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Meshless lattice Boltzmann method for the simulation of fluid flows
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A meshless lattice Boltzmann numerical method is proposed. The collision and streaming operators of the
lattice Boltzmann equation are separated, as in the usual lattice Boltzmann models. While the purely local
collision equation remains the same, we rewrite the streaming equation as a pure advection equation and
discretize the resulting partial differential equation using the Lax-Wendroff scheme in time and the meshless
local Petrov-Galerkin scheme based on augmented radial basis functions in space. The meshless feature of the
proposed method makes it a more powerful lattice Boltzmann solver, especially for cases in which using meshes
introduces significant numerical errors into the solution, or when improving the mesh quality is a complex and
time-consuming process. Three well-known benchmark fluid flow problems, namely the plane Couette flow, the
circular Couette flow, and the impulsively started cylinder flow, are simulated for the validation of the proposed
method. Excellent agreement with analytical solutions or with previous experimental and numerical results in
the literature is observed in all the simulations. Although the computational resources required for the meshless
method per node are higher compared to that of the standard lattice Boltzmann method, it is shown that for cases
in which the total number of nodes is significantly reduced, the present method actually outperforms the standard
lattice Boltzmann method.
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I. INTRODUCTION

The lattice Boltzmann method (LBM) was developed in
the late 1980s [1–4] and the early 1990s [5–7]. Since then,
it has been applied in simulations of different fluid flow
problems [8,9]. The lattice Boltzmann method is a significant
alternative for computational fluid dynamics applications due
to the following reasons: (i) The method is simple, especially
in implementing on a computer code; (ii) it has a local nature,
which results in a high capability for parallel processing; (iii)
it can better represent microscopic interactions, which makes
the method successful in interfacial dynamics applications;
and (iv) it is not limited to the continuum assumption, which
enables the lattice Boltzmann method to simulate higher
Knudsen number flow regimes compared to the Navier-Stokes
equations solvers.

Although at first the lattice Boltzmann method was con-
sidered to be an extension of the lattice gas automata [1],
it was shown later by McNamara, Garcia, and Alder [10],
and then by Sterling and Chen [11] and He and Luo [12],
that the lattice Boltzmann equation is a special discretization
of the discrete Boltzmann equation along characteristics, so
that the streaming equation becomes the exact solution of
the linear advection equation, the so-called perfect shift. As
a result, the velocity and the physical space discretizations
are coupled, which leads to the restriction of using uniform
structured grids in the standard lattice Boltzmann method.
This aspect of the lattice Boltzmann method, however, creates
some difficulties with regard to accurate treatment of curved
or irregular boundaries, especially when trying to satisfy mass
and momentum conservation on the boundary.

Several studies in the literature have been dedicated to the
treatment of this drawback of the lattice Boltzmann method,
and they have led to some extensions of the method to cover
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nonuniform or unstructured grids. Historically, these efforts
can be traced back to the early stages of developing the
lattice Boltzmann method [7]. Succi and co-workers [7,13]
were apparently the first to extend the lattice Boltzmann
method to irregular lattice geometries by suggesting a finite
volume formulation for the lattice Boltzmann equation. He
et al. [14,15] proposed an interpolation-supplemented lattice
Boltzmann method by adding an interpolation step to the two
collision and streaming steps of the standard lattice Boltzmann
method to compute the distribution function values on the
nonuniform mesh grids from the lattice sites. Interpolating
in every time step makes this method computationally ineffi-
cient, especially for three-dimensional (3D) problems, where
27 points are required for the efficient interpolation of each
point. Furthermore, negative particle distributions may occur
under certain conditions [16]. Shu, Niu, and Chew [17] used a
Taylor-series expansion and least-squares-based lattice Boltz-
mann formulation instead of direct interpolation. Although
their method eliminates the need for interpolating in every
time step, and it may be considered to have a meshless
feature, it still requires geometrical relations between the grid
points and the lattice sites, therefore they recommended using
structured grids [17]. Filippova and Hänel [18] introduced the
grid refinement technique to the lattice Boltzmann simulations.
By using a hierarchical second-order grid refinement scheme,
in addition to attaining higher computational efficiency, they
could treat curved boundaries more accurately. Dupuis and
Chopard [19] proposed a simpler grid refinement algorithm
that could significantly speed up the flow settlement pro-
cess. Although the grid refinement algorithms increase the
efficiency of the lattice Boltzmann method, particularly in
simulating strongly anisotropic flows, e.g., high Reynolds
number boundary layer flows, they still have the basic problem
of the standard lattice Boltzmann method, namely restriction
to the uniform Cartesian grid.

A natural conclusion of the second interpretation of the lat-
tice Boltzmann equation is that for the Boltzmann equation, the
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velocity space and the physical space can also be discretized
independently. As a result, different numerical schemes,
such as the finite difference (FD), finite volume (FV), finite
element (FE), and discontinuous Galerkin (DG) methods,
have been used for the discretization of the physical space in
the discrete Boltzmann equation, which leads to introducing
FD-LBM [20–23], FV-LBM [24–27], FE-LBM [28–30], and
DG-LBM [31–33] methods, respectively. The primary ad-
vantage of these methods is to make the lattice Boltzmann
method capable of treating curved or irregular boundaries more
accurately by using nonuniform or unstructured body-fitted
meshes.

Using the aforementioned numerical schemes with the
lattice Boltzmann method supplies the method with all the
flexibilities of these schemes at the cost of some extra
computational effort. However, the accuracy of all these
methods depends on the mesh quality. Creating good-quality
meshes for domains with complex geometries can be a
time-consuming challenge, especially in three-dimensional
cases. Furthermore, for problems in which remeshing during
simulation is necessary, the process may become prohibitively
expensive and can introduce some error in the results.

Meshless methods are a wide variety of numerical schemes
aimed at eliminating the need for mesh in representing
computational domains. The main advantage of these methods
is that they eliminate the time and the cost of creating good-
quality meshes, especially in the aforementioned problems.
However, this comes at the cost of consuming more memory,
as well as additional computational time. In addition, meshless
methods are typically more sensitive to point distribution, a
feature that can be efficiently treated by applying sensible point
distribution and choosing appropriate sizes for integration
domains and for local support domains, based on local average
point spacing. There have been several studies in the past
decades developing new meshless formulations for applica-
tions in different branches of physics, such as astrophysics,
fluid and solid mechanics, heat transfer, detonation, etc.
[34–36].

In this study, we present a meshless lattice Boltzmann
method by making use of the meshless local Petrov-Galerkin
(MLPG) formulation based on augmented radial basis func-
tions (RBFs). As in the standard lattice Boltzmann method,
we split the lattice Boltzmann equation into the two steps of
collision and streaming. The collision equation is a strictly
local equation to be solved like the standard LBM. The
streaming equation, which in the standard LBM is the exact
solution of the pure advection equation, is rewritten as the
pure advection equation. The resulting partial differential
equation is discretized in time using the Lax-Wendroff scheme.
The consequent semidiscrete equation is then recast into
its local weak form and is discretized by implementing the
meshless local Petrov-Galerkin method based on augmented
radial basis functions. The boundary conditions are imposed
using the bounce-back scheme of the nonequilibrium parts of
distribution functions. The validity of our proposed method
is investigated through solving a number of benchmark
problems, namely the plane Couette flow, the circular Couette
flow, and the impulsively started cylinder flow. One should
note that these benchmarks are performed only to present the
validity and correctness of the proposed method. However, the

computational advantages of this method becomes apparent
for cases with complex geometries, which is the next step in
our ongoing research.

II. FORMULATION AND NUMERICAL PROCEDURE

In this section, first the formulation of the lattice Boltzmann
method is given, and then the process of discretizing the
streaming equation is described.

A. Lattice Boltzmann equation

The discrete Boltzmann equation with the BGK collision
approximation [37] is

∂fi

∂t
+ ci,α

∂fi

∂xα

= −1

λ

(
fi − f

eq
i

)
, i = 1, . . . ,nQ, (1)

where fi is the particle distribution function, ci is the discrete
microscopic velocity, and f

eq
i is the equilibrium distribution,

all along direction i, λ is the relaxation time toward equilib-
rium, and nQ is the number of discrete microscopic velocities.
It should be noted that in our notation, index i is a free index
showing the specific lattice velocity direction, and all Greek
indices, such as α in the above equation, are dummy indices
representing space coordinate directions, for which Einstein’s
rule of summation is applied.

In this study, we only consider two-dimensional cases, and
therefore we use the more common D2Q9 lattice given as

c0 = 0,

ci = cos(i − 1)
π

4
ex + sin(i − 1)

π

4
ey, i = 1,3,5,7, (2)

ci =
√

2

[
cos(i − 1)

π

4
ex + sin(i − 1)

π

4
ey

]
, i = 2,4,6,8,

where ex and ey are the unit vectors along the x and y

directions, respectively. The equilibrium distribution function
is

f
eq
i = ρti

(
1 + ci,αuα

c2
s

+ (ci,αuα)2

2c4
s

− u2
α

2c2
s

)
, (3)

where ρ and uα are the macroscopic density and velocity,
respectively, cs = 1/

√
3 is the lattice speed of sound, and ti

is the lattice weighting factor for direction i, where t0 = 4/9,
t1,3,5,7 = 1/9, and t2,4,6,8 = 1/36.

By integrating Eq. (1) along the characteristics over the
time step δt , we have

fi(x + ciδt,t + δt) − fi(x,t) = − 1

λ

∫ t+δt

t

(
fi − f

eq
i

)
dt ′. (4)

For the collision operator to be of second order, we use the
trapezoidal rule for the integration of the right-hand side of
Eq. (4) to obtain

fi(x + ciδt,t + δt) − fi(x,t)

= − 1

2τ

[(
fi − f

eq
i

)∣∣
(x+ci δt,t+δt) + (

fi − f
eq
i

)∣∣
(x,t)

]
, (5)

where τ = λ/δt is the dimensionless relaxation time. Equation
(5) is an implicitly coupled equation, which could be trans-
formed into an explicit lattice Boltzmann equation using
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a modified distribution function f̄i and its corresponding
equilibrium distribution f̄

eq
i introduced as [38]

f̄i = fi + 1

2τ

(
fi − f

eq
i

)
and f̄

eq
i = f

eq
i . (6)

By implementing this transformation, we arrive at the explicit
lattice Boltzmann equation as

f̄i(x + ciδt,t + δt) − f̄i(x,t) = − 1

τ + 1/2

(
f̄i − f̄

eq
i

)∣∣
(x,t).

(7)

It is common to solve the lattice Boltzmann equation (7) in
two steps, namely the collision,

f̃i(x,t) = f̄i(x,t) − 1

τ + 1/2

(
f̄i − f̄

eq
i

)∣∣
(x,t), (8)

and the streaming,

f̄i(x + ciδt,t + δt) = f̃i(x,t). (9)

Equation (9) is the exact solution of a pure advection equation
and has a Lagrangian framework. However, it restricts the
standard LBM to uniform structured meshes with unit CFL
number. One way to overcome these deficiencies of the
standard LBM is to express the streaming equation in terms
of a pure advection equation to be considered in an Eulerian
framework, that is,

∂f̄i

∂t
+ ci,α

∂f̄i

∂xα

= 0. (10)

We discretize Eq. (10) in the next section.
The macroscopic quantities—density and velocity—are

computed from the moments of the distribution function as

ρ =
b∑

i=0

f̄i , (11)

ρuα =
b∑

i=0

ci,αf̄i . (12)

The equation of state for an ideal gas is applied to relate the
pressure to the density as follows:

p = ρc2
s . (13)

It can be demonstrated by the Chapman-Enskog asymptotic
analysis that the kinematic viscosity is related to the dimen-
sionless relaxation time as [39]

ν = τc2
s δt. (14)

B. Discretization of the advection equation

There are several numerical techniques to treat Eq. (10).
In this study, we use the Lax-Wendroff scheme to discretize
Eq. (10) in time, and the meshless local Petrov-Galerkin

scheme to discretize the resulting semidiscrete equation in
space. For brevity, we omit the bar symbol of the modified
distribution hereafter.

1. Time discretization: Lax-Wendroff scheme

To discretize Eq. (10) in time using the Lax-Wendroff
scheme, we write the Taylor series expansion of the particle
distributions with respect to time:

f n+1
i = f n

i + δt
∂fi

∂t

∣∣∣∣
n

+ δt2

2

∂2fi

∂t2

∣∣∣∣
n

+ O(δt3), (15)

where the superscript n represents the time step number. The
time derivatives in the above equation can be replaced by the
spacial derivatives using Eq. (10) as

∂fi

∂t

∣∣∣∣
n

= −ci,α

∂f n
i

∂xα

,

∂2fi

∂t2

∣∣∣∣
n

= ci,αci,β

∂2f n
i

∂xα∂xβ

. (16)

Substituting Eqs. (16) into Eq. (15) and eliminating the third-
order terms, we have

f n+1
i = f n

i − δtci,α

∂f n
i

∂xα

+ δt2

2
ci,αci,β

∂2f n
i

∂xα∂xβ

. (17)

2. Space discretization: Meshless local Petrov-Galerkin scheme

In the meshless local Petrov-Galerkin method, an arbitrary
collection of nodal points is distributed in the computational
domain. Subsequently, a local domain, called control volume,
is considered around each of the points. These control volumes
could have different sizes. There could also be intersections,
overlaps, or even gaps between these control volumes. For
simplicity of integrations, simple shapes, such as the circle or
the rectangle in two-dimensional domains, and the sphere or
the cube in three-dimensional domains, are selected for the
control volumes.

To apply the meshless local Petrov-Galerkin scheme to
discretize Eq. (17) in space, first the local weak form of Eq. (17)
on the control volume �I of point I is derived by taking its
inner product with a local test function WI over �I , that is,∫

�I

WIf
n+1
i d� =

∫
�I

WIf
n
i d� − δt

∫
�I

WIci,α

∂f n
i

∂xα

d�

+ δt2

2

∫
�I

WIci,αci,β

∂2f n
i

∂xα∂xβ

d�. (18)

The last integral of Eq. (18) contains second-order derivatives,
which are reduced to first-order ones using integration by parts,
so that we obtain

∫
�I

WIf
n+1
i d� =

∫
�I

WIf
n
i d� −

∫
�I

(
δtWIci,α

∂f n
i

∂xα

+ δt2

2
ci,αci,β

∂WI

∂xβ

∂f n
i

∂xα

)
d� + δt2

2

∫
�I

WI ci,αci,β

∂f n
i

∂xα

nβd�, (19)
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where �I is the boundary of the control volume �I and nβ

is the unit outward normal vector of �I . Equation (19) is the
local weak form of Eq. (17).

In the next step, the field variable fi is to be expressed in
terms of nodal values fi,J by a local interpolation scheme,
that is,

fi(x,t) =
Ns∑

J=1

φJ (x)fi,J (t) = �T(x)fs(t), (20)

where Ns is the number of nodal points in a local interpo-
lation domain of point x called a support domain, �T(x) =
{φ1(x),φ2(x), . . . ,φNs

(x)} is the transpose of the vector of
shape functions, and fs(t) = {fi,1(t),fi,2(t), . . . ,fi,Ns

(t)}T is
the vector of the nodal values of fi in the support domain. In

this study, we make use of the local radial point interpolation
method (LRPIM) [35], which uses the local radial functions
augmented with polynomials as the basis function; thus �T(x)
in the interpolation equation (20) is the transpose of the vector
of LRPIM shape functions given as [35]

�̃T(x) = {RT(x) pT(x)}G−1, (21)

where RT(x) = {R1(x),R2(x), . . . ,RNs
(x)} is the transpose

of the vector of radial basis functions (RBF), pT(x) =
{1,x,y, . . . ,pm(x)} is the transpose of the vector of monomial
basis functions, m is the number of monomial basis functions,
�̃T(x) = {�T(x),φNs+1(x), . . . ,φNs+m(x)} is the transpose of
the extended vector of the shape functions, and G is a
symmetric matrix defined as

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1(x1) R2(x1) · · · RNs
(x1) 1 x1 y1 · · · pm(x1)

R1(x2) R2(x2) · · · RNs
(x2) 1 x2 y2 · · · pm(x2)

...
...

. . .
...

...
...

...
. . .

...
R1(xNs

) R2(xNs
) · · · RNs

(xNs
) 1 xNs

yNs
· · · pm(xNs

)
1 1 · · · 1 0 0 0 · · · 0
x1 x2 · · · xNs

0 0 0 · · · 0
y1 y2 · · · yNs

0 0 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

pm(x1) pm(x2) · · · pm(xNs
) 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (22)

Substituting Eq. (20) in Eq. (19) and doing some algebra, we can write formally

NI∑
J=1

[ ∫
�I

WIφJ d�

]
f n+1

i,J =
NI∑

J=1

[ ∫
�I

WIφJ d� −
∫

�I

(
δtWI + δt2

2
ci,β

∂WI

∂xβ

)
ci,α

∂φJ

∂xα

d�

+ δt2

2

∫
�I

WI ci,αci,β

∂φJ

∂xα

nβd�

]
f n

i,J , (23)

where NI is the number of nodal points involved in the
interpolation of the field variable on the inner and the boundary
points of the control volume �I . By introducing the mass
matrix as

MIJ =
∫

�I

WIφJ d�, (24)

and the stiffness matrix as

Ki,IJ = −
∫

�I

(
δtWI + δt2

2
ci,β

∂WI

∂xβ

)
ci,α

∂φJ

∂xα

d�

+δt2

2

∫
�I

WI ci,α

∂φJ

∂xα

ci,βnβd�, (25)

we rewrite Eq. (23) as follows:

NI∑
J=1

MIJ f n+1
i,J =

NI∑
J=1

[MIJ + Ki,IJ ]f n
i,J . (26)

To complete the discretization process, the integrals of
Eqs. (24) and (25) are to be evaluated numerically. The Gauss

quadrature scheme is employed for this purpose. We have

MIJ =
NG∑
k=1

ξkWI (xk)φJ (xk)|J�I | (27)

and

Ki,IJ

= −
NG∑
k=1

ξk

(
δtWI (xk) + δt2

2
ci,β

∂WI

∂xβ

∣∣∣∣
xk

)(
ci,α

∂φJ

∂xα

∣∣∣∣
xk

)
|J�I |

+δt2

2

Nb
G∑

k=1

ξkWI (xk)

(
ci,α

∂φJ

∂xα

∣∣∣∣
xk

)
(ci,βnβ)|J�I |, (28)

where ξk is the Gauss weighting factor for the Gauss quadrature
point xk , J�I and J�I are the mapping Jacobian matrices for the
domain and the boundary integrations, respectively, and NG

and Nb
G are the number of Gauss points used for the domain

and the boundary integrations, respectively.
Now, Eq. (26) becomes the fully discretized equation for the

nodal point I . Writing this equation for all of the nodal points
in the computational domain (I = 1, . . . ,N), and assembling
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the resulting equations in a global system of equations, we can
write

Mfn+1
i = [M + Ki]fn

i , i = 1, . . . ,nQ, (29)

where M, K, and fi are the global mass matrix, stiffness matrix,
and particle distribution vector, respectively. Equation (29)
is a system of N equations with N unknowns, to be solved
separately for each direction i, after imposing the boundary
conditions.

C. Boundary conditions

The advection equation of the particle distributions is a
hyperbolic equation, which requires boundary conditions for
the incoming particles at the boundary (ci,βnβ < 0). In this
study, we impose boundary conditions using the bounce-back
scheme of nonequilibrium distributions [38], i.e.,

fi − f
eq
i = fi∗ − f

eq
i∗ , (30)

where fi∗ is the outgoing particle distribution along the
opposite direction of the incoming distribution fi . Substituting
the equilibrium distribution of Eq. (3) in the above equation,
we obtain

fi = fi∗ + 2ρbti(ci,αub,α)/c2
s , (31)

where ρb and ub,α are the macroscopic density and velocity
at the boundary. If fi∗ in Eq. (31) is considered to be
the postcollision (prestreaming) distribution, then Eq. (31)
becomes an explicit essential boundary condition for the
discretized system of Eq. (29).

It should be noted that in Eq. (31), the values of the
macroscopic density and velocity at the boundary are imposed
when they are predetermined. Otherwise, the computed values
of each time step are used. For example, for the solid wall
boundary, the so-called no-slip and impermeability conditions
are imposed through equating the velocity components in
Eq. (31) to those of the wall, while the computed values
of the density at the wall in each time step are used
in Eq. (31).

D. Numerical considerations

(i) Several choices are applicable for the test function WI ,
which lead to several MLPG schemes [36]. For instance, if we
use unity as the test function, the term containing derivatives
of WI in Eq. (23) will vanish; or if we make use of a Gaussian
distribution test function such as, for example, the local cubic
spline, the boundary integrations of Eq. (23) will be zero,
provided that the domain of the test function coincides with
the control volume. For the reason illustrated below, we use a
cubic spline test function in this study.

(ii) There are a number of radial basis functions (RBFs)
in the literature. Each of them have some shape parameters
that should be tuned in each problem for both accuracy
and good performance [35]. Three classical RBFs are the
multiquadric function, the Gaussian function, and the thin
plate spline function. In our investigations, the multiquadric
function, defined as

Ri(x) = [|x − xi |2 + (αcdc)2]q, (32)

showed more flexibility in the range of applied shape pa-
rameters, and therefore we chose this function for all the
simulations. In Eq. (32), dc is usually taken as the average
point spacing in the local support domain, and αc and q are
the shape parameters to be determined for each problem.

(iii) The maximum value for the time step leading to
a stable solution is determined using the Courant number,
CFL = max{|ci |}δt/δxmin, where δxmin is the minimum point
spacing in the domain. However, in order to obtain expected
convergence rates in the point resolution study of the method,
it is necessary that δt ∼ δx2, as will be illustrated in this
study.

(iv) The coefficient matrix in Eq. (29) is the mass matrix
M, which is, because of the local nature of the MLPG method,
a sparse matrix. Therefore, the system of equations can be
efficiently solved using sparse iterative solvers. However, the
explicit nature of the standard lattice Boltzmann method, and
the diagonally dominant character of the mass matrix, which is
especially the case when a Gaussian distribution test function
is used, motivated us to find rational ways of diagonalizing the
mass matrix, and thus saving much of the computational time.
In the finite-element analysis, the procedure of diagonalizing
the mass matrix is referred to as mass lumping [40]. In this
study, we make use of row-sum lumping, in which the sum
of the elements of each row of the mass matrix is used as
the diagonal element [40]. As a result, our meshless lattice
Boltzmann method becomes an explicit solver for the fluid
flow problems.

E. Performance analysis and memory requirement

In this section, we present a comparison of performance
and memory usage between our method and the standard
lattice Boltzmann method. First, it should be noted that in
the present meshless lattice Boltzmann method, all of the
works regarding the computation of the mass and the stiffness
matrices, including the consideration of a control volume
for each nodal point, the creation of shape functions based
on local supports, and all the required integrations, are to
be performed only once as a preprocessing step and before
the beginning of the time-step computations. Therefore, these
one time computations should not be included in the perfor-
mance analysis. To compare the repetitive computations during
the time marching part of the two methods, we note that the
collision step in our method is the same as that of the standard
LBM, and the only difference is in the streaming step. In
the standard LBM, the streaming section of the code has the
following loop per time step per node:

do i = 1,nQ

f (nb,i) = f̃ (node,i)

end,

where nQ is the number of velocity directions and nb is
a neighbor node of the considered node along direction i.
Therefore, in the streaming step of the standard LBM, we
have nQ operations per time step per node. If the total number
of nodes in the domain used in the standard LBM is NSLB,
then the total number of operations will be NSLB × nQ per
time step. In our method, the streaming section of the code
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contains the following loop per time step per node:

do i = 1,nQ

do j = 1,nnz

rhs(node) = rhs(node) + K(j,i) ∗ f̃ (JK(j ),i)

end

f (node,i) = rhs(node)/M(node,i)

end,

where nnz is the number of nonzero elements in the considered
row of the stiffness matrix K , which corresponds to the number
of nodes involved in the local interpolation of the field variable
in the Gauss points of the control volume of the considered
node. It can be seen that the number of operations in the
streaming step of our method is nQ × (3 × nnz + 2) per time
step per node. If the total number of nodes in the domain used
in the present meshless LBM is NMLB, then the total number
of operations will be NMLB × nQ × (3 × nnz + 2) per time
step. Therefore, the ratio of the total number of operations per
time step of the two methods will be

NMLB × nQ × (3 × nnz + 2)

NSLB × nQ

= NMLB

NSLB
×(3 × nnz + 2). (33)

It can be concluded from Eq. (33) that if we have NMLB<NSLB/

(3 × nnz + 2), then the total number of operations per time
step in the present method becomes less than that of the
standard LBM. It is evident that for flows in complex
geometries, the required number of grid points in a uniform
Cartesian grid used in the standard LBM is considerably larger
than that in a controlled body-fitted point distribution that
could be used in the meshless LBM. In such circumstances, the
meshless method requires less computational time to complete
a time step and actually outperforms the standard LBM.

Considering the memory usage, the major arrays used
in a standard LB code are f (NSLB,nQ), f̃ (NSLB,nQ),
f eq(NSLB,nQ), ρ(NSLB), and u(NSLB,nD), where nD is the
number of dimensions. In our method, we have these arrays
(but with sizes of NMLB) plus some additional arrays, the major
ones being the lumped mass matrix M(NMLB,nQ), the stiffness
matrix in the compact sparse form K(NMLB × nnz,nQ), and
the pointer matrices of the row and column of nonzero
elements of the stiffness matrix, IK(NMLB × nnz,nQ) and
JK(NMLB × nnz,nQ). It can be seen that the ratio of the total
number of memory words of our method to that of the standard
LB is

NMLB

NSLB
×

(
1 + nQ × (3 × nnz + 1)

nQ × 3 + nD + 1

)
. (34)

It is observed from this equation that if the number of nodal
points used in the meshless LBM is considerably less than that
of the standard LBM, the memory requirement of our method
becomes comparable with (or even lower than) that of the
standard LBM for the target cases.

III. NUMERICAL SIMULATIONS

To check the validity and correctness of our proposed
method, three benchmark fluid flow problems, namely the
shear flow between two infinite parallel plates (Couette flow),
the flow inside a suddenly rotated circular cylinder (circular
Couette flow), and the impulsively started flow around a
circular cylinder, are simulated.

A. Shear flow between two parallel plates

The first test case considered in this study is the shear
flow between two parallel plates. The plate at y = 0 is kept
stationary, while the other plate at y = L begins to move with
constant velocity u0ex . Solving the governing flow equations
by imposing the no-slip boundary conditions on the plates
yields

U (Y,T ) = Y + 2
∞∑

k=1

(−1)k

kπ
e−(kπ)2T sin(kπY ), (35)

where Y = y/L, T = νt/L2, and U = u/u0 are the dimen-
sionless y coordinate, time, and x component of the velocity,
respectively.

In solving this test case using the proposed method, we
consider a square computational domain in the xy plane
and discretize it using 5×5, 9×9, 17×17, 33×33, and
65×65 uniform point distributions. The periodic boundary
condition is imposed in the x direction. The no-slip and the
impermeability boundary conditions at the walls are imposed
by equating the velocity components in Eq. (31) to those of
the walls. For each point distribution, time iterations continue
until a steady state is reached. The Mach number defined as
Ma = u0/cs is 0.05 for all the simulations.

To determine the order of accuracy of the numerical scheme,
we employ the following relative L2 error norm:

E =
(∑Ne

I=1(UaI − UnI )2∑Ne

I=1 U 2
aI

)1/2

, (36)

where UaI and UnI are the analytical and numerical solutions
of the velocity at point I , respectively, and Ne is the fixed
number of points used for the error analysis. For this test
case, a 10×10 uniform point distribution is used for the error
analysis. The variation of the above error norm with respect to
the point spacing h is sketched in the logarithmic diagram of
Fig. 1. It is observed from this figure that the error shows an
exponential decrease with reducing h until it is saturated by the
temporal errors. The rates of the convergence of our numerical
method, computed by the linear regression of the data in Fig. 1,
are R = 2.04, 2.33, and 2.53 for δt = 0.000 25, 0.0001, and
0.000 01, respectively. Moreover, it is demonstrated from this
figure that in order to obtain expected convergence rates in the
point resolution study, it is necessary that δt ∼ δx2.

To investigate the effects of the values of the shape
parameters of the multiquadric radial basis function (MQ-
RBF) used in our interpolations, namely αc and q, on the
accuracy of the results, we solve the case with 9×9 nodal points
for different values of these shape parameters and compute
the aforementioned error norm in each case. The results are
sketched in Fig. 2. As this figure shows, by increasing the value
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FIG. 1. Numerical convergence of the meshless lattice Boltzmann
method in L2 error norm with respect to the point spacing for the
Couette flow.

of q from 0.5 to 1.5–2.03, the error norm reduces by one order
of magnitude. Then, by increasing q to 2.5, the error increases
by one order of magnitude. Therefore, the values of q in the
range 1.5–2.03 seem to give the best results. However, the best
values for αc depend on the selected value for q. For the cases
in which q is in the range 1.5–2.03, any value for αc less than
8 results in the error of the lowest order of magnitude in our
simulations. Another important result observed in this figure
is that by increasing the value of q, the applicable range of αc

decreases.

B. Flow inside a suddenly rotated circular cylinder

Another benchmark problem in which an exact solution
to the Navier-Stokes equations exists is the two-dimensional
flow inside a suddenly rotated long circular cylinder. We

αc
0 2 4 6 8 10 12

10-6

10-5

10-4

10-3

q = 0.5
q = 1.03
q = 1.5
q = 2.03
q = 2.5

E

FIG. 2. Effect of the MQ-RBF shape parameters on the error
norm for the Couette flow.

FIG. 3. Point distributions consist of 108, 409, and 1499 irregu-
larly distributed points, left to right, respectively, for the simulation
of the flow inside a suddenly rotated circular cylinder.

consider a cylinder with radius r0 that impulsively starts to
rotate at constant angular velocity ω. For small values of ω,
where the two-dimensional assumption remains true, solving
the Navier-Stokes equations determines the velocity and the
pressure distributions in dimensionless form as

Uθ (R,T ) = R + 2
∞∑

k=1

J1(αkR)

αkJ0(αk)
e−α2

k T , (37)

P (R,T ) = −2
∫ 1

R

U 2
θ

R
dR, (38)

where J0 and J1 are the zeroth- and the first-order Bessel
functions of the first kind, respectively, αk is the kth root of J1,
and the dimensionless parameters are defined as R = r/r0,
T = νt/r2

0 , Uθ = uθ/r0ω, and P = (p − p0)/(1/2ρ0r
2
0 ω2),

where p0 (or ρ0) is the prescribed pressure (or density) at
the cylinder wall.

The computational domains with a number of point distri-
butions used in our meshless lattice Boltzmann simulations are
sketched in Fig. 3. We discretize the domain using 108, 409,
1499, and 5886 arbitrary distributed points. The no-slip and
the impermeability boundary conditions at the cylinder wall
are imposed through the bounce-back scheme of Eq. (31).
The Mach number defined as Ma = r0ω/cs is 0.05 in all
the simulations. To determine the order of accuracy of our
numerical scheme for this test case, we employ the error norm
defined in Eq. (36) and investigate the variation of this error
with respect to the average point spacing h defined as

h =
√

S√
N − 1

, (39)

where S is the surface area and N is the number of the
nodal points of the entire computational domain. The result
is illustrated in Fig. 4 for δt = 0.0001. The rate of the
convergence of the method for this test case is obtained as
R = 1.73.

The velocity and the pressure distributions along a radius of
the cylinder at different dimensionless times are depicted and
compared with the analytical solutions of Eqs. (37) and (38)
in Figs. 5 and 6. The results of the meshless lattice Boltzmann
method presented in these figures are for the finest point
resolution (N = 5886) and are in excellent agreement with
the analytical solution.

C. Flow past an impulsively started cylinder

The third test case considered here is the impulsively started
flow around a circular cylinder. The computational domain and
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h
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100
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FIG. 4. Numerical convergence of the meshless lattice Boltzmann
method in L2 error norm with respect to the average point spacing
for the circular Couette flow.

the point distribution for this test case are sketched in Fig. 7.
To capture the boundary layer velocity gradients so that the
characteristic quantities of the flow, such as the separation
points and the drag coefficients, are computed accurately, the
point distribution is made considerably denser next to the
cylinder wall. It is common in the literature that a potential
flow is assumed to exist at t = 0+ in order to reduce the
impulsive start effects. At t > 0, the zero velocity condition
at the cylinder wall, and the constant density and velocity
condition at the external borders of the computational domain,
are imposed using the bounce-back scheme of Eq. (31).

The dimensionless parameters for this flow are T =
2u∞t/D, X = x/D, Y = y/D, U = u/u∞, V = v/u∞, and
Cp = (p − p∞)/(1/2ρ∞u2

∞), where u∞, ρ∞, and p∞ are the
uniform velocity, density, and pressure of the flow far from the
cylinder (the external borders of the computational domain

R
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
Analytical solution
T = 0.005
T = 0.01
T = 0.02
T = 0.05
T = 0.1
T = 1U

FIG. 5. The velocity distributions along a radius of a suddenly
rotated circular cylinder at different dimensionless times. Lines,
analytical solution; symbols, present study.

R
0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

P

T = 0.005

T = 0.01
T = 0.02

T = 0.05

T = 0.1

T = 1

FIG. 6. The pressure distributions along a radius of a suddenly
rotated circular cylinder at different dimensionless times. Lines,
analytical solution; symbols, present study.

in our simulation), respectively, and D is the diameter of the
cylinder. The Reynolds number for this flow is defined as

Re = u∞D

ν
. (40)

X
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1

1.5

Y

(b)

FIG. 7. Computational domain specified with 68 112 distributed
points for the impulsively started cylinder flow. (a) The global domain,
(b) a closeup view.
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X
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FIG. 8. The x component velocity distributions along the hor-
izontal symmetry axis behind an impulsively started cylinder at
different times for Re = 40. Solid lines, present study: T = 5.4, 7.4,
10.6, and 14; dashed lines, standard LB, Li et al. [44]: T = 5.5,
7.5, 10.5, and 14; symbols, experimental results, Coutanceau and
Bouard [41]: �, T = 5.4; �, T = 7.4; �, T = 10.6; ◦, T = 14.

Simulations are performed for Re = 40, 550, and 3000, for
which a lot of experimental and numerical data exist in the
literature [41–44]. The Mach number defined as Ma = u∞/cs

is 0.1 in all of the simulations of this test case.
Figures 8 and 9 illustrate the x component velocity

distributions along the horizontal symmetry axis behind the
cylinder at different dimensionless times, for Re = 40 and 550,

X
0.5 1 1.5 2

-1

-0.5

0

0.5

1

1.5

U

FIG. 9. The x component velocity distributions along the hor-
izontal symmetry axis behind an impulsively started cylinder at
different times for Re = 550. Solid lines, present study: T = 1, 2,
3, 4, 5, and T = 6; dashed lines, standard LB, Li et al. [44]: T = 1,
2, 3, 4, 5, and T = 6; symbols, experimental results, Bouard and
Coutanceau [42]: �, T = 1; �, T = 2; �, T = 3; �, T = 4; ◦, T = 5;
�, T = 6.
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T = 2.5, Li et al. [44]
T = 5.0, Li et al. [44]
T = 7.5, Li et al. [44]Cp

FIG. 10. The dimensionless pressure distribution on the cylinder
surface for Re = 40 at different dimensionless times.

respectively. Our results are compared with the experimental
results of Coutanceau and Bouard [41,42], and the results
of the standard LBM of Li et al. [44], in these figures.
Excellent agreement is observed between our method and
the standard LBM (note that the times of the standard LBM
results are a little different for Re = 40). When comparing the
results of the two numerical methods with the experimental
results, very good agreement is observed in the trends of
the curves and in the estimated reattachment point of the
flow behind the cylinder. However, some minor discrepancies
can be seen between the numerical and the experimental
results, which may be attributed to the difference between
the cylinder-domain size ratio of the computational domains
and the experimental setup, and the three-dimensional effects
in the experiment.

To investigate the accuracy of the computed pressure field,
we compare the computed pressure coefficient, Cp, on the
cylinder surface with the values reported by Li et al. [44]
using the standard LBM. Figures 10 and 11 present these
comparisons. It is observed that the results of our method for
the pressure coefficient completely match those of the standard
LBM at different dimensionless times.

One of the most important characteristic parameters of the
flow around an object is the drag coefficient, which is the
dimensionless form of the horizontal force exerted by the flow
on the object or vice versa. The total drag coefficient on the
cylinder surface is calculated from

CD = F · ex

1/2ρ∞u2∞D
, (41)

where F is the total force per unit depth on the lateral surface
of the cylinder, evaluated by

F = Fp + Ff =
∫

C

pn dA +
∫

C

τ · n dA, (42)

where Fp and Ff are the pressure and the friction forces on
the cylinder, respectively, n is the local unit normal vector of
the lateral surface of the cylinder C, and τ is the deviatoric
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FIG. 11. The dimensionless pressure distribution on the cylinder
surface for Re = 550 at different dimensionless times.

stress tensor for the incompressible flow, τ = ρν(∇u + ∇uT ),
which can be computed using the nonequilibrium part of the
distribution function as [45]

ταβ =
(

1 − 1

2τ + 1

) b∑
i=1

(
fi − f

eq
i

) (
eiαeiβ − 1

2
eiγ eiγ δαβ

)
.

(43)

The time evolution of the pressure drag, the friction drag,
and the total drag coefficients for the impulsively started
cylinder flow is illustrated in Figs. 12, 13, and 14 for Re = 40,
550, and 3000, respectively. In these figures, we compare
the results of our method with those of the standard LBM
of Li et al. [44] and the vortex method of Koumoutsakos
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Friction drag

FIG. 12. Time evolution of the drag coefficients of the impul-
sively started cylinder flow at Re = 40 and Ma = 0.1. Solid lines,
present study; dashed lines, standard LB, Li et al. [44]; symbols,
vortex method, Koumoutsakos and Leonard [43].
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FIG. 13. Time evolution of the drag coefficients of the impul-
sively started cylinder flow at Re = 550 and Ma = 0.1. Solid lines,
present study; dashed lines, standard LB, Li et al. [44]; symbols,
vortex method, Koumoutsakos and Leonard [43].

and Leonard [43]. The agreement between the results of the
three methods is very good for the friction drag. For the
pressure drag, excellent agreement is observed between our
method and the standard LBM. However, at the initial times
(T < 0.6), a major difference can be seen between the pressure
drag coefficients obtained by the lattice Boltzmann methods
(including our method and the standard LBM) and those of the
vortex method. This difference is expected as a consequence
of the compressible nature of all lattice Boltzmann methods,
which results in the development of a pressure wave, due to
the impulsive start, propagating from the cylinder at a finite
speed of sound. As a result, a relative maximum point is
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FIG. 14. Time evolution of the drag coefficients of the impul-
sively started cylinder flow at Re = 3000 and Ma = 0.1. Solid
line, present study; symbols, vortex method, Koumoutsakos and
Leonard [43].
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FIG. 15. Time evolution of the streamlines of the impulsively started cylinder flow at Re = 40 and Ma = 0.1.

observed in the initial times of the pressure drag diagrams of
the lattice Boltzmann methods, while for the incompressible
Navier-Stokes solvers, the pressure field’s response to the
impulsive start is instantaneous, and therefore the pressure drag
is a strictly decreasing function of time with the inverse square
root trend as expected from the theory. Further discussions of
this phenomenon can be found in Ref. [44].

Figures 15, 16, and 17 show the streamlines of the flow past
an impulsively started cylinder at the initial stages of the flow,
from T = 1 to 6, for Re = 40, 550, and 3000, respectively.
The formation and the development of the vortices at different
Reynolds numbers are in qualitative agreement with the
previous experimental and numerical studies [41–44].

IV. CONCLUSIONS

In this study, we have presented a meshless lattice Boltz-
mann method for the simulation of fluid flows at the nearly
incompressible limit. In our method, the collision and the
streaming steps are split, as in the standard lattice Boltzmann
method. We rewrite the streaming equation, which is the
exact solution of the pure advection equation, as the pure

advection equation and recast it into its local weak form. The
Lax-Wendroff scheme is used for the time discretization, and
the meshless local Petrov-Galerkin scheme with augmented
radial basis functions is applied for the space discretization.
The boundary conditions are imposed through the bounce-
back scheme for the nonequilibrium parts of the distribution
functions.

To validate the proposed numerical technique, three bench-
mark problems have been solved, namely the plane Couette
flow, the circular Couette flow, and the impulsively started
cylinder flow at the Reynolds numbers of 40, 550, and 3000.
Based on the analytical solutions of the first two test cases, our
method shows approximately second-order accuracy in space.
Furthermore, our method illustrates very good agreement with
some previous experimental and numerical studies in the
literature for the third test case.

Based on the results presented in this study, the proposed
meshless lattice Boltzmann method is a promising extension
of the lattice Boltzmann family. The main advantage of
the meshless lattice Boltzmann method with respect to the
previous extensions of the lattice Boltzmann method is
the elimination of the need for meshing the computational
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FIG. 16. Time evolution of the streamlines of the impulsively started cylinder flow at Re = 550 and Ma = 0.1.
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FIG. 17. Time evolution of the streamlines of the impulsively started cylinder flow at Re = 3000 and Ma = 0.1.

domain. This is of great importance because using any meshes
introduce significant numerical errors in the solution, and
meshing a domain with sufficiently good-quality elements is

a cumbersome or even impossible process. These situations
are more likely to arise in geometrically complex domains,
especially in three-dimensional problems.

[1] G. R. McNamara and G. Zanetti, Phys. Rev. Lett. 61, 2332
(1988).

[2] F. Higuera, S. Succi, and R. Benzi, Europhys. Lett. 9, 345 (1989).
[3] F. Higuera and S. Succi, Europhys. Lett. 8, 517 (1989).
[4] F. Higuera and J. Jimenez, Europhys. Lett. 9, 663 (1989).
[5] S. Chen, H. Chen, D. Martinez, and W. Matthaeus, Phys. Rev.

Lett. 67, 3776 (1991).
[6] Y. Qian, D. d’Humières, and P. Lallemand, Europhys. Lett. 17,

479 (1992).
[7] R. Benzi, S. Succi, and M. Vergassola, Phys. Rep. 222, 145

(1992).
[8] S. Chen and G. D. Doolen, Annu. Rev. Fluid Mech. 30, 329

(1998).
[9] C. K. Aidun and J. R. Clausen, Annu. Rev. Fluid Mech. 42, 439

(2010).
[10] G. R. McNamara, A. L. Garcia, and B. J. Alder, J. Stat. Phys.

81, 395 (1995).
[11] J. D. Sterling and S. Chen, J. Comput. Phys. 123, 196 (1996).
[12] X. He and L.-S. Luo, Phys. Rev. E 56, 6811 (1997).
[13] F. Nannelli and S. Succi, J. Stat. Phys. 68, 401 (1992).
[14] X. He, L.-S. Luo, and M. Dembo, J. Comput. Phys. 129, 357

(1996).
[15] X. He and G. Doolen, J. Comput. Phys. 134, 306 (1997).
[16] H. Chen, Phys. Rev. E 58, 3955 (1998).
[17] C. Shu, X. D. Niu, and Y. T. Chew, Phys. Rev. E 65, 036708

(2002).
[18] O. Filippova and D. Hänel, J. Comput. Phys. 147, 219 (1998).
[19] A. Dupuis and B. Chopard, Phys. Rev. E 67, 066707 (2003).
[20] N. Cao, S. Chen, S. Jin, and D. Martinez, Phys. Rev. E 55, R21

(1997).
[21] R. Mei and W. Shyy, J. Comput. Phys. 143, 426 (1998).
[22] V. Sofonea and R. F. Sekerka, J. Comput. Phys. 184, 422 (2003).
[23] A. Bardow, I. Karlin, and A. Gusev, Europhys. Lett. 75, 434

(2006).
[24] H. Xi, G. Peng, and S.-H. Chou, Phys. Rev. E 59, 6202 (1999).
[25] S. Ubertini, G. Bella, and S. Succi, Phys. Rev. E 68, 016701

(2003).

[26] M. Stiebler, J. Tölke, and M. Krafczyk, Comput. Fluids 35, 814
(2006).

[27] D. V. Patil and K. Lakshmisha, J. Comput. Phys. 228, 5262
(2009).

[28] T. Lee and C.-L. Lin, J. Comput. Phys. 171, 336 (2001).
[29] T. Lee and C.-L. Lin, J. Comput. Phys. 185, 445 (2003).
[30] Y. Li, E. J. LeBoeuf, and P. K. Basu, Phys. Rev. E 72, 046711

(2005).
[31] X. Shi, J. Lin, and Z. Yu, Int. J. Numer. Methods Fluids 42, 1249

(2003).
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