
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 91, 030102(R) (2015)

Anisotropic isometric fluctuation relations in experiment and theory on a self-propelled rod
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The isometric fluctuation relation (IFR) [P. I. Hurtado et al., Proc. Natl. Acad. Sci. USA 108, 7704 (2011)]
relates the relative probability of current fluctuations of fixed magnitude in different spatial directions. We test
its validity in an experiment on a tapered rod, rendered motile by vertical vibration and immersed in a sea of
spherical beads. We analyze the statistics of the velocity vector of the rod and show that they depart significantly
from the IFR of Hurtado et al. Aided by a Langevin-equation model we show that our measurements are largely
described by an anisotropic generalization of the IFR [ R. Villavicencio et al., Europhys. Lett. 105, 30009 (2014)],
with no fitting parameters, but with a discrepancy in the prefactor whose origin may lie in the detailed statistics
of the microscopic noise. The experimentally determined large-deviation function of the velocity vector has a
kink on a curve in the plane.
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Fluctuation relations (FRs) go beyond the second law
of thermodynamics by quantifying the relative probability
of short-time, small-scale, entropy-consuming events [1].
Experimental evidence for their validity is surprisingly
widespread [2–5], even in nonthermal noisy systems nom-
inally outside their realm of applicability [6–11]. A more
stringent symmetry property of thermal systems, the isometric
fluctuation relation (IFR) [12], has been derived recently
for isotropic systems, describing the relative probabilities of
observing currents of equal magnitude in different directions,
not necessarily diametrically opposed as in the standard FR [1].

In this Rapid Communication we present experimental
observations of behavior consistent with the IFR, on a
macroscopic, fore-aft asymmetric rod which executes self-
propelled [13–18] motion through a background of nonmotile
spheres. Our main results are as follows: (i) Our anisotropic
experimental system deviates substantially from the predic-
tions of [12]. (ii) We show that the symmetry properties of the
large-deviation (LD) function correspond to the anisotropic
IFR of [19], with which we are able to show a parameter-
free agreement through a simplified description based on an
ansotropic single-particle Langevin equation. There remains a
20% discrepancy in the prefactor, whose origin, we speculate,
could lie in non-Gaussianity in the microscopic noise, not
accounted for in our Langevin model. (iii) We find that the
measured LD function of the velocity vector exhibits a kink
where the velocity component along the rod axis vanishes. We
speculate why these behaviors should arise in an apparently
non-time-reversible system.

In our experimental setup [16] a single geometrically polar
brass rod, 4.5 mm long with diameter 1.1 mm at the thick
end, is placed amidst a monolayer of spherical aluminium
beads of diameter 0.8 mm [Fig. 1(a)]. The beads lie on
an circular aluminium plate 13 cm in diameter, covered by
a glass lid at 1.2 mm above the surface, thus forming a
confined two-dimensional system. The bead area fraction,
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based on their projected images, is 0.83. A permanent-magnet
shaker (LDS V406-PA 100E) drives the plate sinusoidally in
the vertical direction with amplitude a0 and frequency f =
200 Hz, corresponding to dimensionless shaking strength � ≡
a0(2πf )2/g = 6.5, where g is the acceleration due to gravity.
The rod transduces the vibration into predominantly forward
motion as indicated by the arrow in Fig. 1(a) [13,14,16]. The
bead medium is both athermal noise source and obstacle course
for the motion of the polar rod (see video in Supplemental
Material video [20]). A high-speed camera (Redlake Motion-
Pro X3) records the dynamics of the particle at a rate of 50
frames per second. A typical experimental snapshot is shown in
Fig. 1(a). The images were analyzed in IMAGEJ [21] to calculate
the instantaneous in-plane position R(t) and orientation, i.e.,
the unit vector n̂‖(t) from the thick to the thin end of the
polar rod, and its two-dimensional velocity vector v(t) at
time t defined as the discrete time derivative of R(t) between
successive frames. Note that v(t) is already coarse-grained in
time with respect to the true microscopic velocity. The plate
vibrates at four times the frame rate, and the collisions of the
rod with plate, lid, and beads take place at irregular instants.

We resolve v(t) into components (v‖(t),v⊥(t)) = (v(t) ·
n̂‖(t),v(t) · n̂⊥(t)) along and transverse to n̂‖(t) [Fig. 1(e)].
In earlier work [16] on this system we studied the statistics of
v‖ alone and found a large-deviation function with a kink at
zero as predicted in several theoretical treatments of forced
Brownian motion amidst periodic obstacles [22–25]. The
results of [16] encourage us to further probe its nonequilibrium
fluctuations and look for a possible IFR. Figure 1(b) shows
the instantaneous time series of v‖, whose nonzero mean
signals systematic “self-propulsion,” and v⊥, with mean zero.
The statistical anisotropy of the dynamics is clear from the
probability distributions of v‖ and v⊥ in Figs. 1(c) and 1(d)
respectively, which show a much greater dispersion along the
rod than transverse to it [26]. Figure 1(e) shows the distribution
P (v) of the two-dimensional velocity vector, peaked at a
nonzero v‖ with significant weight in all directions including
backwards. Our experiments can thus explore the applicability
of the IFR in a much larger angular range than in the numerical
studies of [12]. Before presenting our experimental findings in
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FIG. 1. (Color online) (a) Geometry of the polar particle: the
thick arrow along the particle’s axis indicates the mean direction
of “self-propelled” motion and typical experimental screen-shot
depicting the particle moving its way through the crystalline medium
consisting of 0.8 mm aluminium beads in a confined two-dimensional
cell. (b) Time series of velocity components v‖ and v⊥ of the
particle. Positive direction is along the green arrow in (a). Probability
distributions of (c) v‖ and (d) v⊥ with solid lines showing a Gaussian
fit. (e) Resulting probability distribution of velocity v ≡ v‖n̂‖ + v⊥n̂⊥
of the particle. The circle shows a constant-velocity contour and the
arrows represent isometric vectors subtending angles θ and θ ′ with
the horizontal axis.

detail, we build a minimal single-particle Langevin equation
model for the dynamics of the two-dimensional position
R(t) = (X(t),Y (t)) of the polar rod as a function of time t ,
ignoring inertia. This will allow an independent determination
of parameters required later in the paper, and help relate our
findings to the anisotropic [19] isometric fluctuation relation
in a simplifying limit. As we work in a frame fixed in the
particle, with X and Y defined with respect to the particle
orientation, the dynamics of n‖(t) does not enter our analysis.
The governing Langevin equations read

� · Ṙ = F + N · f(t) (1)

where F, � are the systematic force and damping matrix.
F gets contributions from the propulsive force driving the
particle along n‖(t) as well as from the spatial structure of
the obstruction to motion posed by the bead medium. The
random kicks that the rod receives from beads and plate

are described by a noise f. The physical noise covariance is
N · N = 2D� · �, which defines the diffusion tensor D. We
assume the unit-strength noise f to be Gaussian and white,
a plausible assumption whose validity can be tested only
by comparison to experiment. Our interest here, as in [12],
is in large deviations of the macroscopic current

∫
r J(r,t).

For the present single-particle system the current density
J(r,t) = δ(r − R(t))v(t) at point r at time t , where v ≡ Ṙ,
so that the macroscopic current is simply v(t).

We would like to extract the parameters in (1) from the
experiment. We define Vτ (t) = τ−1

∫ t+τ

t
v(t ′)dt ′, the current

coarse-grained on a timescale τ . For the smallest accessible
τ , of order the inverse frame rate, it is reasonable to
suppose that the structure of the bead medium does not
affect the dynamics of the rod significantly. We can then
assume F in (1) depends only on time. Define � ≡ N−1�,
S ≡ N−1F, and Sτ (t) = τ−1

∫ t+τ

t
S(t ′)dt ′, we can construct,

from (1) and the statistics of the noise sources, the probability
density

Pτ (Vτ = V) = det �

(
τ

2π

)d/2

exp

[
− τ

2
(� · V − Sτ )2

]

(2)

for Vτ (t) to take a value V = (V‖,V⊥), via its moment-
generating function as shown in the Appendix. If we approx-
imate Sτ (t) by � · v0, where v0 is the steady-state average
velocity, which would be exact for τ → ∞ and is reasonable
for the present case where the inverse of frame rate, τf , is four
times the oscillation period, (2) becomes

Pτ (Vτ = V) = (det D)−1/2

(
τ

2π

)d/2

e− τ
4 (V−v0)T D−1(V−v0),

(3)

where the inverse diffusion tensor (2D)−1 = �T � can be seen
to provide a natural inner product. Below we use the form (3)
to extract values for v0 and the diffusivities from our data.
Equation (2), the result of ignoring the position dependence
of the forcing in (1), trivially obeys an anisotropic IFR [19]
because its large-deviation function, from (3), is quadratic: two
coarse-grained currents V and V′ satisfying

VT D−1V = V′T D−1V′, (4)

i.e., which lie on the ellipse VT D−1V = constant, obey

lim
τ→∞

1

τ
ln

Pτ (Vτ = V)

Pτ (Vτ = V′)
= ε · (V − V′) (5)

with

ε = vT
0 (2D)−1. (6)

In the event that D� turns out to be proportional to the
unit tensor, with coefficient Teff , local detailed balance holds.
Then ε = �v0/2Teff is the drag force scaled by effective
temperature, and (5) becomes a true fluctuation relation for
the power.

For comparison with our experiments, let us consider
currents V, V′ with equal magnitude V . The result of [12]
can then be reexpressed, for the case of a diagonal
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FIG. 2. (Color online) (a) A typical plot of (�τ )−1 ln [Pτ (V)/Pτ (V′)] vs cos θ − cos θ ′ over various constant-velocity contours for τ =
0.26 s showing a linear trend for all V . (b) Data scaling of (�τV )−1 ln [Pτ (V)/Pτ (V′)] vs cos θ − cos θ ′. (c) Scaling of
(�τV )−1 ln[Pτ (V)/Pτ (V′)] with τ variation. Here each τ line contains all the V values as in (b). (d) Plot of (2�τ cos θ ) −1 ln [Pτ (V)/Pτ (V′)]
vs V for various τ for the special case when θ − θ ′ = 180◦. Here θ varies between −30◦ to 30◦ in steps of 10◦ for all τ .

D = diag(D‖,D⊥), as

lim
τ→∞

1

τ
ln

Pτ (Vτ = V)

Pτ (Vτ = V′)

= V

[
v

‖
0

2D‖
(cos θ − cos θ ′) + v⊥

0

2D⊥
(sin θ − sin θ ′)

]

+ V 2(D‖ − D⊥)

4D⊥D‖
(cos2 θ − cos2 θ ′). (7)

Although the large-deviation function for our system will
not have the quadratic form implied by (3), the foregoing
calculation gives us a value [Eq. (6)] for ε in (5) in
terms of independently measurable quantities. This allows
a parameter-free comparison of our measurements to the
anisotropic fluctuation relation (AIFR) [19] in the form (5)
or (7).

We return now to the experiments. The polar rod is
propelled only along its nose, i.e., in the x direction. Thus
y component of F in (1) is zero, so that only the component
v

‖
0 of the mean velocity is nonzero. From the measured time

series of positions we can extract the distribution of Vτ for
the shortest time accessible (τf ) and infer v

‖
0, D‖, and D⊥

by fitting the measured distribution to (3). We obtain D‖ and
D⊥ as (〈[V‖(t) − v0]2〉t τ )/2 and (〈[V⊥(t)]2〉t τ )/2 respectively
where τ = τf = 0.02 s and v0 = 0.34 cm s−1. We now plot

constant velocity contours centered at (V‖ = 0, V⊥ = 0) and
consider sets of Vτ and V′

τ at angles θ and θ ′ with respect
to n̂‖ [Fig. 1(e)]. We consider overlapping azimuthal bins of
Vτ in order to improve statistics, and obtain the probability

density P (Vτ ). Defining �(θ,θ ′) = v
‖
0

2D‖
+ V (D‖−D⊥)

4D⊥D‖
(cos θ +

cos θ ′), we plot (�τ )−1 ln[Pτ (V)/Pτ (V′)] as a function of
cos θ − cos θ ′, as shown in Fig. 2(a) for a typical τ = 0.26 s at
various values of V . The trend is linear for all V in agreement
with Eq. (7) (please recall that v⊥

0 = 0). Furthermore, a plot
of (�τV )−1 ln[Pτ (V)/Pτ (V′)] shows a clear scaling with V

for τ = 0.26 s in Fig. 2(b). Similar data collapse is seen for
all τ > 0.10 s. Now we plot (�τV )−1 ln[Pτ (V)/Pτ (V′)] for
various τ in Fig. 2(c). Here each τ line contains various V

values as in Fig. 2(b). Overlapping lines for all τ confirm
the τ scaling of the AIFR. From Eq. (7), the expected slope
in Fig. 2(b) or 2(c) shold be unity. Our experiment, using
the estimates for v0, D‖, and D⊥, finds a number close
to 0.8. Perhaps this reflects limitations inherent in using
estimates of mean speed and diffusivity from short-time data.
A possible reason for this discrepancy is that the noise is not
Gaussian [27]: Fig. 1(d) shows significant nonquadratic tails
in the logarithm of the distribution of the small-τ averaged
velocity, giving some credence to this suggestion.

As a check, we consider the special case of oppositely
directed vectors, i.e., V′ = −V, (implying θ − θ ′ = 180◦).
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FIG. 3. (Color online) (a) Ignoring the anistropy term in Eq. (7), i.e. assuming D‖ = D⊥, no scaling is observed for
(τV )−1 ln [Pτ (V)/Pτ (V′)] vs cos θ − cos θ ′. (b) AIFR analysis for the particle moving on a bare substrate in the absence of bead medium. No
collapse of data for (�τV )−1 ln [Pτ (V)/Pτ (V′)] vs cos θ − cos θ ′ suggests that the presence of the noisy medium is a must for the AIFR to
hold.

Figure 2(d) shows the plot of (2�τ cos θ )−1 ln[Pτ (V)/Pτ (V′)]
as a function of V for various τ . Here θ ∈ (−30◦,30◦)
separated by steps of 10◦. A clean collapse of data is observed
with the same slope as in Fig. 2(c). This illustrates compliance
with the standard FR [1] as a special case of AIFR.

For completeness, we analyze the velocity fluctuations in
the experiment in terms of the IFR for isotropic systems [12].
These can be obtained by setting D‖ = D⊥ in Eq. (7),
which gives � = v0/2D‖ independent of θ,θ ′. We plot
(τV )−1 ln[Pτ (V)/Pτ (V′)] against cos θ − cos θ ′ for τ = 0.26
s. Figure 3(a) shows that the isotropic IFR is not satisfied.
We check that this trend is seen for all τ . We find a trend of
increasing slope with V which cannot be explained without the
inclusion of the second term in �. This reiterates, experimen-
tally, the importance of anisotropy as pointed out by [19].
We check in addition the role of the noise and hindrance
to motion provided by the bead medium, by examining the
velocity fluctuations of the particle for its motion on a bare
substrate in the absence of any medium. Now the source of
all the noise is multiple random collisions of the particle
with the base and the lid. After an analysis along the same
lines as above, we plot in Fig. 3(b) (�τV )−1 ln[Pτ (V)/Pτ (V′)]
as function of cos θ − cos θ ′ for τ = 0.12s. Interestingly, we
find a significant failure of data-collapse in this case. Similar
behavior is observed for all τ . The presence of the bead
medium appears to be important for the AIFR to hold, a result
consistent with our earlier findings [16].

It is curious that fluctuation relations, which are a derived
consequence of microscopic time-reversibility, should arise in
a system with a unidirectional flow of energy. It would appear
that in the present experiment the only significant effect of
this energy input is its transduction into directed motion by
the polar rod. The central role of the bead medium is also a
puzzle. We speculate that the medium provides closely related
processes governing the damping and diffusion matrices � and
D in (1) of the polar rod, thus giving rise to an effective local
detailed balance. In addition, perhaps the multiple collisions
of the polar particle with the bead medium suppress correlated
movements of the rod due to rolling or sliding, which may be
present in motion on a bare substrate.

Lastly, we extract the large-deviation function (LDF) for
the velocity vector of a polar rod moving through the bead
medium, G(V), defined as Pτ (V) = Aτ exp[τG(V)][G(V) <

0] in the limit τ → ∞ [28]. Here we take Aτ = max[Pτ (V)] =
Pτ (〈V〉 = v0) which is independent of V as required. We plot
the asymptotic LDF as shown in Fig. 4(a). Clearly the shape of
the LDF is far from paraboloid. There is a sharp drop in G(V)
below the V‖ = 0 plane which is clearer when viewed along
the V⊥ axis [Fig. 4(b)]. This is related to the kink observed in
earlier work [16]. Figure 4(c) shows that the LDF is parabolic
when viewed along the V⊥ axis.

We point out here that earlier tests of the IFR, e.g., energy
diffusion on a two-dimensional lattice and a hard-disk fluid in

FIG. 4. (Color online) (a) The large-deviation function for the
velocity fluctuations, for the case of the polar rod moving through the
bead medium, is nonparaboloid. (b) The side view along the V⊥ axis
shows an abrupt fall which resembles the kink-like feature observed
in [16]. (c) The side view along the V‖ axis.
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a temperature gradient [12], were numerical. Moreover, these
simulations saw no negative events and fluctuations were only
along the imposed gradient, resulting in a test of the IFR in a
very limited range of angles θ . Our experimental study, with
substantial noise, allows an exploration over a large θ range.

To summarize, we find detailed experimental support
for the anisotropic variant [19] of the isometric fluctuation
relation [12], for a self-propelled granular particle moving
through a monolayer of spherical beads. We suggest that
the discrepancy between the observed and predicted prefactor
arises from non-Gaussianity in the form of heavy tails in the
microscopic noise, not accounted for in our Langevin equation
model. More work is needed to address this. Our measurements
are consistent with an earlier study of a fluctuation relation, and
include an extension of our earlier observation of a kink in the
large-deviation function of the velocity vector of the particle.
Our treatment through an anisotropic Langevin equation sheds
some light on the circumstances in which such relations should
arise, and allows a parameter-free test of the theory.
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APPENDIX: CALCULATION OF ANISOTROPIC
ISOMETRIC FLUCTUATION RELATION FOR

A LINEAR LANGEVIN EQUATION

The overdamped Langevin equations for a particle sub-
jected to a force F(t) in d dimensions can be written as

� · Ṙ = F + N · f(t). (A1)

Multiplying the above equation by N−1 gives

� · Ṙ = S + f(t), (A2)

where � ≡ N−1�, S ≡ N−1F. The current for the single
particle at point r will be

J(r,t) = δ(r − R(t))v(t). (A3)

The macroscopic current averaged over time τ then reads

Vτ (t) = τ−1
∫ t+τ

t

∫
r

J(r,t)

= τ−1
∫ t+τ

t

∫
r
δ(r − R(t ′))v(t ′)dt ′

= τ−1
∫ t+τ

t

v(t ′)dt ′. (A4)

The average of Eq. (A2) over time duration τ gives

� · Vτ (t) = Sτ (t) + F τ (t), (A5)

where Sτ (t) = τ−1
∫ t+τ

t
S(t ′)dt ′ and F τ (t) =

τ−1
∫ t+τ

t
f(t ′)dt ′. The probability density for F τ (t) can

be written as

P (F τ (t) = A)

=
〈
δ

(
1

τ

∫ t+τ

t

f(t ′)dt ′ − A
)〉

f

= 1

(2π )d

〈∫
k

exp −i

(
1

τ

∫ t+τ

t

k · f(t ′)dt ′ − k · A
)〉

f

= 1

(2π )d

∫
k

〈
exp −i

1

τ

∫ t+τ

t

k · f(t ′)dt ′
〉

f
exp ik · A. (A6)

But from a well known identity [29]〈
exp

(∫ τ

0
H (t)g(t)dt

)〉
g

= exp

(
1

2

∫ τ

0
H (t)2dt

)
(A7)

for any arbitrary function H (t) and any white Gaussian noise
g(t) with zero mean and deviation 1,

P (F τ (t) = A) = 1

(2π )d

∫
k

exp

(
− 1

2τ 2

∫ τ

0
k2dt + ik · A

)

= 1

(2π )d

∫
k

exp

(
− k2

2τ
+ ik · A

)
. (A8)

The right-hand side of the above equation is just the inverse
Fourier transform of a Gaussian function exp(−k2/2τ ), there-
fore the probability density for F τ (t) becomes

P (F τ (t) = A) =
(

τ

2π

)d/2

exp

(
− τA2

2

)
. (A9)

From Jacobian transformation the probability density for Vτ (t)
is

P (Vτ (t)) = det

(
∂F τ

∂Vτ

)
P (F τ (t)). (A10)

But from Eq. (A5)

∂F τ

∂Vτ

= �, (A11)

hence

P (Vτ (t) = V) = det �

(
τ

2π

)d/2

× exp

(
− τ

2
(� · V − Sτ (t))2

)
. (A12)

Since �T � = (2D)−1,

det � = [det(2D−1)]1/2 = 2−d/2(det D)−1/2

and

(� · V − Sτ (t))2

= (� · V − Sτ (t))T (� · V − Sτ (t))

= (V − �−1 · Sτ (t))T �T �(V − �−1Sτ (t))

= 1

2
(V − �−1 · Sτ (t))T D−1(V − �−1Sτ (t)). (A13)

Eq. (A12) then becomes

Pτ (Vτ = V) = (det D)−1/2
( τ

4π

)d/2

×e− τ
4 (V−�−1·Sτ (t))T D−1(V−�−1·Sτ (t)). (A14)

If the average velocity of the particle in steady state is v0,
the Sτ (t) can be approximated by � · v0, thus the probability
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density for Vτ (t) becomes

Pτ (Vτ = V) = (det D)−1/2

(
τ

4π

)d/2

× e− τ
4 (V−v0)T D−1(V−v0). (A15)

1. In two dimensions

In two dimensions, for diagonal D = diag(D‖,D⊥),
Eq. (A15) becomes

Pτ (Vτ = V) = τ

4π
√

D‖D⊥

× exp

[
− τ (V‖ − v

‖
0)2

4D‖
− τ (V⊥ − v⊥

0 )2

4D⊥

]
.

(A16)

Two coarse-grained currents V and V ′ satisfying the condition

V‖2

D‖
+ V⊥2

D⊥
= V ′

‖
2

D‖
+ V ′

⊥
2

D⊥
, (A17)

i.e., which lie on the ellipse V‖2/D‖ + V⊥2/D⊥ = constant,
obey

lim
τ→∞

1

τ
ln

Pτ (Vτ = V)

Pτ (Vτ = V′)
= ε · (V − V′). (A18)

For currents V, V′ with equal magnitude V the result of [12]
can be reexpressed as

lim
τ→∞

1

τ
ln

Pτ (Vτ = V)

Pτ (Vτ = V′)

= V

[
v

‖
0

2D‖
(cos θ − cos θ ′) + v⊥

0

2D⊥
(sin θ − sin θ ′)

]

+ V 2(D‖ − D⊥)

4D⊥D‖
(cos2 θ − cos2 θ ′). (A19)

The true large-deviation function will presumably not have
the quadratic form implied by (A16). One should note that this
calculation gives us a value

ε = (v‖
0/2D‖,v⊥

0 /2D⊥) (A20)

for ε in (A18) in terms of independently measurable quantities.
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