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We explore the crystallization of charged colloidal particles in a nonpolar solvent mixture. We simultaneously
charge the particles and add counterions to the solution with aerosol-OT (AOT) reverse micelles. At low AOT
concentrations, the charged particles crystallize into body-centered-cubic (bcc) or face-centered-cubic (fcc)
Wigner crystals; at high AOT concentrations, the increased screening drives a thus far unobserved reentrant
melting transition. We observe an unexpected scaling of the data with particle size, and account for all behavior
with a model that quantitatively predicts both the reentrant melting and the data collapse.
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Colloidal particles can spontaneously form structures that
exhibit long-range ordered states, making them a fascinating
system for fundamental studies of crystal phase behavior
[1–4]. The majority of studies focus on colloids which model
the hard-sphere interaction, a strong repulsion that prevents
particles from overlapping, whose range is restricted to con-
tact [5]. Hard-sphere crystallization is driven through purely
entropic effects, and the phase behavior is well studied [5–9].
Typically, the colloids used for these studies are sterically-
stabilized polymeric particles in nonaqueous solvents, which
can match both the density ρ and refractive index n of
the particles, enabling confocal microscopy to be used for
these investigations. Even earlier studies focused on charged
particles, where crystallization is driven by strong long-range
repulsive interactions arising from Coulombic charges on the
particles [1,10–22]. These studies were performed on particles
in aqueous solvents, which makes charge effects much easier
to induce, but precludes index matching, limiting the use of
optical techniques except at very low densities. Instead, x-ray
scattering studies [23] showed a fascinating phase behavior
of Wigner crystals, including a body-centered-cubic (bcc)
phase at low concentration, and a solid-solid transition to
a face-centered-cubic (fcc) phase at higher densities [15–
18,24,25]. It is also possible to induce charge on particles in
nonaqueous solvents through the addition of charge control
agents [21,26–28]. However, in this case, there is strong
coupling between the charge on the particle surface and the
ions in solution. Charge-induced crystallization should still
be expected, although new behavior may also occur as a
consequence of this coupling. Nevertheless, these systems
have never been investigated experimentally, and the range
of potential behavior has not yet been explored.

In this Rapid Communication, we investigate the crystal-
lization behavior of colloidal particles in nonpolar solvents. By
adding aerosol-OT (AOT) reverse micelles, we both charge the
particles and add ions to the solution. As AOT concentration
increases from zero, the system undergoes a first transition
from fluid to a charge-stabilized bcc Wigner crystal, and
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then a second solid-solid transition from bcc to fcc. Further
increasing reverse-micelle concentration leads to a surprising
behavior: highly charged particles undergo a reentrant transi-
tion from fcc crystal back to a fluid; the reverse micelles screen
the charge they induce, destroying the Wigner crystals. We
observe the same behavior for several different particle sizes
and over a wide range of particle volume fractions φ below the
hard-sphere crystallization boundary. Strikingly, we observe
the phase boundaries to collapse onto a single master curve
only when the particle size is included explicitly, in contrast to
findings in all other systems. To explain these observations, we
present a model for the charging effects of the reverse micelles,
and solve the Poisson-Boltzmann equation in a spherical shell
to determine the potential and background charge density.
Numerical solutions and a mapping onto the one-component
plasma model predict the full crystallization phase boundaries,
including the scaling behavior. In addition, we present analytic
approximations that capture the asymptotic behavior of the
boundaries and provide insight into their scaling.

Our experimental system consists of sterically stabilized
polymethylmethacrylate (PMMA) colloidal spheres labeled
with nitro-2-1,3-benzoxadiazol-4-yl (NBD) dye and sus-
pended in a solvent mixture of decahydronapthalene (di-
electric constant ε = 2.1, ρ = 0.881 g/mL, n = 1.48) and
tetrachloroethylene (ε = 2.5, ρ = 1.623 g/mL, n = 1.51) in a
mass ratio of 1:1.1. We load suspensions into rectangular glass
capillaries (Vitrocom) with inner dimensions 0.1 × 2 × 50
mm. The particles and solvent have sufficiently similar ρ that
we do not observe sedimentation for the duration of the ex-
periment, and have sufficiently closely matched n that we can
visualize all particles individually in 3D using a laser-scanning
confocal fluorescence microscope (Leica TCS SP5) [29].

We solubilize charge using aerosol-OT (sodium di-2-
ethylhexylsulfosuccinate, or AOT), which, above its critical
micelle concentration, forms reverse micelles whose size does
not depend on AOT concentration CAOT [30–32]. Neutral
reverse micelles can interact reversibly via a symmetric
two-body mechanism to yield two reverse micelles with
opposite charges [28,33]; the fraction of ionized reverse
micelles χ is about 10−5, independent of CAOT. To quantify
the effects of the reverse micelles on screening of charges,
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FIG. 1. 1/κ0 as a function of CAOT, determined from conductivity
and viscosity measurements.

we formulate reverse-micelle suspensions with a range of
CAOT; at each concentration, we measure the conductivity
σ with an immersion probe (Scientifica), and viscosity η

with a glass viscometer (Cannon). From these data, we
determine the screening length, 1/κ0 ≡ 1/

√
4πλBnion, where

the Bjerrum length λB is 24 nm in a solvent with ε = 2.3;
the total number density of equally sized monovalent ions is
nion ≡ 6πηahσ/e2, where e is the elementary charge and ah

is the hydrodynamic radius. We find that the screening length
1/κ0 decreases monotonically with CAOT [30], as shown in
Fig. 1.

To explore the phases that form in these mixtures, we
formulate suspensions of the colloidal particles with radius
a = 0.70 μm at φ = 0.23, and vary CAOT over a wide range.
We collect three-dimensional (3D) image stacks of these
suspensions with a confocal microscope, and use software
to locate the 3D position of each particle [34–36]. To ensure
good statistics, we calculate the 3D pair correlation function,
g(r), from at least several thousand particles in each sample.
When CAOT = 0, the particles are essentially uncharged, and
their behavior is well-described as that of a hard sphere
fluid; as CAOT increases, the particles become increasingly
charged leading to correlations between particle positions.
For CAOT = 1 mM, we observe a strongly correlated liquid,
shown in the 2D confocal image in Fig. 2(a), collected several
particle layers from the coverslip, and as with all collected
images is representative of the structure throughout the depth
of the sample; g(r) for this sample has broad, low peaks,
as shown with the dotted purple curve in Fig. 2(e). Upon
further increasing CAOT, the particles undergo a crystallization
transition; at CAOT = 5 mM, we observe a disorder-order
transition from the fluid to a bcc Wigner crystal, as shown
in Fig. 2(b); strikingly, while the particles remain well
separated due to their charge, the order and quality of the
bcc crystal lattice is sufficiently high that we can locate and
index many of the major peaks in g(r) from the known
structure, as shown in Fig. 2(f). Further increasing CAOT, we
observe a solid-solid crystal phase transition from bcc to fcc
structures, shown in Fig. 2(c), and again we can index many
of the main g(r) peaks, as shown in Fig. 2(g). Remarkably,
however, when CAOT exceeds 200 mM, we observe reentrant
melting: the fcc crystal is fluidized, with no crystalline
peaks present in g(r), as shown with the blue curve in
Fig. 2(e).

To explore more fully the phase behavior of these particles,
we repeat the above experiments at several φ. The general
phase behavior with increasing reverse-micelle concentration,
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FIG. 2. (Color online) Confocal microscopy images of PMMA
particles at φ = 0.23 and (a) CAOT = 1 mM, fluid; (b) CAOT = 5 mM,
bcc crystal; (c) CAOT = 50 mM, fcc crystal; (d) CAOT = 200 mM,
fluid. (e) g(r) for fluid samples in (a) and (d) shown with dotted
purple and solid blue curves, respectively. (f) g(r) for bcc crystal
in (b), with major peaks (red lines) corresponding to indices (left to
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changing from a fluid to bcc to fcc and ultimately to a
re-entrant fluid, persists over a wide range of φ well below
the hard-sphere crystal boundary, and for several particle
sizes a = 0.46, 0.70, and 0.96 μm, as shown with symbols
in the phase diagrams in Figs. 3(a)–3(c). For sufficiently
low φ � 0.05, the system remains fluid and does not
crystallize anywhere, as shown in the figure. For samples
that crystallize at φ ≈ 0.1, only the bcc crystal phase is
observed; only above φ ≈ 0.2 do we observe a clear bcc-fcc
phase boundary, which occurs at lower CAOT for increasing
φ. By contrast, the reentrant fcc-fluid boundary occurs at
higher CAOT as φ increases. The qualitative behavior, with
the fcc and bcc crystal phases and the reentrant melting,
remains the same for all a, as shown with symbols in
Figs. 3(a)–3(c).

To explain this behavior, we construct a model that accounts
for the basic physical interactions among the micelles and
particles at a microscopic level. AOT reverse micelles affect
the particle surface charge through two coupled equilibria.
The first reaction is the self-ionization equilibrium of reverse-
micelle pairs, described by 2Mic � Mic− + Mic+, where Mic
refers to a neutral reverse micelle [28]. We characterize this
reaction with the constant KM, which we use as a fitting param-
eter. In the bulk, the total ion concentration is nion = [Mic+] +
[Mic−] = 2

√
KM[Mic]. The second reaction is the charging of

the colloidal surface through charge exchange of a neutral re-
verse micelle Mic and a neutral surface site S to form a cationic
reverse micelle Mic+ and negative surface site S−: S + Mic �
S− + Mic+ [30], characterized by the equilibrium constant
KC. We assume that the cationic reverse-micelle concentration
in the vicinity of the colloid surface, where r = a, follows
the Boltzmann distribution [Mic+]0 = 1

2nion exp[−βeψ(r =
a)] where ψ(r) is the unknown electrostatic potential. We
represent the small fraction of charged surface groups f
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FIG. 3. (Color online) Phase diagrams for charged crystallization
and reentrance as a function of φ and CAOT for particles with
(a) a = 0.46 μm (blue), (b) 0.70 μm (black), and (c) 0.96 μm
(red). Experimentally determined phases marked with symbols: filled
circles (fluid), open squares (bcc), open diamonds (fcc), and semifilled
symbols (fluid-bcc coexistence). Solid curves denote experimental
fluid-crystal boundary; solid-solid transition between bcc and fcc
marked with dashed curves. (d)–(f) Phase diagrams of the same
samples as a function of φ and 1/κ0a, using the mapping from CAOT

to 1/κ0 in Fig. 1. Solid curves indicate numerical predictions, which
closely follow the experimental data. Analytic predictions for the
phase boundaries at low and high CAOT are marked with dotted and
dashed lines, respectively.

as

f ≡ [S−]

[S]
= KC[Mic]

[Mic+]0
= KC exp[βeψ(r = a)]√

KM
. (1)

The total colloidal charge is Ze = −4πa2mf e, where m is the
areal density of chargeable surface groups.

To compute Z and ψ(r = a) self-consistently, we calculate
the full electrostatic potential ψ(r) in a charge-neutral,
spherical Wigner-Seitz cell [37–39] with radius R = aφ−1/3,
containing a spherical colloidal particle centered at the origin.
On the colloid surface we impose Gauss’s law, βe

∂ψ(r)
∂r

|r=a =
−ZλB/a2. For a < r < R the ionic reverse-micelle concen-
trations follow Boltzmann distributions 1

2nion exp[±βeψ(r)];
we therefore solve numerically the Poisson-Boltzmann (PB)
equation of the form

βe
∂2ψ(r)

∂r2
+ βe

2

r

∂ψ(r)

∂r
= κ2

0 sinh[βeψ(r)],

∂ψ(r)

∂r

∣∣∣∣
r=R

= 0,

(2)

βe
∂ψ(r)

∂r

∣∣∣∣
r=a

= 4πλB

(
mKC√

KM

)

× exp[βeψ(r = a)]
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FIG. 4. (Color online) (a) Illustration of charged particles (blue),
their double layers (red), and the OCP background (yellow). (b)
Typical ion concentration profiles ρ±(r) around a negatively charged
colloidal sphere of radius a in a cell of radius R in the weak-screening
regime κ0R � 1, such that the OCP-like ionic background charge
ρ+(R) − ρ−(R) = ρbg (see text) is nonvanishing. By charge neutrality
the effective colloidal charge equals (4π/3)(R3 − a3)ρbg, and the
corresponding OCP point charge is ZOCP = (4π/3)R3ρbg.

for given λB, a, φ, and κ0, and for fixed combinations
of mKC/

√
KM, which we fit as a single parameter. The

calculation yields not only Ze and ψ(r = a), but also the
Donnan potential ψ(r = R) and the far-field background ionic
charge ρbg = −nion sinh[βeψ(r = R)].

To determine where the system crystallizes, we map the
colloidal dispersions onto a one-component plasma (OCP) of
point particles of density n ≡ 3φ/4πa3 and charge ZOCP ≡
−ρbg/n, to satisfy global OCP neutrality, with a uniform
background charge ρbg, as illustrated in Fig. 4. The OCP
crystallizes if � > 106 [40,41] (see Appendix), where the
OCP coupling parameter is defined as � ≡ Z2

OCPλBn1/3; this
threshold yields a simple new freezing criterion that takes
the standard PB cell-model calculations as input. Therefore,
to calculate the phase boundaries for comparison with the
experimental data, we solve numerically for � = 106 using
ρbg, as obtained from the numerical solution of Eq. (2), fitting
only the single parameter mKC/

√
KM = 5.0 × 102μm−2.

To facilitate comparison between samples, and with theory,
we convert the micellar concentration to the dimensionless
product 1/κ0a, determined by mapping the experimental CAOT

to 1/κ0 via the empirical data in Fig. 1; the experimental
data are shown with the symbols in Figs. 3(d)–3(f). This
representation allows a direct comparison between the ex-
perimentally observed phase boundaries, and those predicted
by our model. Strikingly, the theoretical predictions are in
excellent quantitative agreement with experimental phase
boundaries for all a, as shown by the solid curves in
Figs. 3(d)–3(f). Our new crystallization criterion might be
expected to apply only in the low-AOT limit 1/κ0a > 1,
where the dispersion is OCP-like; however, we observe similar
accuracy with the well-established empirical criteria [42–44]
for point-Yukawa fluids even for 1/κ0a < 0.1. Moreover, our
predictions are accurate even at high φ; our criterion accounts
for the significant hard-core exclusion effects that the ions
experience, even as Coulombic repulsion keeps particles well
separated.

The quantitative success of our numerical model suggests
that a more analytic approach might also predict accurately
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the onset of crystallization, in the weak- and strong-screening
regimes. For low CAOT, the concentration of co-ions is
negligible, while the counterions form a uniform background,
such that ρbg ≈ [Mic+]0. Following the described charging
equilibrium Z = −(κ0a)2mKC/(2

√
KMλB[Mic+]0) and sub-

stituting ZOCP = Z/(1 − φ) in this limit, we obtain the analytic
expression

� ≈ (4π/3)2/3φ−2/3(1 − φ)−1(κ0a
2)2mKC/2

√
KM. (3)

We calculate the phase boundary by determining φ and κ0

where � = 106; remarkably, this yields a predicted phase
boundary which converges closely to the numerical calculation
and experimental boundary at high φ, as shown with the dotted
lines in Figs. 3(d)–3(f).

In the concentrated AOT regime, where 1/κ0a � 1, we
assume a small ψ(r) throughout the cell, due to efficient
ionic screening. We therefore utilize linear screening theory
to find that the general solution to the potential profile
is of the form ψ(r) = A exp(κ0r)/r + B exp(−κ0r)/r . We
calculate the constants A and B by using cell neutrality and
approximate the surface potential to be moderate, βeψ(a) ≈ 1.
The background charge is ρbg = −nionβeψ(R). We substitute
these into the expression for ZOCP, and again use the criterion
� = 106 to yield analytical predictions for the reentrant
boundaries. Strikingly, our simple model predicts reentrance
in close quantitative agreement with both the numerical
calculations and the experimental data over the entire range
φ, as marked with the dashed lines in Figs. 3(d)–3(f).

Interestingly, the phase boundaries for different a occur
at different φ and 1/κ0a; there is no universal behavior of
the data in this dimensionless representation, indicating that
particle size plays a nontrivial role. From Eq. (3), at low
CAOT, � depends only on κ0a

2 and φ; the φ dependence is
weak, featuring a shallow minimum at φ = 0.4, but is roughly
constant, consistent with the nearly constant CAOT observed
for this boundary in the experimental data. By contrast, at high
CAOT and close to the phase boundary, � shows very little
remaining dependence on a, when expressed as a function of
κ0a

2, φa, and a. These mathematical properties suggest that
the systems with different a may behave in the same way,
when their phases are plotted as functions of the dimensional
parameters 1/(κ0a

2) and φa.
To test this, we replot all the experimental data, as functions

of 1/(κ0a
2) and φa; remarkably, all of the experimental data

from all three a collapse onto a universal phase diagram,
with the same onset of crystallization and reentrance for
all samples, shown with symbols in Fig. 5. Our theoretical
model predicts this boundary, as shown by the overlapping
solid curves in Fig. 5. That the collapse occurs when the
data are plotted as a function of parameters that explicitly
include a length scale, as opposed to the dimensionless case,
is particularly striking; moreover, our numerical calculations
suggest that this nondimensionless scaling should apply over
a larger range of a, extending over half an order of magnitude
beyond the particle sizes used in these experiments. However,
the origin of this dimensional data collapse remains an open
question.

The excellent agreement between the assumptions of our
theoretical model and our experimental data suggests that the

FIG. 5. (Color online) Phase diagram for all particle radii, with
a = 0.46 μm (blue), 0.70 μm (black), and 0.96 μm (red), with
experimental data and numerical calculations as in Fig. 2, shown
as functions of dimensional parameters φa and 1/(κ0a

2). All
experimental data collapse onto a single behavior (symbols), which
is closely modeled by theoretical predictions (curves). Symbols are
as in Fig. 3.

same mechanism may drive electrostatically induced phase
transitions in general. Although crystallization curves are fitted
accurately, the observed bcc-fcc transition curves cannot be
reproduced within our approach, as the OCP does not show
fcc ordering. Nevertheless, our model can now be used to
predict a wide range of behaviors in charged particle systems,
and the flexibility and extended length scales possible through
the use of nonpolar solvents make these an attractive model
system for the study of other phase behavior.
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and JSPS Postdoctoral Fellowships for Research Abroad, and
is part of the D-ITP consortium, a program of the Netherlands
Organisation for Scientific Research (NWO) that is funded by
the Dutch Ministry of Education, Culture and Science (OCW).

APPENDIX

The Coulomb coupling parameter � plays a pivotal role in
the characterization of OCPs, and is defined as the Coulomb
interaction energy expressed in units of the thermal energy
kT for two particles at a typical interparticle distance D:
� ≡ Z2λB/D, where Z is the particle charge. Here we define
D ≡ n−1/3, where n is the particle density, consistent with
recent studies [42]. However, other pioneering studies on
OCP freezing [40,41] use a slightly different definition of
the interparticle distance, D∗ ≡ (4πn/3)−1/3; this results in
a small change to the coupling parameter definition: �∗ ≡
Z2λB/D∗ ≈ 1.61�. These studies show that a Coulomb lattice
is the most favourable configuration when the coupling param-
eter exceeds a critical value, �∗ � 171 [41]. Consequently, in
our study, the phase transition between the fluid and crystal
should occur very close to � = 106; we use this criterion to
construct our phase diagrams.
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