
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 91, 030801(R) (2015)

Reconstructing weighted networks from dynamics
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We present a method that reconstructs both the links and their relative coupling strength of bidirectional
weighted networks. Our method requires only measurements of node dynamics as input. Using several examples,
we demonstrate that our method can give accurate results for weighted random and weighted scale-free networks
with both linear and nonlinear dynamics.
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Many multicomponent systems of interest in physics,
biology, or social science are complex networks with the
components being the nodes or vertices and the interactions
between components being the links or edges [1–3]. The
links and their weights or relative coupling strength are
important basic features of a network that provides insights
and fundamental understanding of the overall behavior and
functionality of the network. A vast amount of data has
been measured for various networks of interest such as gene
regulatory [4,5] and brain networks [6] but it remains a
challenge to reconstruct a network, i.e., finding the links and
their relative coupling strength, from these measurements. All
existing network reconstruction methods have their limitations
[7,8]. Many existing methods are statistical in nature, inferring
the links from statistical correlations [9] and dependence [10]
of the measurements of the nodes or employing Bayesian
graphical models [4,11,12] to find the network that best
matches the measured statistics. Statistical correlation and
dependence, however, does not necessarily follow from direct
connections, and the matching problem is underdetermined
as the number of possible answers far exceeds the number
of available measurements. It has been suggested [13] that
the topology of a network controls its dynamics and thus
information about the network connectivity can be uncovered
from their dynamics. We have recently developed [14] a
method that reconstructs the links of bidirectional networks
with uniform strength of interaction. Our method uses only
measurements of nodal dynamics as input and is shown to
give accurate results for various networks with both linear
and nonlinear dynamics. Earlier methods [15] either assume
linearity [16,17] or require additional information [18–22].
In realistic networks, the strength of interaction often differs
for different pairs of nodes, and these networks are weighted
[23]. Reconstruction of weighted networks is even more
challenging.

In this Rapid Communication, we present a method that
reconstructs both the links and their weights of bidirectional
weighted networks. Our method requires only measurements
of nodal dynamics as input. Using various examples, we
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demonstrate that our method gives accurate results for
weighted random and weighted scale-free networks with both
linear and nonlinear dynamics.

We consider bidirectional weighted networks of N nodes,
each with a variable xi(t), i = 1,2, . . . ,N , and

ẋi = f (xi) +
∑
j �=i

gijAijh(xi,xj ) + ηi. (1)

Here the overdot denotes derivative with respect to time t ,
and f describes the intrinsic dynamics, which is taken to be
identical for all nodes. The adjacency matrix element Aij is 1
when node j is linked to node i by the coupling function
h(xi,xj ) with strength gij ; otherwise Aij = gij = 0. The
coupling is bidirectional such that Aij = Aji and gij = gji .
We assume that the graphs of the networks have one connected
part and no self-loops such that Aii ≡ 0. We model external
disturbances by a Gaussian white noise with zero mean and
variance σ 2: ηi(t)ηj (t ′) = σ 2δij δ(t − t ′), where the overbar is
an average over different realizations of the noise. Our goal is
to reconstruct Aij and gij using only xi(t).

We define the matrix M by

Mij = si

〈g〉δij − gijAij

〈g〉 , si ≡
N∑

j=1

gijAij , (2)

where 〈g〉 ≡ ∑
i,j gijAij /

∑
i,j Aij is the average coupling

strength and si is the strength of node i. M is the normalized
Laplacian matrix of a weighted network and contains all the
information of Aij and gij . Using xi(t), we calculate the
dynamical covariance matrix C with

Cij = 〈[xi(t) − X(t)][xj (t) − X(t)]〉T , (3)

where X(t) ≡ (1/N )
∑N

i=1 xi(t) and 〈· · · 〉T is an average over
a time interval T of the measurements. We first show an
approximate relation between the pseudoinverse of C, denoted
as C+, and M for networks with positive semidefinite M and
h(x,y) satisfying

h(x,y) = h(z), h(−z) = −h(z), h′(0) > 0 , (4)

where z = y − x. With such a coupling function, the dynamics
of the nodes tend to synchronize such that xi’s approach a
stable fixed point X0 in the noise-free limit given by f (X0) = 0
and f ′(X0) < 0. In the presence of weak noise, δxi = xi − X0
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is small and we have

δ̇xi ≈ −〈g〉h′(0)
N∑

j=1

(
Mij − f ′(X0)

〈g〉h′(0)
δij

)
δxj + ηi. (5)

Following the ideas of the proof given in [14], we derive an
exact result between C+ and M in the limit T → ∞ for the
linearized system (5), which is an approximation for the system
(1) with (4):

σ 2

2〈g〉h′(0)
lim

T →∞
C

+
ij ≈ Mij − f ′(X0)

〈g〉h′(0)

(
δij − 1

N

)
, (6)

with the factor δij − 1/N coming from
∑

k M+
ikMkj . For

consensus dynamics [24], defined by f = 0 and h(z) = z,
relation (6) becomes σ 2/(2〈g〉) limT →∞ C

+
ij = Mij and is

exact [25].
Guided by relation (6), we devise a method to reconstruct

Aij and gij . Approximating limT →∞ C
+
ij by C+

ij with a finite
T = Tav and using Eq. (2), we get

rij ≡ C+
ij

C+
ii

≈
⎧⎨
⎩

−gij

si − f ′(X0)/h′(0)
, Aij = 1

0, Aij = 0
(7)

for i �= j , where we have neglected the 1/N term for large
networks. For each node i, rij for nodes j connected to i

would have gaps among themselves because of different gij

and also have a gap from those unconnected to node i. By
identifying the latter gap [26], we obtain the reconstructed
A

(e)
ij . Moreover, Eq. (6) implies

−(σ 2/2)C+
ij ≈ h′(0)gij , i �= j, (8)

which further implies

Gij ≡ gij

〈g〉 ≈ C+
ij

∑
l k

(e)
l∑

n,l↔n C+
nl

≡ G
(e)
ij , (9)

Si ≡ si

〈s〉 =
∑

j GijAij

〈k〉 ≈ N
∑

j↔i C+
ij∑

n,l↔n C+
nl

≡ S
(e)
i , (10)

where 〈s〉 ≡ ∑
i si/N , ki = ∑N

j=1 Aij is the degree of node i,

〈k〉 ≡ ∑
i ki/N , k

(e)
i = ∑N

j=1 A
(e)
ij is the reconstructed degree

of node i, and
∑

l↔n represents a sum over nodes l that are
reconstructed to be connected to node n. We use Eqs. (9) and
(10) to obtain the reconstructed relative coupling strength G

(e)
ij

and relative strength of nodes S
(e)
i .

We apply our method to two weighted random (WR)
networks of N = 100 with a connection probability of 0.2
and two different weighted scale-free (WSF) networks of
N = 1000. The two WR networks have gij taken from two
Gaussian distributions of different mean μ and standard
deviation γ : μ = 5 and γ = 2 (WR1) and μ = 10 and γ = 2
(WR2). The WSF networks are two different extensions
[27,28] of the (unweighted) Barabasi-Albert SF network [29],
and are generated by starting with n = 5 nodes and adding
a new node to m = 5 different existing nodes at each step.
The probability of connecting to an existing node i is either
proportional to ki [27] (WSF1) or si [28] (WSF2). For WSF1,
the coupling strength of a new link is gij = g0ki/

∑
i ′ ki ′ ,

where g0 = 10 and
∑

i ′ is over the existing nodes i ′ that
the new node j is connected. For WSF2, the new link
changes the coupling strength gij of all the other links of
the existing node i to gij (1 + δ/si) with δ = 2. The degree
distribution P (k) is a power law with an exponent −3 (WSF1)
or −(4δ + 3)/(2δ + 1) (WSF2). The relative coupling strength
distribution P (G) has a peak and is skewed for WSF1 but is a
power law for WSF2.

To test the general applicability of the method, we study
not only the linear consensus dynamics and nonlinear intrinsic
logistic dynamics f (x) = rx(1 − x) with r = 10 and h(z) = z

(logistic) for which (6) is expected to hold, but also nonlinear
coupling function that cannot be linearized: f = 0 and h(z) =
z3 (cubic), and higher-dimensional dynamics with different
coupling. We study the FitzHugh-Nagumo (FHN) dynamics
[30]:

ẋi = (
xi − x3

i

/
3 − yi

)/
ε +

∑
j �=i

gijAijh(xi,xj ) + ηi, (11)

ẏi = xi + α (12)

with both h(x,y) = h(z) = z and α = 1.05 (FHN1) or
α = 0.95 (FHN2) and synapticlike coupling h(x,y) = {1 +
tanh[β(y − xth)]}/2 with β = 2 and xth = 1 and α = 1.05
(FHN3), together with ε = 0.01, as well as the Rössler
dynamics [31]:

ẋi = −yi − zi +
∑
j �=i

gijAij tanh[(xj − xi)] + ηi, (13)

ẏi = xi + ayi +
∑
j �=i

gijAij tanh[(yj − yi)], (14)

żi = b + zi(xi − c) +
∑
j �=i

gijAij tanh[(zj − zi)]. (15)

TABLE I. Accuracy of A
(e)
ij measured by PSEN and PSPEC for the

networks and dynamics studied.

Network Dynamics Tav PSEN (%) PSPEC (%)

WR1 Consensus 1000 94.3 100.00
WR1 Rössler 1000 94.2 100.00
WR1 FHN3 1000 26.9 99.57
WR1 FHN3 5000 52.6 99.70
WR2 Logistic 1000 99.9 100.00
WR2 Cubic 1000 96.8 99.70
WR2 FHN1 1000 99.5 100.00
WR2 FHN2 1000 98.1 99.97
WSF1 Consensus 1000 88.3 99.98
WSF1 Rössler 1000 86.0 99.99
WSF1 FHN1 1000 56.8 99.83
WSF1 FHN1 5000 85.5 99.87
WSF1 FHN2 1000 61.4 99.80
WSF1 FHN2 5000 85.7 99.86
WSF2 Consensus 1000 91.7 99.98
WSF2 Rössler 1000 85.2 99.98
WSF2 FHN1 1000 34.9 99.69
WSF2 FHN1 5000 86.7 99.98
WSF2 FHN2 1000 37.5 99.73
WSF2 FHN2 5000 83.3 99.98
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FIG. 1. −(σ 2/2)C+
ij versus gij for (a) WR1 with Rössler and

consensus (inset) dynamics, (b) WR2 with logistic dynamics (inset
shows σ 2/2C+

ii versus si with solid line for the theoretical result [Eq.
(6)]), (c) WSF1 with FHN1 and Rössler (inset) dynamics, (d) WSF2
with FHN2 and consensus (inset) dynamics, (e) WR2 with cubic
coupling, and (f) WR1 with FHN3 dynamics for Tav = 5000 and
Tav = 1000 (inset). In all the other cases, Tav = 1000. Dashed line is
y = x.

The parameters are a = b = 0.2 and c = 9, chosen such
that the Rössler dynamics is chaotic without the coupling
and noise. We take σ = 1 in all the cases studied and
numerically integrate the equations of motion using either the
Euler-Maruyama method or the weak second-order Runge-
Kutta method [32]. For the FHN and Rössler dynamics,
we reconstruct the networks using xi(t) only. The sampling
interval of xi(t) is 5 × 10−4 for all the cases.

We measure the accuracy of A
(e)
ij by the percentages of

correctly reconstructed links and nonexistent links, denoted
by PSEN and PSPEC, respectively (Table I). Using ten different
realizations of the WR1 network, we check that the standard
deviation of PSEN and PSPEC is less than 2%. As our
identification of the gaps [26] tends to be more stringent,
PSEN is generally smaller than PSPEC. There are two general
results: (i) the reconstruction is more accurate for the WR
than the WSF networks with the same dynamics, and (ii) the
accuracy is increased when Tav is increased. Our method gives
rather accurate results: except for WR1 with FHN3 dynamics,
both PSEN and PSPEC > 80% when Tav is at most 5000. In the
WSF networks, small-degree nodes connected to large-degree
nodes have a large disparity in gij . The presence of links with
dominantly large coupling strength makes it easier to miss
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FIG. 2. (Color online) Comparison of the reconstructed G
(e)
ij with

the actual Gij for (a) WR1 with Rössler dynamics, (b) WSF1 with
FHN1 dynamics, (c) WSF2 with FHN2 dynamics, and (d) WSF2
with Rössler dynamics. Tav = 1000 for (a) and (d) and Tav = 5000
for (b) and (c). Undetected links have G

(e)
ij = 0 but Gij �= 0 while

links with Gij = 0 but G
(e)
ij �= 0 are incorrectly reconstructed. The

average absolute error of nonzero G
(e)
ij is less than 7% for (a), less

than and about 20% for (b) and (c), and about 10% for (d).

the other links with moderate coupling strength in our method
[26] and thus reduces PSEN. This explains the general result (i).
Moreover, the number of errors for individual nodes increases
as (minj gij )/si decreases as expected from Eq. (7).

Next we study the dependence of −(σ 2/2)C+
ij on gij for

i �= j (see Fig. 1). We find that the data points scatter around
the line y = x, confirming Eq. (8), not only for consensus
and logistic dynamics with h′(0) = 1 as expected but also for
higher-dimensional Rössler dynamics for WR1 and WSF1 and
FHN1 dynamics for WR2. Our theoretical result, Eq. (6), for
i = j is also confirmed for WR2 with logistic dynamics [see
inset of Fig. 1(b)]. In the other cases, although Eq. (8) does not
hold, −(σ 2/2)C+

ij is approximately proportional to gij albeit
with a much larger data scatter, particularly for gij = 0, except
for the small number of very large gij for WSF2 with Rössler,
FHN1, and FHN2 dynamics [see Fig. 1(d)]. These interesting
observations suggest the approximate result

−(σ 2/2)C+
ij ≈ Bgij . i �= j (16)

for general dynamics with some B > 0. When the data
scatter for gij = 0 is large, C+

ij for gij = 0 would overlap
significantly with those for gij > 0, resulting in a large number
of incorrectly reconstructed links and thus a low PSEN. This
explains the low PSEN for WR1 with FHN3 dynamics for
which B ≈ 0.3. The data scatter is decreased when Tav is
increased [see Fig. 1(f)] leading to the general result (ii).
Note that Eqs. (9) and (10) remain valid when Eq. (16) holds.
We compare G

(e)
ij with the actual Gij . Except for the small

number of very large Gij for WSF2 with Rössler, FHN1,
and FHN2 dynamics, G

(e)
ij ≈ DGij (see Fig. 2) but G

(e)
ij can

deviate from Gij due to inaccurate k
(e)
i when PSEN is low.

Moreover, the undetected links are of relatively small gij , thus
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FIG. 3. (Color online) Comparison of P (G) of the reconstructed
G

(e)
ij for consensus (circles), Rössler (triangles), FHN1 (squares),

and FHN2 (diamonds) dynamics with Tav = 1000 against the actual
distribution (solid line) for (a) WR1 and WR2, (b) WSF1, and (c)
WSF2 networks. Dashed line in (b) and (c) is the result for FHN2
dynamics with Tav = 5000.

the reconstructed average coupling strength is overestimated
resulting in an underestimation of Gij and thus D < 1.

Then we compare the distribution P (G) of the reconstructed
G

(e)
ij against the actual distribution. As shown in Fig. 3,

our method captures the shape of P (G) rather well and, in
particular, reproduces both the peaked and skewed P (G) of
WSF1 and the power law in P (G) of WSF2 even though
it misses links of small Gij and for WSF2 with Rössler,
FHN1, and FHN2 dynamics, Eq. (16) does not hold for
a small number of very large gij . The reconstructed S

(e)
i

is in very good agreement with the actual Si except for
WSF1 with FHN1 and FHN2 dynamics and for large Si

for WSF2 with Rössler, FHN1, and FHN2 dynamics (see
Fig. 4). The fluctuation for large Si for WSF2 is a result
of the deviation of Eq. (16) for large gij . Using Eqs. (9)
and (10), we obtain S

(e)
i /Si = [G(e)

i /Gi][(k
(e)
i /ki)(〈k〉/〈k〉(e))],

where 〈k〉(e) ≡ ∑
i k

(e)
i /N , Gi ≡ ∑

j GijAij /ki is the average

relative coupling strength of the links of node i, and G
(e)
i ≡∑

j G
(e)
ij A

(e)
ij /k

(e)
i is the reconstructed value. By fitting G

(e)
i =

EGi we get an estimate (S(e)
i )est ≡ E[(k(e)

i /ki)(〈k〉/〈k〉(e))],
which captures well the observed S

(e)
i [see Fig. 4(b)], showing

that the deviation of S
(e)
i from Si for WSF1 with FHN1 and

FHN2 dynamics is due to the inaccuracy of k
(e)
i .

We have presented a method that reconstructs bidirectional
weighted networks using only nodal dynamics. Equation
(16) is the basis of why our method works. For networks
whose dynamics is described by Eq. (1) with coupling function
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FIG. 4. (Color online) Comparison of the reconstructed S
(e)
i (cir-

cles) and the actual Si for (a) WR1 with Rössler dynamics, (b) WSF1
with FHN1 dynamics, (c) WSF2 with FHN2 dynamics, and (d) WSF2
with Rössler dynamics. In (b), we show also (S(e)

i )est (triangles).

satisfying Eq. (4), we have derived Eq. (6) that leads to
Eq. (8), a special case of Eq. (16) with B = h′(0). Although
we have no proof of how general Eq. (16) is, our numerical
studies show that it holds also for some systems with higher-
dimensional nonlinear FHN or Rössler dynamics and with
nonlinear cubic or synapticlike coupling. Whenever Eq. (16)
holds and the data scatter is small enough such that C+

ij for
gij = 0 would not overlap significantly with C+

ij for gij �= 0,
our method can reconstruct accurately both the links and
their relative coupling strength. Using several examples, we
have demonstrated that our method gives accurate PSEN and
PSPEC (>80%) and captures the shape of P (G) for WR and
WSF networks with both linear and nonlinear dynamics. We
emphasize that the connectivity information of a network
is contained in C+ and not C, and C+ is closely related
to the inverse of the usual covariance matrix 	−1, where
	ij = 〈[xi(t) − 〈xi(t)〉T ][xj (t) − 〈xj (t)〉T ]〉T . Our work thus
further explains why weakly correlated nodes can interact
strongly [33]. Finally we note that when the interactions and
their strengths are known, a feedback method that controls
networks to desired dynamical states can be designed and
implemented [34,35].
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