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The conventional second-order path-integral Monte Carlo method is plagued with the sign problem in solving
many-fermion systems. This is due to the large number of antisymmetric free-fermion propagators that are
needed to extract the ground state wave function at large imaginary time. In this work we show that optimized
fourth-order path-integral Monte Carlo methods, which use no more than five free-fermion propagators, can yield
accurate quantum dot energies for up to 20 polarized electrons with the use of the Hamiltonian energy estimator.
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The path-integral Monte Carlo (PIMC) method remains
problematic for solving many-fermion systems due to the
“sign” problem. Since the antisymmetric free-fermion propa-
gator (FFP) is not positive-definite, only its magnitude can be
sampled by the Monte Carlo method and observables must then
be weighed by the overall sign of all FFP in the path integral.
While a suggested remedy has been proposed [1–3], the most
practical solution in traditional PIMC is to simply side-step the
sign problem by invoking some “fixed-node” or “restricted-
path” approximations [4]. Here we argue that: (1) The sign
problem is not intrinsic to solving a fermion problem; (2)
it is only a consequence of a poor approximation to the exact
propagator; and (3) it can be automatically minimized by using
better, higher-order approximate propagators. By following up
on the last point, this work shows that by using optimized
fourth-order propagators, accurate results can be obtained for
up to 20 spin-polarized electrons in a two-dimensional (2D)
circular, parabolic quantum dot.

First, let us dispel the notion that the sign problem is
intrinsic to solving fermion problems in PIMC. If the exact
propagator of the system G(X,X′; τ ) = 〈X|e−τH |X′〉 is known,
then one can compute the energy from

E =
∫

dXHG(X,X; τ )∫
dXG({X,X; τ )

(1)

without any sign problem, since G(X,X; τ ) > 0. To drive home
this point with a nontrivial example, we show in Fig. 1 the
ground state energies of up to 100 noninteractingfermions
in a 2D harmonic oscillator (HO). The exact many-fermion
propagator is obtained by generalizing the HO propagator
given in Ref. [5] to

G(X,X′; τ ) = (2πτCT )−DN/2e−τCV
1
2 ω2 ∑N

i=1(x2
i +x′2

i )

× det[e− 1
2τCT

(xi−x′
j )2

], (2)

where X = {xi}, CV = [cosh(ωτ ) − 1]/[sinh(ωτ )ωτ ], CT =
sinh(ωτ )/(ωτ ), D is the dimension of xi , and N is the number
of particles. (A proof of this will be given elsewhere, but it is
easy to verify that it is exact by a direct calculation, as done
here.) Figure 1 demonstrated that this fermion problem can be
solved by the Monte Carlo method without any sign problem
and the energy obtained is precisely that of filling the 2D HO
energy levels up to the number of fermions. [For N � 30, a
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single G(X,X; τ ) is adequate. For larger N , Fig. 1 uses two
propagators G(X′,X; τ/2)G(X,X′; τ/2) > 0. This is because
at τ = 6, τCT ≈ 200, all entries of the matrix in (2) are nearly
one, and the subtraction needed to compute the determinant is
beyond Fortran’s double precision. With two propagators, the
needed value of τ is halved.]

If one tries to approximate this, or any other exact
propagator, by a product of primitive action (PA) second-order
propagator having one FFP, then one is again confronted by
the sign problem. Since the PA propagator is only accurate
at very small time steps, conventionally hundreds of them are
needed to extract the ground state at large imaginary times.
When one has hundreds of FFP, then whether one is sampling
the permuations [4] or directly evaluating the antisymmetric
free-propagator [6], the average of the sign is close to zero
and the sign problem is intractable. This is in spite of the fact
that the same problem has just been solved in Fig. 1 without
any sign problem. From this perspective, the sign problem is
purely a consequence of a poor approximation to the exact
propagator. To the extent that one can better approximate
the exact propagator, one can automatically lessen the sign
problem. This also means that there is no imperative to “solve”
the sign problem. (Why insist on solving a problem using a
poor approximation?) The sign problem is to be avoided by
approximating the exact propagator more accurately using the
fewest FFP. If the number of FFP can be kept to less than 10,
then one can extract ground state properties before the onset
of the sign problem. This is the key idea of this work.

This idea has not been contemplated before because
traditional PIMC has been formulated mostly in terms of the
low-order, inaccurate PA propagator. It is therefore always
deemed impossible to reach the ground state with so few
FFP. However, in the bosonic case of liquid helium, we have
shown [7] that even a single use of a fourth-order propagator
can reach closer to the ground state than many elaborate
variational schemes. Recently, the ground state energy of liquid
helium has been computed in PIMC by Sakkos, Casulleras,
and Boronat [8], using a fourth-order propagator that can be
“fine tuned” to converge at the sixth order for the energy.
Their work reduces, by an order-of-magnitude, the number of
propagators (or beads) needed in bosonic PIMC. Subsequently,
Rota et al. [9] showed that a ground state PIMC (GSPIMC)
calculation only needed about 10 propagators to achieve the
same objective! Similar results have also been obtained for the
same system with GSPIMC by Zillich, Mayrhofer, and Chin
[10], using sixth- and eighth-order extrapolated propagators.
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FIG. 1. (Color online) A two-propagator calculation using the
exact, HO fermion propagator (2) in 2D. E is the energy in units
of �ω and τ = βω. Symbol sizes are larger than statistical error bars.
For 70 to 100 fermions, the exact energies are 554, 676, 806, and 945.
The results obtained here at the largest value of τ are 554.044(5),
676.045(9), 806.312(6), and 945.22(2), respectively. The residual
errors are not statistical, but are due to software precision limiting the
maximum value of τ that can be reached. See text for details.

The tremendous success of these results have inspired this
work to apply higher-order PIMC methods to fermions in
quantum dots. Below we will derive fourth-order algorithms
for solving a general interacting fermion problem, where the
exact HO propagator (2) is not used. (Since the electron
repulsion expands the size of the quantum dot, the exact HO
propagator is also not effective at strong couplings.)

Aside from using higher-order propagators, the above
calculations [7,9,10] also computed the energy directly from
the Hamiltonian. By the Golden-Thompson inequality [11,12]
the thermodynamic estimator used in conventional PIMC
converges to the ground state energy only from below. In
the few-propagators case, the thermodynamic estimator is so
far from convergence that it is totally useless. The use of
the virial estimator is risky for quantum dots, since it may
dip below the exact ground state energy [3]. In this work
we follow the success of the GSPIMC method in also using
the Hamiltonian estimator in PIMC. This estimator is known
[13] in bosonic PIMC, but we generalize it here to include
the antisymmetric, determinant propagator. There are three
advantages in using the Hamiltonian estimator in PIMC. First,
it gives a variational upper bound to the ground state energy,
as in GSPIMC. Second, its result can be double checked by
use of a variant, the Clark-Westhaus (CW) [14] form of the
kinetic energy. Third, in contrast to GSPIMC, no trial ground
state wave function is needed.

The Hamiltonian for N electrons in a 2D harmonic dot is

H =
N∑

i=1

(
− �

2

2m∗ ∇2
i + 1

2
m∗ω2r2

i

)
+

N∑
i<j

e2

κ|ri − rj | . (3)

By expressing ri = �0 xi , where �0 = √
�/(m∗ω) is the har-

monic length, one obtains the dimensionless Hamiltonian H
in terms of dimensionless vectors xi ,

H ≡ H

�ω
=

N∑
i=1

(
−1

2
∇2

i + 1

2
x2

i

)
+

N∑
i<j

λ

|xi − xj | , (4)

with effective coupling strength λ = �0m
∗e2/(�2κ) = l0a

−1
B ,

where aB is the effective Bohr radius. The Hamiltonian H is
the quantum dot’s energy in units of �ω.

The corresponding imaginary time propagator is

G(τ ) = e−βH/� = e−τH = e−τ (T +V ), (5)

where τ = βω is the dimensionless imaginary time, and T

and V are the kinetic and potential operators of H. The PA
propagator approximates G(ε) at small time ε = τ/n as

G2(ε) = e−εV/2e−εT e−εV/2 + O(ε3), (6)

with coordinate representation

G2(X,X′; ε) = 〈X|G2(ε)|X′〉
= e−εV (X)/2G0(X,X′; ε)e−εV (X′)/2, (7)

where X = {xi} is the position vector of all N fermions, and

V (X) =
N∑

i=1

1

2
x2

i +
N∑

i<j

λ

|xi − xj | . (8)

The antisymmetric FFP G0(X,X′; ε) is given by

G0(X,X′; ε) = 〈X|e−εT |X′〉 = (2πε)−ND/2 det M, (9)

where N is the number of fermions (electrons of the same
spin), D is the dimension of the system, and M is the N × N

antisymmetric diffusion matrix

Mij (X,X′) = exp

[
− 1

2ε
(xi − x′

j )2

]
. (10)

For computing the energy, it is convenient to write

G0(X,X′; ε) = e−u0(X,X′;ε),
(11)

u0(X,X′; ε) = ND

2
ln(ε) − ln(det M).

In PIMC, the energy is calculated from (Xk is denoted
simply by k)

E =
∫

d1 · · · dnG2(1,2; ε)HG2(2,3; ε) · · · G2(n,1; ε)∫
d1 · · · dnG2(1,2; ε)G2(2,3; ε) · · · G2(n,1; ε)

(12)

and averaged over all n places whereH can be inserted between
propagators. Since the FFP is not positive-definite, the above
integral is sampled as

E =
∫

d1 · · · dn sgnEH(k,k + 1)P (1,2, . . . ,n; ε)∫
d1 · · · dn sgnP (1,2, . . . ,n; ε)

, (13)

with the probability distribution function taken to be

P (1,2, . . . ,n; ε) = |G2(1,2; ε)G2(2,3; ε) · · · G2(n,1; ε)|,
(14)
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and where sgn = ±1 is the overall sign of the product of G2’s.
The Hamiltonian energy estimator is given by

EH(X,X′; ε) = HG2(X,X′; ε)

G2(X,X′; ε)

=
∑N

i=1(− 1
2∇2

i )G2(X,X′; ε)

G2(X,X′; ε)
+ V (X). (15)

The alternative CW form of the kinetic energy is to let one of
the gradient operators act to the left, giving

ECW(X∗,X,X′; ε)

=
∑N

i=1
1
2G2(X∗,X; ε)

←
∇ i · ∇iG2(X,X′; ε)

G2(X∗,X; ε)G2(X,X′; ε)
+ V (X). (16)

The exact (and the free) propagator satisfies the equation

− ∂

∂ε
G(X,X′; ε) = HG(X,X′; ε). (17)

This equality no longer holds when G(X,X′; ε) is replaced
by an approximation, such as G2(X,X′; ε). In this case, when
both sides of the equation are divided by G2(X,X′; ε), the
right-hand side gives the “Hamiltonian” estimator as stated
above. The left-hand side then gives the ‘thermodynamics”
energy estimator

ETH(X,X′; ε) = −∂εG2(X,X′; ε)

G2(X,X′; ε)

= ∂

∂ε
u0(X,X′; ε) + 1

2
[V (X) + V (X′)]. (18)

By the repeated use of the identity

∂

∂α
ln(det M) = Tr

[
M−1 ∂M

∂α

]
, (19)

all three estimators can be computed without difficulties:

ETH(X,X′; ε) = ND

2ε
− 1

2ε2

N∑
i=1

(
x2

i + x′
i

2 − 2xi · x̃′
i

)

+ 1

2
[V (X) + V (X′)], (20)

EH(X,X′; ε) = 1

2

N∑
i=1

∇2
i

[
u0 + ε

2
V

]

−1

2

N∑
i=1

[
∇i

(
u0 + ε

2
V

)]2
+ V (X), (21)

ECW(X∗,X,X′; ε)

= 1

2

N∑
i=1

∇i

[
u0(X,X∗; ε) + ε

2
V

]
· ∇i

[
u0(X,X′; ε) + ε

2
V

]
+V (X), (22)

where

∇iu0(X,X′; ε) = 1

ε
(xi − x̃′

i),
(23)

∇2
i u0(X,X′; ε) = D

ε
− 1

ε2

(
x′

i

2 − x̃′2
i

)
,
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FIG. 2. (Color online) The convergences of the Hamiltonian en-
ergy (H) vs the thermodynamics energy (TH) in a second-order
PA PIMC calculation for N = 8 polarized electrons at λ = 8. The
number is the number of PA propagators used in that calculation.
The black triangle and red circles are the CW and Hamiltonian
energies, respectively. The error bars are computed from 60 to 100
block averages of 5 × 104 configurations, and are mostly smaller
than the plotting symbols. The black line is the PIMC result of
Egger et al. [3].

and where x̃′
i is defined by

x̃′
i ≡

N∑
k=1

x′
kMik(X,X′)M−1

ki (X,X′). (24)

Thus, in all three energy estimates, the calculation of M−1 is
required. In the free propagator case, one has indeed ETH =
EH. The CW estimator will generally have greater variance
than the Hamiltonian estimator.

After a set of M configurations {X(m)
i } has been generated

according to P (X1,X2, . . . ,Xn; ε), the energy can be computed
by using the above three estimators as

E =
∑M

m=1 sgnk

[
1
n

∑n
k=1 EH,CW,TH

(
X(m)

k ,X(m)
k+1; ε

)]
∑M

k=1 sgnk

. (25)

For N = 8 spin-polarized electrons at the strong-coupling
limit of λ = 8, the the energy of these three estimators are
compared in Fig. 2. This is the largest quantum dot at the
strongest coupling considered in Egger et al.’s PIMC calcula-
tion [3] and in Rontani et al.’s configuration-interaction study
[15]. The thermodynamics estimator showed no convergence
for up to eight PA propagators, whereas the Hamiltonian
and CW estimators are in excellent agreement in providing
upper bounds to the ground state energy from two to eight
propagators. The sign problem is completely under control in
these calculations. The Hamiltonian energy minimum in the
eight propagators case is already close to the result of Egger
et al. [3]. This strongly suggests that improving the propagator
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FIG. 3. (Color online) Comparing the Hamiltonian energies from
optimized fourth-order propagators vs the PA Hamiltonian energies
from Fig. 2, for the same N = 8 quantum dot. The optimized
propagator results are labeled as “Best Bead” (BB), with 3–5
free-fermion propagators. B2 has no free-parameter to optimize the
energy.

beyond second order can circumvent the sign problem in these
quantum dot calculations.

The short-time propagator can be approximated to any order
by a product decomposition,

e−ε(T +V ) =
n∏

i=1

e−ti εT e−viεV , (26)

with a suitable set of coefficients {ti ,vi}. However, as first
shown by Sheng [16], Suzuki [17], Goldman-Kaper [18], and
more recently in a constructive proof by Chin [19], beyond
second order, any factorization of the form (26) must contain
some negative coefficients in the set {ti ,vi} and cannot be
used in PIMC. This is because if ti were negative, then
replacing ε → tiε in the free-fermion propagator (10) would
result in an unbounded function that cannot be normalized
as a probability. This simply reflects the fact that diffusion
is a time-irreversible process. To have forward fourth-order
schemes, with all positive coefficients, one must include the
gradient potential

[V,[T ,V ]] =
N∑

i=1

|∇iV |2 (27)

in the decomposing process [20,21]. These fourth-order
schemes have been used successfully in bosonic DMC and
PIMC simulations [8,9,22,23]. Here we will use a more ex-
tended family of these forward fourth-order propagators, with
arbitrary numbers of free-fermion T operators as described in
Refs. [19,24].

In order to compare with the PA algorithm, we will
characterize these algorithms by their number of T operators,
or beads. We will consider approximations of the form (26)
with t1 = 0 and with left-right symmetric coefficients v1 = vN ,
t2 = tN , etc.,

T (4)
(N−1)B (ε) = ev1εV et2εT ev2εV · · · etN εT evN εV . (28)

This will be fourth order if one chooses {ti} > 0 with
∑N

i=1 ti =
1, fixes {vi} by

v1 = vN = 1
2 + λ2(1 − t2), vi = −λ2(ti + ti+1), (29)

TABLE I. Comparison of N spin-polarized electron ground state energies E0/�ω at coupling λ = √
3 for N = 2 (with exact energy

E0/�ω = 4) and at λ = 8 for N > 2.

N 8 PA-beads 2 beads 3 B-beads 4 B-beads 5 B-beads PIMC [3] CI [15] DMC [25,26]

2 4.042(5) 4.126(3) 4.033(2) 4.014(3) 4.001(4)
3 15.694(3) 15.961(5) 15.66(3) 15.63(3) 15.610(4) 15.59(1) 15.595
4 27.92(1) 28.266(5) 27.898(4) 27.861(8) 27.82(2) 27.823(11) 27.828
5 43.08(1) 43.611(7) 43.020(5) 43.00(3) 42.90(2) 42.86(4) 42.88

6 60.725(15) 61.403(7) 60.622(6) 60.53(3) 60.46(2) 60.42(2) 60.80 60.3924(2)
7 80.81(2) 81.67(2) 80.714(8) 80.59(2) 80.54(3) 80.59(4) 80.5146(2)
8 103.53(3) 104.45(1) 103.42(1) 103.28(2) 103.18(3) 103.26(5) 103.0464(4)
9 128.6(1) 129.53(1) 128.37(1) 128.23(4) 128.0(1)
10 155.5(4) 156.77(1) 155.38(1) 155.21(6) 154.9(2)

12 217.55(2) 215.79(2) 215.4(1) 215.2(2)
14 286.43(2) 284.43(2) 284.08(8) 283.6(4)
16 363.08(2) 360.53(5) 360.0(3) 359.5(6)
18 447.02(2) 444.04(4) 442.9(4)
20 538.07(3) 534.63(4) 534.1(2)

22 635.99(2) 632.06(4)
25 794.9(1) 790.3(2)
30 1091.7(1)
40 1795.9(1)
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where λ2 = −φ−1/2, φ = 1 − ∑N
i=1 t3

i , and divide the re-
quired gradient potential term

1

24

(
1

φ
− 1

)
ε3[V,[T ,V ]] (30)

left-right symmetrically among all the viεV terms in (28). In
order to compute the Hamiltonian energy as simply as in the
PA case (with only minor changes from ε → tiε and ε → viε),
the gradient potential term must not be distributed to the v1

and vN potential terms. Because of this constraint, there is no
free parameter in the two-bead calculation (algorithm 4A of
Ref. [21]) that can be used to optimized the energy. Similarly,
the Takahashi and Imada fourth-order trace propagator [6] can-
not be used because it is difficult to compute the Hamiltonian
estimator with the gradient potential. The freedom to choose
{ti} and to distribute the the gradient potential terms among
the remaining vi potential terms then allows one to fine tune
the propagator to minimize the energy [8,9].

In Fig. 3 we compare the Hamiltonian energy obtained by
these optimized fourth-order propagator with those of the PA
propagator in Fig. 2. The energy is computed by sampling the
trace of only a single fourth-order propagator having two to
five beads. The two-bead case, even without optimization,
is substantially better than PA2. The optimized three-bead
case has energy lower than that of eight PA propagators.
The five-bead case has energy lower than that of Egger
et al.’s calculation [3]. As the calculation becomes more
accurate with an increasing number of beads, E(τ ) levels
off in approaching the exact result, as in Fig. 1, but still
retains a shallow minimum. Table I compares our results to
those obtained by the PIMC method of Egger et al. [3], the
configuration-interaction method of Rontani et al. [15], and
the diffusion Monte Carlo (DMC) method of Pederiva et al.
[25] and Ghosal et al. [26], for up to N ≈ 20 spin-polarized
electrons. In the case of two and three beads, results can
be obtained up to N = 40 and N = 25, respectively. These
calculations were done on a laptop computer and each entry
can take up to ≈ 2–4 days. Entries requiring a longer running
time were left undone. Substantial improvements are expected
when the code is ported to supercomputers. In Fig. 4 we show
the convergence of the three- and four-bead propagators for
solving the case of N = 20 spin-polarized electrons. This is a
good illustration of the sudden appearance of the sign problem,
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FIG. 4. (Color online) Convergence of the Hamiltonian energy
for N = 20 polarized electrons using the optimized, fourth-order
three- and four-bead propagators. Error bars are computed from 200
to 300 block average of 5 × 104 configurations of all 20 electrons.

which blew up the four-bead calculation with a large variance
at τ = 7. Nevertheless, the Hamiltonian estimator still gives
excellent upper bounds to the energy at τ = 6 and τ = 8.

In this work we have shown that optimized fourth-order
propagators, in using only three to five FFP, together with
the use of the Hamiltonian estimator, can effectively limit the
severity of the sign problem and allow accurate calculation
of quantum dot energies for up 20 fermions. The two-bead
calculations are about 1% too high, but they are without the
sign problem and can be used as a quick variational estimate
at N much larger than 20.
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