither expands nor contracts—that is αP = 0.

Let us make the above, heuristic, argument more precise.
Following [10] we define

Xn(T ,P ) ≡
∫ ∞
−∞ Xn exp {−β[V (X) + PX]}∫ ∞
−∞ dX exp {−β[V (X) + PX]} = 〈Xn〉, (10)

then it is easy to show [10] that the equilibrium distance
between particles is

� = a + X1, (11)

the thermal expansion coefficient is

αP = 1

�

1

kBT 2

[
A

3
(X4 − X3X1) + B

4
(X5 − X4X1)

+ P
(
X2 − X1

2)]
, (12)

the isothermal compressibility is

χT = β

�

(
X2 − X1

2)
, (13)

and the constant pressure specific heat capacity per particle is

cP = kBβ2

[
1

2β2
+ A2

9

(
X6 − X3

2) + B2

16

(
X8 − X4

2)

+P 2
(
X2 − X1

2) + AB

6
(X7 − X4X3)

+ 2AP

3
(X4 − X3X1) + BP

2
(X5 − X4X1)

]
. (14)

With these, thermodynamic identities allow us to obtain
all other equilibrium thermodynamic quantities—of greatest
interest are γ and the thermodynamic speed of sound, c.
These can be expressed in terms of the above using standard
thermodynamic identities. The expressions themselves are too
large to usefully write in a publication.

This gives us the tools that we need to search parameter
space for conditions under which the cubic-plus-quartic
system has γ = 1. By the heuristic argument presented above
we would expect that for any A > 0 and finite temperature
we should be able to find γ = 1 at some P < 0 (system under
tension). Alternatively, we could choose A < 0 and find γ = 1
at some P > 0. A plot showing an example of this parameter
space search is shown in Fig. 1.

IV. RESULTS

We have carried out a set of simulations of the cubic-plus-
quartic system to test the system for membership in class A
or class B under several sets of parameters. If A = 0 (pure
quartic system) and P = 0, then it is already known [9]
that the system belongs to class A. Similarly, under all of
the conditions examined [10] (A > 0, P = 0) the system
displays a well-defined bulk Prantl number and energy current
power-law exponent α � 0.4, and so it is in class B. For the
present paper we have examined two new conditions under
which γ = 1: A = −2.0 with P = 0.5926, and A = 1.89
with P = −0.5. We have done simulations under these sets
of parameters and also for some sets of conditions “nearby” in
parameter space but with γ �= 1.

We simulate using the same fourth-order symplectic in-
tegrator that was used in [10]. In all cases, the system is
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FIG. 1. Variation of γ with A for the cubic-plus-quartic system
with B = 1, T = 1, P = −0.5. More detailed plots show that γ = 1
at A � 1.89.

initialized into an equilibrium state by randomly generating
particle positions and momenta from the Boltzmann statistics
of the constant temperature, constant pressure ensemble. We
check the system energy and system momentum of all runs
to ensure that floating-point and truncation errors have not
caused them to drift by too much. Symplectic integrators
are especially advantageous in this regard since they do not
result in secular variations of the energy and momentum. We
have also checked that our initialization routine produces the
expected means and standard deviations of the system energy
and length as predicted by equilibrium statistical mechanics.
Finally, we also use sum rules described in [19] for the average
squared stress, 〈τ 2〉, and average squared energy current, 〈jε

2〉,
to check that the statistics of the currents is representative of
those for a true (infinite) ensemble. This step is important since
the squared currents follow highly non-Gaussian distributions
with long tails. Thus, it is very easy for a finite set of simulation
runs to inadequately sample or oversample the tails of these
distributions. Results of this checking are shown in Table I.

As expected, at both of the sets of parameter with γ = 1 the
bulk viscosity is finite but the thermal conductivity diverges
at low ω, so the bulk Prandtl number is undefined. Figures 2
and 3 include lines at slopes of −1/2 and are consistent with

TABLE I. Thermodynamic checking for simulation runs with
γ = 1.

A = 1.89, P = −0.5 A = −2.0, P = 0.5926

Quantity Theory Simulation Theory Simulation

〈�〉 −0.630 −0.631 ± 0.001 0.6667 0.668 ± 0.001
〈E〉 0.2931 0.293 ± 0.002 0.1964 0.196 ± 0.001〈
jε

2
〉

1.2365 1.236 ± 0.005 1.333 1.26 ± 0.07
〈τ 2〉 2.4729 2.472 ± 0.006 2.6670 2.667 ± 0.004

FIG. 2. (Color online) Current power spectra of the
cubic+quartic system with N = 215, final time = 225, α = 1.89, and
P = −0.5. The thin red line is the simulated energy current power
spectrum, the thin black dashed line is the simulated momentum
current power spectrum, the heavy dashed black line is the energy
current power spectrum from theory, and the heavy dotted line
indicates the slope of pure ω−1/2 behavior. Selected error bars show
one standard error among simulation results.

κ ∼ ω−1/2. More will be said about this below. Thus, even
though P �= 0 and the system’s interparticle potential does not
have even symmetry, the system is a member of class A under
these conditions.

Similar runs using parameters for which γ �= 1 were carried
out. The parameters chosen were A = −2.7, P = 0.5926,
and A = 2.0, P = −0.5. These runs have the characteristic
behavior that the energy and momentum current power spectra
follow the same power law at low frequencies. Thus, a well
defined bulk Prantl number exists for these conditions. Further,
the low frequency limit of α is significantly less than 1/2. Thus,
the system is a member of class B with these parameter sets.

In view of the continued disagreement over whether α is 1/2
or 2/5 for systems belonging to class A, it is worth examining
the runs shown in Figs. 2 and 3 in more detail. Taking linear
regressions of the results at frequencies below 2−16 we obtain
the slopes shown in Table II. These are far more consistent

TABLE II. Slopes of portions of plots in Figs. 2 and 3 for
frequencies less than 2−16.

A P Slope

1.89 −0.5 −0.47 ± 0.02
−2.0 0.5926 −0.49 ± 0.02
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FIG. 3. (Color online) Current power spectra of the
cubic+quartic system with N = 215, final time = 225, α = −2.0, and
P = 0.5926. The thin red line is the simulated energy current power
spectrum, the thin black line is the simulated momentum current
power spectrum, the heavy dashed black line is the energy current
power spectrum from theory, and the heavy dotted line indicates the
slope of pure ω−1/2 behavior. Selected error bars show one standard
error among simulation results.

with α = 1/2 than they are with α = 2/5. Specifically, the
95% confidence intervals for the slopes exclude α = 2/5.

V. DISCUSSION AND CONCLUSIONS

The key result is that, for the cubic-plus-quartic system, the
criterion for membership in class A is that γ = 1. Secondly,
we can say with some confidence that for this system, when it
is in class A the asymptotic exponent is α = 1/2, not α = 2/5.

To what extent can this result be generalized to other
one-dimensional systems? While more study will be needed
to determine this, the nature of the mode-coupling theory
which predicted this criterion allows us to speculate. It is not
yet known what systems the simple mode coupling theory is
valid for, but the only fundamental assumptions underlying the
theory [9] are:

(1) The system is in local thermodynamic equilibrium, at
least over sufficiently long length scales.

(2) The microscopic sound damping coefficient can be at
least approximated by Eq. (6).

Given that this seems to be true for FPU chains, it seems
likely that it is true for any other coupled oscillator systems
with power-law potentials and with some nonlinearity to
couple the harmonic modes. A preliminary study of a system
with discrete, impulsive collisions shows that transport in that
system is also governed by this theory. This will be presented in
a future paper. On the other hand, the “momentum conserving
ding-a-ling” system [3] appears not to be described by this
mode coupling theory. It is not clear why. Does the system
fail to maintain local thermodynamic equilibrium? Does the
unusual nature of the system produce completely different
sound damping behavior? Answering these questions could
provide broader insights.

The additional condition for systems to divide neatly into
the class A and class B proposed in this paper is that, for
systems with γ = 1, the bulk viscosity is finite. The theory
does not predict this. All it predicts is that any t1/2 term
in the momentum current correlation function is identically
zero if γ = 1. One can think of the theory, with its mode
cascade, as a normalization group flow. If it is “seeded”
with an initial, relatively high-frequency ω−1/2 behavior, as
originally predicted by [16] then this leads to a cascade through
ω−1/3, ω−2/5 and so on converging towards the universal
ω−α∗

as described in [9,10]. If γ = 1 and it is “seeded” with
a constant bulk viscosity then it results in ω−1/2 behavior.
However, nothing in the theory tells us, a priori, what to
seed the theory with. Thus, much additional work remains
to be done. Other universality classes are not ruled out.
For example, a system with γ = 1 but a non-constant bulk
viscosity would produce very different behavior. The cascade
through ω−1/2, ω−1/3, ω−2/5, . . . would explain the persistent
lack of consistency of results in numerical studies of heat
conduction in one-dimensional systems. Indeed, the seed of
the cascade is presumably some “mid-frequency” behavior
which may not be ω−1/2. This will result in a different cascade,
still going asymptotically towards α = α∗, but passing through
values of α which are nearly, but not quite 1/3, 2/5, . . . . This
would explain the preponderance of reported values of α that
are between 1/3 and 2/5.

Finally, there is evidence [14] that conventional hydrody-
namics breaks down in these systems so that peak widths scale
as ω3/2 rather than as ω2. The mode coupling theory used
in the present study assumes the ω2 scaling of conventional
hydrodynamics. It would be interesting to recast the theory
using the ω3/2 scaling proposed in [14] in order to see whether
this provides better prediction of the transport.
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