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Free energies of molecular clusters determined by guided mechanical disassembly
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The excess free energy of a molecular cluster is a key quantity in models of the nucleation of droplets from a
metastable vapor phase; it is often viewed as the free energy arising from the presence of an interface between
the two phases. We show how this quantity can be extracted from simulations of the mechanical disassembly of a
cluster using guide particles in molecular dynamics. We disassemble clusters ranging in size from 5 to 27 argonlike
Lennard-Jones atoms, thermalized at 60 K, and obtain excess free energies, by means of the Jarzynski equality,
that are consistent with previous studies. We only simulate the cluster of interest, in contrast to approaches that
require a series of comparisons to be made between clusters differing in size by one molecule. We discuss the
advantages and disadvantages of the scheme and how it might be applied to more complex systems.
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I. INTRODUCTION

The formation of droplets from a metastable vapor phase
is a commonplace event in nature, but so far it has resisted
quantitative analysis, despite repeated attention [1–4]. The
phenomenon plays a role in atmospheric aerosol and cloud
formation [5,6], as well as in industrial processes [7,8].
Theoretical analysis often begins with the Becker-Döring
equations [9] that describe changes in the populations ni of
clusters of i molecules brought about by the processes of gain
and loss of single molecules, or monomers. They take the form

dni/dt = βi−1ni−1 + αi+1ni+1 − (βi + αi) ni, (1)

where βi and αi are growth and evaporation rates, respectively.
The rate of nucleation J of droplets from a metastable vapor
phase may then be expressed as [10]

J = n1βi∗Z exp{−[φ(i∗) − φ(1)]/kT }, (2)

where k is the Boltzmann constant; T is the temperature; i∗
is the size of the critical cluster, defined to have equal proba-
bilities, per unit time, of molecular gain or loss; and Z is the
Zeldovich factor that accounts for the nonequilibrium nature of
the kinetics [11]. We refer to φ(i) as the thermodynamic work
of formation of a cluster of i particles (or i cluster) starting
from the metastable vapor phase. A range of nomenclature is
used for this quantity in the nucleation theory literature: the
work of formation was denoted by ε(i) in [10], and elsewhere
the same, or a very similar quantity has been labeled as �F ,
�G, or �W , for example.

We note that φ in the nucleation rate expression has both a
kinetic and a thermodynamic interpretation [12]. The quantity
φ(i) − φ(1) can be expressed in terms of ratios of cluster
growth and evaporation rates,

φ(i) − φ(1) = −kT

i∑
j=2

ln
βj−1

αj

, (3)

but φ is also related to the grand potential �s(i) = F (i) − iμs

of an i cluster at the chemical potential μs of the saturated
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vapor [10],

φ(i) = �s(i) − ikT ln S, (4)

where F (i) is the Helmholtz free energy of the cluster,
S = pv/pvs is the vapor supersaturation, and pv and pvs are
the vapor pressure and saturated vapor pressure, respectively.
The role of the grand potential in this context is to specify
the equilibrium population of clusters of size i in a saturated
vapor, namely, ns

i = exp[−�s(i)/kT ]. The nucleation model
is completed by representing the population of monomers as
n1 = SpvsV/kT , where V is the system volume, by assuming
that the vapor pressure is dominated by the ideal partial
pressure of single molecules.

In classical nucleation theory (CNT), clusters are viewed
as scaled down versions of macroscopic droplets. According
to this approach, the difference φ(i) − φ(1) is replaced by φ(i)
alone with

φ(i) ≈ φcl(i) = γA(i) − ikT ln S, (5)

where γ is the surface tension of a planar interface between
vapor and condensate and A(i) is the surface area of a cluster
represented as a sphere with a density equal to that of the bulk
condensed phase. The work of formation is a combination of
a free energy cost of forming the interface and a free energy
return proportional to the number of molecules in the cluster
(or proportional to its volume since the condensed phase
density is taken to be a constant). The neglected φ(1) term
might be represented by γA(1) − kT ln S, which leads to the
internally consistent classical theory [13].

The cluster size dependence of the CNT work of formation
is illustrated in Fig. 1. It represents a thermodynamic barrier,
with a maximum at the critical size, that limits the natural
tendency for small molecular clusters to grow into large
droplets when exposed to a supersaturated vapor. CNT has
been modified in several ways, for example by introducing
a size-dependent surface tension [14] or by introducing
compatibility with nonideal vapor properties [15,16].

More fundamentally, the ratio of kinetic coefficients
βj−1/αj might be evaluated using an underlying microscopic
model for all clusters up to the critical size and beyond [12]
and the work of formation determined through Eq. (3). It may

1539-3755/2015/91(2)/023308(13) 023308-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.023308


HOI YU TANG AND IAN J. FORD PHYSICAL REVIEW E 91, 023308 (2015)

FIG. 1. Typical work of formation of a cluster of i particles with
a maximum at the critical cluster size i∗.

be shown that

βj−1/αj = S exp {−[�s(j ) − �s(j − 1)]/kT } , (6)

which shifts attention to the free energy difference F (j ) −
F (j − 1) associated with the addition of a molecule to a
(j − 1) cluster. Computing these differences is the basis of
an approach has been used extensively in calculations of
cluster free energies [17–23]. However, nucleation is actually
controlled by the properties of clusters near the critical size,
and one drawback of computing the differences F (j ) − F (j −
1) is that the predicted nucleation rate could be susceptible to
the accumulation of errors in evaluating such a sequence.

In this paper, we describe a computational method for
directly obtaining the cluster free energy without the need
to perform calculations for a sequence of smaller clusters. We
consider the following representation of the work of formation
of a cluster minus that of a monomer:

φ(i) − φ(1) = Fs(i) − (i − 1)kT ln S. (7)

We refer to Fs(i) as the cluster excess free energy, though more
accurately it is a difference between the excess free energies
of an i cluster and a monomer [10]. It is “excess” in that it
represents the free energy required to carve a cluster out of a
bulk condensed phase or, equivalently, to assemble it out of
saturated vapor. It may be associated with the thermodynamic
cost of creating an interface, which is why in CNT it is modeled
by a surface term and why we have given it a suffix s.

Our approach centers on disassembling a cluster into its
component molecules using guided molecular dynamics in
order to calculate the cluster excess free energy directly.
The method employs the Jarzynski equality [24–26] and we
provide details in Sec. II, including a comparison with the
related method of thermodynamic integration. Tests of the
method where we separate a dimer according to a variety
of protocols are described in Appendix A. The disassembly
of argonlike Lennard-Jones clusters is presented in Sec. III
and we compare our results with those obtained from Monte
Carlo studies by Barrett and Knight [27] and Merikanto et al.
[28,29]. These studies gave consistent excess free energies,
though they were not in agreement with experiments by Iland
et al. [30]. We conclude with a discussion of the advantages and
disadvantages of the approach compared with other treatments
in Sec. IV.

FIG. 2. (Color online) Guided disassembly process for an i clus-
ter. The real particles (circles) are initially weakly tethered to the guide
particles (diamonds). The latter drift apart and the tethers gradually
tighten, leading to i independent, tethered particles upon completion
of the process.

II. GUIDED MOLECULAR DYNAMICS SIMULATIONS

A. Fundamentals of the method

We study the dynamical evolution of a cluster against a
background of external manipulation. The cluster particles are
harmonically tethered to a set of artificial “guide particles,”
which lie initially at the origin but after a period of system equi-
libration are programmed to move apart, driving cluster disas-
sembly. The strength of the tether forces is initially quite weak,
in order to disturb the properties of the cluster as little as possi-
ble. Later, the tethers can be strengthened in order to guide the
separation process more firmly and to prevent the atoms from
interacting with each other once the final guide particle posi-
tions have been reached. The mechanical work of the disassem-
bly can then be related to the change in Helmholtz free energy.

The masses of the guide particles are taken to be very much
greater than those of the cluster particles. This essentially
fixes the trajectories of the guide particles in the molecular
dynamics, in accordance with the velocities assigned to each
at the beginning of the disassembly process. By choosing guide
particle velocities, simulation times, and a time-dependent
tethering force, a range of cluster disassembly protocols can be
explored. A simple illustration of the process is shown in Fig. 2.

We consider clusters of argonlike atoms interacting through
Lennard-Jones potentials, and so we refer to the cluster parti-
cles as atoms. We equilibrate this system under the influence
of the tethers for a suitable period, the duration of which will
depend upon the cluster size and the desired temperature.
A further molecular dynamics simulation is performed and
from this trajectory we select initial configurations for cluster
disassembly. In order that the configurations should represent
a bound structure, we employ a Stillinger cluster condition
[31] in the selection, allowing a separation of no more than
1.5σArAr between an atom and its nearest neighbor, where σArAr

is the usual Lennard-Jones range parameter. Such a Stillinger
condition has been used in previous Monte Carlo approaches.
The cluster definition is an important ingredient of a modeling
strategy [2] and deserves careful consideration, but here we
use this simple criterion for convenience.

The simulations were performed using the DL_POLY [32]
molecular dynamics package, with modifications to the
source code to implement the time-dependent harmonic tether
potentials. We include a physical heat bath of heliumlike
Lennard-Jones atoms thermalized using a Nosé-Hoover
thermostat [33]. We could instead have implemented a
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thermostat that acts on the cluster itself, but we chose not to in
order to achieve as natural a thermalization as possible during
the nonequilibrium processing.

B. Work performed on a system

Given an external control parameter λ in a Hamiltonian
H (λ), the work W done on a system due to the evolution of λ

over a finite time period may be written

W =
∫

dλ

dt

∂H (λ)

∂λ
dt. (8)

For example, consider the Hamiltonian H1 of a single guided
atom of mass m,

H1 = p2

2m
+ 1

2
κ(t) [x(t) − X(t)]2 , (9)

where p is the momentum, κ(t) is the time-dependent tethering
force or spring constant, x(t) is the atomic position, and X(t) is
the guide position. For a set of guided atoms, each controlled
by a Hamiltonian H containing terms of the form given in
Eq. (9) supplemented by interparticle interactions, κ(t) and
X(t) play the role of λ, and the work W performed on the set is∫ τ

0

dκ(t)

dt

∂H (κ,{Xk})
∂κ

dt +
∑

j

∫ τ

0

dXj (t)

dt

∂H (κ,{Xk})
∂Xj

dt

= 1

2

∫ τ

0

dκ(t)

dt

i∑
j=1

[xj (t) − Xj (t)]2dt

−
∫ τ

0
κ(t)

i∑
j=1

[xj (t) − Xj (t)] · Vj (t)dt, (10)

where τ is the length of the molecular dynamics simulation,
and Vj (t) is the velocity of the guide particle associated with
the j th atom, defined as Vj (t) = dXj (t)/dt . The first term
in Eq. (10) arises from the time dependence of the spring
constant, and the second term is simply the conventional force
times distance expression. It should be noted that all tethers
within the system are characterized by the same spring con-
stant, although more elaborate protocols could be imagined.

C. The Jarzynski equality

If we were able to perform an extremely slow, quasistatic
process, then the mechanical work done would be equal to the
difference in Helmholtz free energy between the initial and
the final equilibrium states. However, quasistatic processes
are unfeasible in finite time molecular dynamics simulations
and, according to the second law [34], the average of the
work done (as a result of a time-dependent change in the
Hamiltonian of the system), performed over many realizations
of a nonquasistatic process (indicated by angled brackets),
will always be an overestimate of the free energy change,
〈W 〉 > �F , allowing us only to infer an upper limit to �F .

However, the Jarzynski equality [24,25]

〈exp (−W/kT )〉 = exp (−�F/kT ) (11)

allows us to do better. For this identity to hold, the system
must begin in thermal equilibrium, but need not remain so as

the Hamiltonian changes during the simulation. Exploiting the
work done in a nonequilibrium process is a powerful strategy
for calculating cluster surface free energies and numerous
computational studies [35–41], as well as experiments
[42–47], have achieved this with the help of the Jarzynski
equality. Systems studied include argonlike Lennard-Jones
fluids, ion charging in water, ideal gases confined to a piston,
and one-dimensional polymer chains. Nevertheless, there are
distinct aspects of this strategy for analyzing the controlled
disassembly of a cluster that need to be explored.

The Jarzynski equality ought to recover the free energy
difference regardless of the nature of the evolution between
initial and final Hamiltonians, but computed results might still
depend upon the rate of the process as a consequence of a
limited sampling of system trajectories in finite simulations
[42]. We might expect “slow” processes that gently pull a
cluster apart to generate a narrower distribution of work
compared with “fast” processes that are violent and highly
dissipative. A balance must therefore be struck between the
poorer convergence of fast simulations and the demand for
computational resources required for slow simulations.

Furthermore, a consequence of the exponential averaging in
the Jarzynski equality is that occasional values of work that are
well below the average, arising from unusual trajectories, can
sometimes distort the extracted free energy change. This is a
consequence of insufficient sampling of the system trajectories
and so we need to give careful attention to the statistical errors.

We have explored the outcomes of various guiding proto-
cols, and the robustness of the Jarzynski equality in the face
of limited statistics, in a test case of the separation of a dimer,
for which the free energy change is easily calculable. These
studies are described in Appendix A. We have used similar
protocols to study the disassembly of larger clusters, which is
described in Sec. III.

D. Comparison with thermodynamic integration

The method bears some similarity to thermodynamic
integration, where the strength of the interparticle interactions
is evolved over a sequence of equilibrium calculations in order
to compare the system in question with another that has a
known free energy [48–51]. The basic relationship �F =∫ 〈∂H (λ)/∂λ〉dλ is analogous to Eq. (8). The reference system
for clusters might, for example, be a set of noninteracting
particles held together through the retention of the constraining
cluster definition. Or indeed the cluster definition could be
changed progressively along with the interactions in order to
reach a more convenient final state, perhaps noninteracting
particles inside a sphere.

However, there are some important differences. In our
approach it is the tether potentials that change with time,
not the interparticle interactions, and our reference system
is a set of independent harmonic oscillators, not an ideal
gas. Furthermore, we conduct the evolution by nonequilibrium
molecular dynamics rather than by moving through a sequence
of equilibrium ensembles, and we only need to impose a
cluster definition when selecting the initial configurations,
not throughout the evolution. An abrupt removal of the
cluster definition constraint is acceptable in a nonequilibrium
evolution, when the results are processed using the Jarzynski
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equation, but it would not be appropriate during a sequence of
equilibrium calculations.

III. ARGON CLUSTER DISASSEMBLY

A. Preliminaries

We have investigated the disassembly of clusters consisting
of 5, 10, 15, 20, and 27 argonlike atoms in order to obtain
their excess free energies. Scaling up the guided molecular
dynamics simulations from the test case of dimer separation
is fairly straightforward. We perform simulations in a cubic
cell with edge lengths of 100 Å so that the initial clusters and
the final disassembled configurations may be easily accom-
modated. We employ Lennard-Jones interaction potentials for
each species (see Table III) and the helium temperature is set
at 60 K in order to facilitate a comparison with the Monte
Carlo studies by Barrett and Knight [27] and Merikanto et al.
[28,29], as well as the experimental studies of Iland et al. [30].

However, converting the free energy change associated
with disassembly into an excess free energy requires some
careful consideration of the statistical mechanics of tethered
and free molecular clusters. We require the excess free energy
of a cluster that is free to move anywhere inside a system
volume, but our initial state is a cluster tethered to guide
particles at the origin. The free energy change that emerges
from our calculations will correspond to the disassembly of
a cluster whose center of mass explores a region around
the origin and, furthermore, one that possesses energy due
to the tethers in addition to that of the physical interactions
between the atoms. These matters are discussed in detail in
Appendix B.

The energetic perturbation of the cluster by the tethers can
be reduced by choosing a small force constant. We take the
view that the mean variation in tethering energy of an atom,
as it explores different regions of the cluster during the equi-
librated trajectory, should not exceed the thermal energy kT ,
or

1
2κi

〈
x2

max − x2
min

〉
< kT, (12)

where xmax and xmin are, respectively, the maximum and
minimum separations between an atom and its guide particle
in a configuration (see Fig. 3). This criterion may also be
expressed as ξ = κi〈x2

max − x2
min〉/(2kT ) < 1.

FIG. 3. (Color online) The difference in tether energy across a
cluster configuration is given in terms of the maximum and minimum
separations between an atom and its guide particle. The circles depict
the argon atoms, while the diamond represents the position of all of
the guides at the origin of the cell.

TABLE I. The duration of equilibrated cluster trajectories at 60 K,
as well as the number of valid cluster configurations selected at each
size. The ratio ξ characterizes the perturbation to the cluster energy
due to the tether potentials.

i Duration (ns) Valid configurations ξ

5 1000 152 0.604
10 250 411 0.745
15 225 1070 0.799
20 150 905 0.847
27 150 1020 0.922

From the equilibrated molecular dynamics trajectory, we
select, for disassembly, a set of “valid” cluster configurations
that satisfy the Stillinger cluster definition [31], but this can
be quite difficult for the smaller clusters at 60 K. Tethering the
atoms keeps them closer together and more likely to form valid
configurations. We therefore choose a tethering strength that
satisfies the condition on ξ , but also helps to produce sufficient
valid cluster configurations. The initial value of the tethering

force constant was taken to be κi = 0.01 kJ mol−1 Å
−2

, which
gives ξ ∼ 0.6–0.9 for the five sizes of argon cluster studied.
Table I shows the duration of the equilibrated cluster trajectory,
the number of valid cluster configurations identified from
candidates selected at intervals of 100 ps from the equilibrated
molecular dynamics trajectory, and the ratio ξ characterizing
the suitability of the tethering force constant.

Having obtained initial cluster configurations for the five
sizes of cluster, the next stage is to disassemble them by a
combination of guide particle motion and tether tightening. A
range of separation times tsep is explored, with the larger and
more stable clusters expected to require longer disassembly
processes in order to provide accurate estimates of the free
energy change. As in the dimer calculations described in
Appendix A, we use a tethering strength that strengthens
in time according to Eqs. (A7), with a final value of κf =
0.05 kJ mol−1 Å

−2
.

The terminal positions for the guide particles are chosen
from a 3 × 3 × 3 grid with spacing of 33.33 Å. The largest
cluster considered contains 27 argon atoms so after the process
of disassembly, the tethered atoms move around each point on
this grid. For smaller systems, the same grid of final guide
positions is adopted, but employing only as many points as
are necessary for the cluster in question. With initial guide
positions at the origin and final positions defined in this way,
it is straightforward to calculate the necessary drift velocities
of the guide particles for a given separation time. Applying
the Jarzynski procedure to the distribution of performed work
then gives us the estimated free energy change �F associated
with the disassembly of a cluster.

However, as mentioned previously, this free energy differ-
ence will only correspond to the disassembly of a tethered i

cluster, rather than of a freely translating, undistorted cluster.
Furthermore, by necessity we obtain free energies of systems
of distinguishable atoms in molecular dynamics, and we need
to make an indistinguishability correction. An analysis of the
thermodynamics is required in order to extract the excess free
energy of an i cluster from the free energy of disassembly, and
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the details are given in Appendix B. It turns out that we can
write Fs(i) = ∑5

k=1 f k
s (i) with

f 1
s (i) = −�F, (13)

f 2
s (i) = −ikT ln (ρvsvHO) , (14)

f 3
s (i) = kT ln (ρvsvc) , (15)

f 4
s (i) = −3iκi

10

(
3ivl

4π

)2/3

, (16)

f 5
s (i) = kT ln i!. (17)

In the first term the free energy of disassembly �F appears
with a negative sign because it refers to the process of
taking a cluster apart while Fs is the free energy of interface
formation. The f 2

s term arises from relating the final state in
the disassembly process, namely the separated harmonically
bound particles, to the appropriate reference state of a saturated
vapor. It represents the difference in free energy between
the tethered particles, each effectively confined to a volume
vHO = (2πkT/κf )3/2 and particles in the saturated vapor phase
with density ρvs and volume per particle 1/ρvs . The f 3

s term
is the entropy penalty associated with the initial tethering: the
center of mass of the cluster is effectively confined to a volume
vc = [iκi/(2πkT )]−3/2 and needs to be referred to a situation
where it is allowed, like a particle in saturated vapor, to explore
a volume 1/ρvs . The f 4

s term is an approximate expression for
the perturbation in the cluster energy due to the initial presence
of the tethers, where vl = 1/ρl is the volume per particle in
the condensed phase. Finally, f 5

s converts calculations derived
from molecular dynamics with distinguishable particles into
results relevant to a system of indistinguishable particles.

B. Results and discussion

A typical example of the work W (t) performed over a
disassembly trajectory of duration 20 ns for a 27-atom cluster
is shown in Fig. 4. The gradual rise in the work performed prior
to about 5 ns represents an accumulation of tethering energy

FIG. 4. A typical history of the work performed for one realiza-
tion of the disassembly of a 27-atom argon cluster with a separation
time of 20 ns.

FIG. 5. (Color online) Illustration of the disassembly of a 27-
atom argon cluster, with darker spheres (green online) representing
the argon atoms and lighter spheres the guide particles (helium atoms
are not shown). In panel 1, all the guides lie at the origin of the cell.
By panel 2, the guides have drifted far enough apart for a single
argon atom to escape temporarily from the cluster before rejoining it
in panel 3. In panel 4, several atoms have escaped but remain in close
proximity to the reduced cluster. A threshold is reached in panel 5,
where many argon atoms break free to leave a fragment of about five
atoms that also soon disintegrates as shown in panel 6. Shortly after,
all of the atoms fall into motion about their partner guide particles,
which continue along steady paths away from one another (panels 7
and 8). The reader is encouraged to view movies of the disassembly
provided in the Supplemental Material [52].

as the guide particles move away from their initial positions at
the origin. After this time, atoms begin to leave the cluster, and
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FIG. 6. (Color online) The distribution of work W (top) for sets
of disassembly trajectories for the five-atom argon cluster, for a range
of separation times. Please refer to the colors in the online version for
a clear indication of the different histograms. The lower plot shows the
mean of the work 〈W 〉 and the corresponding free energy differences
�F calculated via the Jarzynski equality for each tsep.

less work is needed to move the corresponding guides. After
about 7 ns, the work rate reduces significantly as the cluster
disintegrates and the guide particles move towards their final
positions.

Visual representations of the disassembly process (see
Fig. 5) provide further insight into the manner in which the
clusters are pulled apart. The onset of cluster disassembly is
signaled by the loss of one or two atoms from the cluster,
perhaps only temporarily. The cluster soon after breaks into
several smaller clusters, which eventually disintegrate into
fragments or single atoms. It is rare to see a complete and
sudden disintegration of a cluster, where all the constituent
atoms disassemble together within a short space of time.

Figures 6 and 7 show distributions of the work performed
in disassembling the 5 cluster and the 27 cluster, along with
estimates of the free energy change, for separation times
between 0.5 and 20 ns. As expected, the work distributions
are broader for the processes that are most rapid (smallest t−1

sep )
and hence least quasistatic in nature. Conversely, the work
distributions become narrower and lead to free energy changes

FIG. 7. (Color online) Plots similar to those shown in Fig. 6 but
for the 27-atom argon cluster. Please refer to the colors in the online
version for a clear indication of the different histograms.

that presumably provide the most accurate estimates of the true
free energy change, as the rate of separation is reduced.

The free energy change �F for the disassembly of each
size of cluster at the slowest rate studied is shown in Table II,
along with the other contributions to the excess free energy
Fs . We refer to a molecular dynamics study by Baidakov et al.
[53] to provide values of the saturated vapor density ρvs and
liquid density ρl = 1/vl of the argonlike Lennard-Jones fluid
at a temperature of 60.31 K.

TABLE II. Results from the slowest set of disassembly simula-
tions for each cluster size: the mean work 〈W 〉, the free energy of
disassembly �F , and the other contributions to the excess free energy
Fs(i), all in units of kT .

i tsep (ns) 〈W 〉 �F f 2
s (i) f 3

s (i) f 4
s (i) f 5

s (i) Fs(i)

5 6 13.08 12.35 38.94 −7.79 −0.41 4.79 23.18
10 8 34.06 30.80 77.88 −8.83 −1.32 15.10 52.03
15 12 62.75 53.87 116.81 −9.44 −2.59 27.90 78.82
20 16 97.37 84.07 155.75 −9.87 −4.18 42.33 99.97
27 20 154.41 133.28 210.27 −10.32 −6.90 64.56 124.33
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FIG. 8. Excess free energies for argonlike Lennard-Jones clusters
obtained from disassembly at 60 K are shown as squares and
compared with values obtained in Monte Carlo studies by Barrett
and Knight [27] at 59.88 K (solid line) and Merikanto et al.
[28,29] at 60.18 K (triangles). Also shown is the prediction from
internally consistent CNT for a temperature of 60.31 K (dashed
line).

Figure 8 shows our excess free energies Fs(i) as a
function of cluster size i. Statistical errors propagated from
uncertainties in the free energy change �F are similar to
the size of the symbols. We also include corresponding
results from the Monte Carlo studies by Barrett and Knight
[27] and Merikanto et al. [28,29]. Barrett and Knight em-
ployed a Lee-Barker-Abraham cluster definition [17], while
Merikanto et al. adopted a Stillinger cluster criterion similar
to ours. The Barrett and Knight calculations are represented
here by F BK

s (i)/kT = − ln qi − (i − 1) ln(ρvsσ
3
ArAr) with their

fitting function ln qi = 10.5 + 9.91(i − 1) − 16.36(i2/3 − 1),
and the Merikanto et al. values are derived from their Fig. 1
in [28], which we interpret as a plot of F M

s (i)/kT − (i −
1) ln S with S = 20. The results of these earlier studies are
consistent with one another, as well as with the excess free
energy suggested by the internally consistent classical theory
(ICCT) F ICCT

s (i) = γ (36πv2
l )1/3(i2/3 − 1), constructed such

that F ICCT
s (1) = 0, where γ is the surface tension of the planar

liquid-vapor interface, again taken from Baidakov et al. [53].
It is clear from Fig. 8 that the calculations presented in this
study are consistent with the previous Monte Carlo results.
This is satisfactory support for the disassembly approach that
we have developed. We note that all three are reasonably
well represented by the ICCT model, which is somewhat
surprising.

Note that the construction of a traditional plot of the
nucleation barrier such as Fig. 1 would require us to subtract a
term ikT ln S from the excess free energies in Fig. 8. Inserting
a supersaturation of 30 would then yield a critical size of about
20, for example.

IV. CONCLUSIONS

We have developed a method of guided cluster disassembly
in molecular dynamics, capable of extracting the excess

free energy associated with the formation of a molecular
cluster from the saturated vapor phase. This property is often
regarded as a surface term and it plays a central role in
kinetic and thermodynamic models of the process of droplet
nucleation.

After exploring some aspects of the method by separating a
dimer, the technique was applied to the controlled disassembly
of Lennard-Jones argon clusters between 5 and 27 atoms
in size. The extracted free energy of disassembly has been
related to the excess free energy of the cluster through an
analysis of the statistical mechanics of free and tethered
clusters. Our calculations for clusters of various sizes are
consistent with previous studies by Barrett and Knight [27]
and Merikanto et al. [28,29], both of which require the
evaluation of a sequence of free energy differences between
monomer and dimer, dimer and trimer, etc. A Lennard-Jones
microscopic model of argon, within the standard kinetic
and thermodynamic framework of nucleation theory, cannot
account for the experimental argon nucleation data of Iland
et al. [30], but we do not speculate here about this disparity.

The approach should be contrasted with methods of free
energy estimation based on thermodynamic integration. In
those methods, the strength of the interparticle interactions is
evolved over a sequence of equilibrium calculations. Our ap-
proach also involves the evolution of a Hamiltonian, but it is the
tether potentials that change with time, not the interparticle in-
teractions. Furthermore, we evolve by nonequilibrium molec-
ular dynamics rather than studying a sequence of equilibrium
ensembles, and we are only required to apply a cluster defi-
nition when selecting the initial configurations, not during the
evolution.

We believe that our process of mechanical disassembly
offers an intuitive understanding of the meaning of the work
of formation that plays such a central role in nucleation
theory. We suggest that a direct evaluation of this quantity
is preferable to an approach based on summing the free energy
changes associated with the addition of single molecules
to a cluster, on the grounds that we avoid the possible
compounding of statistical errors. The computational costs
of our current study of argon clusters have been higher than
those of more traditional methods such as grand canonical
Monte Carlo [29], for the same level of accuracy, largely
because of our exploration of different protocols and our use
of an explicit helium thermostat, but these can be reduced
with further development. A particularly powerful variant
of the disassembly scheme is to separate a cluster into two
subclusters under similar mechanical guidance, in order to
relate the distribution of work performed to a free energy
of “mitosis,” essentially a difference in excess free energies
between the initial cluster and the two final subclusters.
Such comparisons would be unfeasible to perform in Monte
Carlo. The calculations are not onerous and an evaluation
of the excess free energy of clusters of up to 128 water
molecules is to be reported [54]. Furthermore, the explicit
thermostat can be replaced by an implicit scheme. With such
tools, and guided by the experience developed in the current
investigation of argon, we intend to carry out studies of
clusters of water, acids, and organic molecules, species that are
particularly relevant to the process of aerosol nucleation in the
atmosphere.
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APPENDIX A: ARGON DIMER SEPARATION

We test the feasibility of the approach using two protocols
of controlled dimer separation. First, the guide particles are
made to drift apart with the tether strengths held constant,
and then we allow the tethers to tighten over the course
of the process. We determine the manner of dimer separa-
tion that leads to an accurate estimate of the free energy
change.

We start by evaluating the free energy of a tethered dimer
of argonlike atoms analytically. Particles are distinguishable in
molecular dynamics simulations since they carry labels, so we
take this into account in the analysis. The initial Hamiltonian
of the dimer system is

H dimer
i = p2

1

2m
+ p2

2

2m
+ 1

2
κi (x1 − X1)2 (A1)

+ 1

2
κi (x2 − X2)2 + � (|x1 − x2|) ,

where m is the argon mass and �(|x1 − x2|) is a pairwise
interaction potential. When the guide particles both lie at the
origin (X1 = X2 = 0), the initial partition function is

Zdimer
i = 1

h6

∫
exp

(
−p2

1 + p2
2

2mkT

)
d p1d p2

×
∫

exp

(
−κi

x2
1 + x2

2

2kT

)

× exp

(
−� (|x1 − x2|)

kT

)
dx1dx2, (A2)

noting that there is no correction factor of one half since the
atoms are distinguishable. Substituting r = x1 − x2 and R =
x1 + x2, the partition function Zdimer

i becomes

1

λ6
th

∫
1

8
exp

(
−κi

x2
1 + x2

2

2kT

)
exp

[
−� (|x1 − x2|)

kT

]
d rd R

= 1

λ6
th

π

2

∫
exp

(
−κi

R2 + r2

4kT

)
exp

[
−� (r)

kT

]
r2drd R

= 1

λ6
th

π

2

(
4πkT

κi

) 3
2
∫ rc

0
r2 exp

[
−κir

2 + 4�(r)

4kT

]
dr,

(A3)

where λth = h/(2πmkT )1/2 is the thermal de Broglie wave-
length. We have imposed an upper limit rc on the separation
between the two atoms, corresponding to a definition of what
we mean by a dimer.

For the final state in which the two argon atoms are tethered
to respective guide particles that are far apart, the Hamiltonian
is simply that in Eq. (A1) without the interaction term, and with
a final tether strength κf . The corresponding final partition

TABLE III. Parameters for the Lennard-Jones potentials, where
j and k are the atomic labels, εjk is the depth of the potential well,
and σjk is the range parameter [55].

j k εjk (kJ mol−1) σjk (Å)

Ar Ar 0.995 581 3.405
He He 0.084 311 2.600
Ar He 0.289 721 3.000

function is

Zdimer
f = 1

h6

∫
exp

(
−p2

1 + p2
2

2mkT

)
d p1d p2

×
∫

exp

(
−κf

x2
1 + x2

2

2kT

)
dx1dx2

= 1

λ6
th

(
2πkT

κf

)3

. (A4)

The free energy change in separating a dimer of tethered atoms
can therefore be expressed as

�F =kT ln
(
Zdimer

i /Zdimer
f

)
=kT ln

{(
κ2

f

κikT

) 3
2
∫ rc

0

r2

2
√

π
exp

[
−κir

2 + 4�(r)

4kT

]
dr

}
,

(A5)

which can be evaluated numerically. The parameter rc is the
Stillinger radius used to identify a dimer configuration in the
equilibrated molecular dynamics simulation, to which we now
turn.

We place two argonlike particles within a periodic cell with
edge length 50 Å, each tethered to guide particles through
a harmonic interaction 1

2κ(t)r2, where r is the separation
between the argon atom and its guide and κ(t) is the tethering
force constant. The argon atoms are thermalized through
interaction with a gas of 100 heliumlike atoms kept at constant
temperature using a Nosé-Hoover thermostat. Conventional
masses of 39.85 and 4.003 amu for the argon- and heliumlike
particles are adopted, while the guide particles are assigned a
vastly greater mass of 4 × 1012 amu. Interaction potentials are
specified by

�(rjk) = 4εjk

[(
σjk

rjk

)12

−
(

σjk

rjk

)6]
, (A6)

with parameters shown in Table III, though it should be noted
that only the repulsive part of the interaction between argon and
helium is employed in order to prevent any binding between
the two. Simulations are performed at a temperature of 15 K
such that dimers are long lived and a sufficient number of
configurations satisfying the separation criterion r � rc =
1.5σArAr can be obtained from the equilibrated trajectory.
With a constant tethering force constant of 0.05 kJ mol−1 Å−2,
we generate an equilibrated molecular dynamics trajectory of
duration 100 ns and choose 103 dimer configurations for use
as starting points for the separation process.
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FIG. 9. (Color online) Illustration of the dimer separation pro-
cess. Both guide particles (diamonds) are initially at the origin, but
one is made to drift towards a corner of the simulation cell.

1. Guiding at constant tether strength

One of the guide particles drifts from the origin to a corner
of the cubic simulation cell over a separation time tsep while
the other remains stationary (see Fig. 9). We choose tsep to
be 1, 2, or 4 ns and the velocity of the moving guide particle
(labeled 1) is given by V1 = [X1(t = tsep) − X1(t = 0)]/tsep.

For initial and final tethering force constants of
0.05 kJ mol−1 Å−2, the expected free energy change in separat-
ing the dimer is 5.716 kT according to Eq. (A5). Distributions
of the work done for each rate of dimer separation are shown
in Fig. 10, and the corresponding estimates of the free energy
change obtained from the Jarzynski equality are compared
with the expected value in the lower part of Fig. 11. A longer
separation time leads to a better estimate of the free energy
change since the process is then closer to being quasistatic.

2. Guiding with tether tightening

We now elaborate on the process by tightening the tethers
during guide drift according to

κ(t) = κi for t � ti

= κi + κf − κi

2

[
1 − cos

(
π

t − ti

ts − ti

)]
for ti < t � ts

= κf for t > ts, (A7)

FIG. 10. (Color online) Distributions of the work done in the
disassembly of a dimer for separation times tsep of 1, 2, and 4 ns.
Please refer to the colors in the online version for a clear indication
of the different histograms.

FIG. 11. Convergence of the Jarzynski-estimated free energy
change toward the expected value (dashed line) as the dimer
separation rate is decreased, while keeping the tethering strength
constant (lower set) and when the tethers are tightened (upper set).

where ti is the time at which the force constant begins to
change and ts is the time at which it reaches its final value.
Once again starting with dimer configurations and an initial
tethering force constant of 0.05 kJ mol−1 Å−2 at 15 K, three
dimer separation times are investigated, during which the
force constant rises by a factor of two. The times ti and
ts are specified as 20% and 80%, respectively, of the total
separation time. The expected free energy change associated
with dimer separation is 7.795 kT according to Eq. (A5). It
can be seen from the upper part of Fig. 11 that all three
separation rates give acceptable estimates of the free energy
change. Furthermore, the greater compatibility between the
distributions of the work performed at different separation
rates shown in Fig. 12, compared with those in the simulations
with constant tether strength, suggests that a protocol where
the tethers tighten while the guide particles drift apart is more

FIG. 12. (Color online) Distributions of the work of dimer disas-
sembly where the atoms are guided apart and the tethers tightened
for three different separation times. Please refer to the colors in the
online version for a clear indication of the different histograms.
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effective. Intuitively, the separation is then conducted more
firmly and with less dissipation.

APPENDIX B: ANALYSIS OF CLUSTER FREE ENERGIES

1. Free and tethered clusters

The canonical partition function ZF = exp (−FF /kT ) for
an untethered, or “free” cluster of i indistinguishable particles
governed by a Hamiltonian H composed of kinetic energy
terms and pairwise interactions is given by

ZF = 1

i!h3i

∫ i∏
j=1

dxj d pj exp [−H ({xk}) /kT ] , (B1)

where FF is the associated free energy. For a cluster tethered
to the origin, the Hamiltonian will include an additional set of
harmonic potentials, such that the partition function is

ZT = exp (−FT /kT ) = 1

i!h3i

∫ i∏
j=1

dxj d pj

× exp

⎧⎨
⎩−

⎡
⎣H ({xk}) +

i∑
j=1

1

2
κix

2
j

⎤
⎦/

kT

⎫⎬
⎭ , (B2)

where FT is the free energy of the tethered cluster, and κi is
the initial tethering force constant.

We insert a factor of unity in the form 1 = ∫
δ( 1

i

∑i
j=1 xj −

xc)dxc into Eqs. (B1) and (B2) and transform to particle
coordinates with respect to the cluster center of mass xc,
namely x′

j = xj − xc. The partition function for a free cluster
becomes

ZF = 1

i!h3i

∫ i∏
j=1

dx′
j d pj dxc exp[−H ({x′

k})/kT ]

× δ

⎛
⎝1

i

i∑
j=1

x′
j

⎞
⎠

= V

i!h3i

∫ i∏
j=1

dx′
j d pj exp[−H ({x′

k})/kT ]

× δ

⎛
⎝1

i

i∑
j=1

x′
j

⎞
⎠ = V Zc

F , (B3)

where V is the system volume and Zc
F is the partition function

for a cluster whose center of mass is fixed at the origin. It
should be noted that since the Hamiltonian contains pairwise
interactions, it may be rewritten as H ({xk}) = H ({x′

k}) after
the change of variables.

Similarly, the partition function for a tethered cluster can
be rewritten as

ZT = 1

i!h3i

∫ i∏
j=1

dx′
j d pj dxcδ

⎛
⎝1

i

i∑
j=1

x′
j

⎞
⎠

× exp

⎧⎨
⎩−

⎡
⎣H

({
x′

k

}) +
i∑

j=1

1

2
κix

2
j

⎤
⎦/

kT

⎫⎬
⎭ . (B4)

The second term in the exponent of Eq. (B4) may be
simplified using the constraint

∑i
j=1 x′

j = 0 and it follows

that
∑i

j=1 x2
j = ∑i

j=1 x ′2
j + ix2

c , giving

ZT = 1

i!h3i

∫ i∏
j=1

dx′
j d pj dxc exp

[
−1

2
κiix

2
c /kT

]

× exp

⎧⎨
⎩−

⎡
⎣H ({x′

k}) + 1

2
κi

i∑
j=1

x ′2
j

⎤
⎦ /kT

⎫⎬
⎭

× δ

⎛
⎝1

i

i∑
j=1

x′
j

⎞
⎠

=
(

2πkT

iκi

) 3
2 1

i!h3i

∫ i∏
j=1

dx′
j d pj exp[−H ({x′

k})/kT ]

× exp

⎡
⎣−1

2
κi

i∑
j=1

x ′2
j /kT

⎤
⎦ δ

⎛
⎝1

i

i∑
j=1

x′
j

⎞
⎠

=
(

2πkT

iκi

) 3
2

Zc
T , (B5)

where Zc
T is the partition function of a cluster constrained

to have its center of mass at the origin as well as having
its constituent particles tethered to the origin by a harmonic
potential.

Next we employ the Gibbs-Bogoliubov approach [56,57]
to compare the free energies Fc

F and Fc
T of systems with

Hamiltonians H0 and Hamiltonian H0 + U , defined by
exp(−Fc

F /kT ) = ∫
d� exp[−H0/kT ] and exp(−Fc

T /kT ) =∫
d� exp[−(H0 + U )/kT ], where � represents the config-

uration of a system, and d� is proportional to the phase
space volume element �jdx′

j d pj . In the context of the
tethered cluster described by Eq. (B5), U represents the term
1
2κi

∑i
j=1 x ′2

j , while H0 is the untethered Hamiltonian H ({x′
k})

modified by the delta function constraint. Fc
T is therefore the

free energy of a tethered cluster with its center of mass further
constrained to lie at the origin and is equal to −kT ln Zc

T . A
similar relationship exists between Fc

F , the free energy of an
untethered cluster with fixed center of mass, and Zc

F .
The free energies Fc

F and Fc
T may be related through

exp
(−Fc

T /kT
) =

∫
d� exp (−H0/kT ) exp (−U/kT )∫

d� exp (−H0/kT )

×
∫

d� exp (−H0/kT )

= 〈exp (−U/kT )〉0 exp
(−Fc

F /kT
)
, (B6)

where angle brackets represent an average in the statistical
ensemble corresponding to H0. For small 〈U/kT 〉0, we can
write 〈exp (−U/kT )〉0 	 exp (−〈U 〉0 /kT ), and hence

exp
(−Fc

T /kT
) 	 exp

[(−Fc
F − 〈U 〉0

) /
kT

]
, (B7)

with 〈U 〉0 given by

〈U 〉0 =
∫

d�U ({x′
k}) exp(−H0/kT )∫

d� exp(−H0/kT )
. (B8)
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U ({x′
k}) is a sum of single-particle harmonic potentials of

the form UHO(x′
k) = 1

2κix
′2
k , so Eq. (B8) can be written as

〈U 〉0 =
∑i

k=1

∫
d�UHO

(
x′

k

)
exp(−H0/kT )∫

d� exp(−H0/kT )

= i

∫
d�UHO(x′

k) exp(−H0/kT )∫
d� exp(−H0/kT )

= i〈UHO〉0. (B9)

We next introduce the spatial density profile of a single particle
(labeled k without loss of generality) in a cluster constrained
to have its center of mass at the origin but not tethered, namely,

ρ0( y) =
∫

d� exp (−H0/kT ) δ(x′
k − y)∫

d� exp (−H0/kT )
, (B10)

with
∫

ρ0( y)d y = 1. We can write

〈UHO〉0 =
∫

ρ0( y)UHO( y)d y, (B11)

which represents the average tethering energy of a particle
that is spatially distributed according to the density ρ0( y). The
condition that the tether potential makes a relatively small
contribution to the mean energy of the cluster is 〈UHO〉0 =
1
2κi

∫
ρ0( y)y2d y 
 kT , in which case the approximations

involved in the Gibbs-Bogoliubov approach are acceptable
and the initial tethering potential weak enough that the cluster
is only slightly distorted in comparison with a free cluster.
Thus, we write

Zc
T = exp

(−Fc
T

/
kT

) 	 exp
[(−Fc

F − i〈UHO〉0
)
/kT

]
.

(B12)

Equation (B5) can then be written as

ZT =
(

2πkT

iκi

) 3
2 1

i!h3i

∫ i∏
j=1

dx′
j d pj exp[−H ({x′

k})/kT ]

× exp

[
−i

∫
ρ0 ( y) κiy

2d y/2kT

]
δ

⎛
⎝1

i

i∑
j=1

x′
j

⎞
⎠ ,

(B13)

such that the relationship between the partition function of a
tethered cluster and the partition function of a free cluster with
a constrained center of mass Zc

F is

ZT = Zc
F

(
2πkT

iκi

) 3
2

exp

[
−i

∫
ρ0 ( y) κiy

2d y/2kT

]
.

(B14)

Combining Eqs. (B3) and (B14) then gives

ln ZT = ln

[
ZF

V

(
2πkT

iκi

) 3
2

]
− iκi

2kT

∫
ρ0( y)y2d y, (B15)

or

FF − FT = −kT ln [ρc (0) V ] − iκi

2

∫
ρ0( y)y2d y, (B16)

where (iκi/2πkT )3/2 has been replaced by a function ρc(0),
representing the probability density that the center of mass

of the tethered cluster lies at the origin. This equivalence can
be demonstrated by deriving the distribution of the cluster
center of mass, through considering a single particle with mass
M = im and coordinates xc and pc residing in a potential
iκix

2
c /2. The positional probability density at z is

ρc(z) =
∫

dxcd pc exp
(− iκix

2
c

2kT
− p2

c

2MkT

)
δ(xc − z)∫

dxcd pc exp
(− iκix2

c

2kT
− p2

c

2MkT

)
=

(
iκi

2πkT

)3/2

exp
(− iκiz

2

2kT

)
, (B17)

such that ρc(0) = [iκi/(2πkT )]3/2.
The purpose of the substitution is that the first term on

the right hand side in Eq. (B16) may be interpreted as two
competing contributions to the free energy difference FF −
FT . We write

−kT ln [ρc (0) V ] = −T

{
−k ln

[
1

ρc(0)

]
+ k ln V

}
, (B18)

such that the first term corresponds to the removal of the en-
tropic contribution to free energy associated with the freedom
of motion of the cluster center of mass within a constrained vol-
ume 1/ρc(0), brought about by the tethers, and the second term
represents the addition of entropic free energy corresponding
to the freedom of motion in volume V . Finally, the second
term in Eq. (B16) is an estimate of the removal of tethering
potential energy when relating a tethered to a free cluster.

2. Excess free energy from the free energy of disassembly

We now establish the relationship between the free energy
of a free cluster to the cluster work of formation defined as
φ (i) = �s(i) − ikT ln S, where �s(i) = FF (i) − iμs is the
grand potential of a free cluster of i particles in an environment
at chemical potential μs for which the bulk condensed and
vapor phases coexist. The excess free energy (difference) of
the cluster is therefore

Fs (i) = φ (i) − φ(1) + (i − 1) kT ln S

= FF (i) − F (1) − (i − 1) μs, (B19)

having used Eq. (7).
Assuming the vapor is ideal, the coexistence chemical

potential μs and the monomer Helmholtz free energy F (1) are
simply μs = kT ln(ρvs�) and F (1) = −kT ln(V/�), respec-
tively, where ρvs is the particle density in a saturated vapor and
� = λ3

th with λth = h/(2πmkT )1/2. The excess free energy
Fs(i) can now be expressed as

Fs(i) = FF + kT ln (V/�) − (i − 1) kT ln (ρvs�)

= FT − kT ln [ρc (0) V ] − iκi

2

∫
ρ0 ( y) y2d y

+ kT ln (V/�) − (i − 1) kT ln (ρvs�) . (B20)

Now we consider the free energy change associated with the
process of cluster disassembly. The difference in free energy
between separated constituent particles each tethered to a
guide particle, and a tethered cluster, is δF = Ff − FT , where
Ff = −3ikT ln(kT /�ωf ) is the free energy of i harmonic
oscillators in three dimensions, where the angular frequency
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ωf = (κf /m)1/2 of the oscillators is related to the final value
of the tethering force constant κf .

It should be recognized, however, that the quantity δF is
not the free energy difference extracted from the molecular
dynamics simulations of cluster disassembly. Molecular dy-
namics simulations always involve distinguishable particles,
since they are assigned labels, and δF is a difference between
the free energy of i indistinguishable particles in a cluster
and i particles that are distinguishable through having been
physically separated to regions around their final tether points.

The free energy difference that is extracted in our procedure
is actually �F = Ff − F dist

T , where the superscript in F dist
T

reminds us that it is the free energy of a tethered cluster of
distinguishable particles. However, we can relate the partition
function of such a cluster to the partition function ZT for indis-
tinguishable particles by the usual classical procedure, namely,
Zdist

T = i!ZT , and since F dist
T = −kT ln Zdist

T = −kT ln ZT −
kT ln i! = FT − kT ln i! we have

�F = Ff − FT + kT ln i! = δF + kT ln i!, (B21)

such that FT = Ff − δF = Ff − �F + kT ln i!. Substitut-
ing into Eq. (B20) then gives

Fs(i) = −�F − ikT ln (ρvsvHO) + kT ln i!

−kT ln

[
ρc(0)

ρvs

]
− iκi

2

∫
ρ0 ( y) y2d y, (B22)

where vHO = (2πkT/κf )3/2 is a volume scale associated with
the confinement of particles within the final harmonic tether
potentials. It should be noted that the excess free energy Fs

does not depend upon the Planck constant h, nor on the system
volume V , as is to be expected.

In order to complete our specification of Fs(i) in terms
of �F and material properties, we need to estimate the final
term in Eq. (B22). We write

∫
ρ0( y)y2d y = ∫ ∞

0 ρ0(r)4πr4dr ,
where r is the distance from the cluster center of mass,
and recall that ρ0(r) is the single-particle density profile
in an untethered cluster with fixed center of mass. As an
approximation, we imagine the cluster to be spherical with
a constant particle density, such that ρ0(r) 	 ρl/i for 0 < r <

rmax, where ρl is the particle density in the condensed phase,
and rmax is the radius of the cluster. Since the probability
density ρ0(r) is normalized, we have

∫ rmax

0 (ρl/i)4πr2dr = 1,
such that rmax = (3i/4πρl)1/3 and so

∫ rmax

0

ρl

i
4πr4dr = 4πρl

5i
r5

max = 3

5

(
3ivl

4π

)2/3

, (B23)

where vl = 1/ρl is the volume per particle in the condensed
phase. Substituting this into Eq. (B22) gives Eqs. (13)–(17) in
the main text.
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Rev. Lett. 98, 145702 (2007).

[30] K. Iland, J. Wölk, and R. Strey, J. Chem. Phys. 127, 154506
(2007).

[31] F. H. Stillinger, J. Chem. Phys. 38, 1486 (1963).
[32] W. Smith, T. R. Forester, and I. T. Todorov, DL-POLY molecular

simulation program 1996.
[33] H. Y. Tang and I. J. Ford, J. Chem. Phys. 125, 144316 (2006).
[34] I. J. Ford, Statistical Physics: An Entropic Approach (Wiley,

Chichester, UK, 2013).
[35] D. A. Hendrix and C. Jarzynski, J. Chem. Phys. 114, 5974

(2001).
[36] G. Hummer, Mol. Simul. 28, 81 (2002).
[37] H. Hu, R. H. Yun, and J. Hermans, Mol. Simul. 28, 67 (2002).

023308-12

http://dx.doi.org/10.1243/0954406041474183
http://dx.doi.org/10.1243/0954406041474183
http://dx.doi.org/10.1243/0954406041474183
http://dx.doi.org/10.1243/0954406041474183
http://dx.doi.org/10.1021/cr2001756
http://dx.doi.org/10.1021/cr2001756
http://dx.doi.org/10.1021/cr2001756
http://dx.doi.org/10.1021/cr2001756
http://dx.doi.org/10.1146/annurev-physchem-040412-110014
http://dx.doi.org/10.1146/annurev-physchem-040412-110014
http://dx.doi.org/10.1146/annurev-physchem-040412-110014
http://dx.doi.org/10.1146/annurev-physchem-040412-110014
http://dx.doi.org/10.1243/PIMEPROC199520913102
http://dx.doi.org/10.1243/PIMEPROC199520913102
http://dx.doi.org/10.1243/PIMEPROC199520913102
http://dx.doi.org/10.1243/PIMEPROC199520913102
http://dx.doi.org/10.1002/andp.19354160806
http://dx.doi.org/10.1002/andp.19354160806
http://dx.doi.org/10.1002/andp.19354160806
http://dx.doi.org/10.1002/andp.19354160806
http://dx.doi.org/10.1103/PhysRevE.56.5615
http://dx.doi.org/10.1103/PhysRevE.56.5615
http://dx.doi.org/10.1103/PhysRevE.56.5615
http://dx.doi.org/10.1103/PhysRevE.56.5615
http://dx.doi.org/10.1063/1.1644533
http://dx.doi.org/10.1063/1.1644533
http://dx.doi.org/10.1063/1.1644533
http://dx.doi.org/10.1063/1.1644533
http://dx.doi.org/10.1063/1.459191
http://dx.doi.org/10.1063/1.459191
http://dx.doi.org/10.1063/1.459191
http://dx.doi.org/10.1063/1.459191
http://dx.doi.org/10.1063/1.1747247
http://dx.doi.org/10.1063/1.1747247
http://dx.doi.org/10.1063/1.1747247
http://dx.doi.org/10.1063/1.1747247
http://dx.doi.org/10.1103/PhysRevE.49.5517
http://dx.doi.org/10.1103/PhysRevE.49.5517
http://dx.doi.org/10.1103/PhysRevE.49.5517
http://dx.doi.org/10.1103/PhysRevE.49.5517
http://dx.doi.org/10.1063/1.470662
http://dx.doi.org/10.1063/1.470662
http://dx.doi.org/10.1063/1.470662
http://dx.doi.org/10.1063/1.470662
http://dx.doi.org/10.1063/1.1679638
http://dx.doi.org/10.1063/1.1679638
http://dx.doi.org/10.1063/1.1679638
http://dx.doi.org/10.1063/1.1679638
http://dx.doi.org/10.1007/BF01008320
http://dx.doi.org/10.1007/BF01008320
http://dx.doi.org/10.1007/BF01008320
http://dx.doi.org/10.1007/BF01008320
http://dx.doi.org/10.1063/1.477658
http://dx.doi.org/10.1063/1.477658
http://dx.doi.org/10.1063/1.477658
http://dx.doi.org/10.1063/1.477658
http://dx.doi.org/10.1063/1.478331
http://dx.doi.org/10.1063/1.478331
http://dx.doi.org/10.1063/1.478331
http://dx.doi.org/10.1063/1.478331
http://dx.doi.org/10.1063/1.1312275
http://dx.doi.org/10.1063/1.1312275
http://dx.doi.org/10.1063/1.1312275
http://dx.doi.org/10.1063/1.1312275
http://dx.doi.org/10.1063/1.1417536
http://dx.doi.org/10.1063/1.1417536
http://dx.doi.org/10.1063/1.1417536
http://dx.doi.org/10.1063/1.1417536
http://dx.doi.org/10.1063/1.1740754
http://dx.doi.org/10.1063/1.1740754
http://dx.doi.org/10.1063/1.1740754
http://dx.doi.org/10.1063/1.1740754
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevE.56.5018
http://dx.doi.org/10.1103/PhysRevE.56.5018
http://dx.doi.org/10.1103/PhysRevE.56.5018
http://dx.doi.org/10.1103/PhysRevE.56.5018
http://dx.doi.org/10.1063/1.2830721
http://dx.doi.org/10.1063/1.2830721
http://dx.doi.org/10.1063/1.2830721
http://dx.doi.org/10.1063/1.2830721
http://dx.doi.org/10.1063/1.2336776
http://dx.doi.org/10.1063/1.2336776
http://dx.doi.org/10.1063/1.2336776
http://dx.doi.org/10.1063/1.2336776
http://dx.doi.org/10.1103/PhysRevLett.98.145702
http://dx.doi.org/10.1103/PhysRevLett.98.145702
http://dx.doi.org/10.1103/PhysRevLett.98.145702
http://dx.doi.org/10.1103/PhysRevLett.98.145702
http://dx.doi.org/10.1063/1.2764486
http://dx.doi.org/10.1063/1.2764486
http://dx.doi.org/10.1063/1.2764486
http://dx.doi.org/10.1063/1.2764486
http://dx.doi.org/10.1063/1.1776907
http://dx.doi.org/10.1063/1.1776907
http://dx.doi.org/10.1063/1.1776907
http://dx.doi.org/10.1063/1.1776907
http://dx.doi.org/10.1063/1.2357147
http://dx.doi.org/10.1063/1.2357147
http://dx.doi.org/10.1063/1.2357147
http://dx.doi.org/10.1063/1.2357147
http://dx.doi.org/10.1063/1.1353552
http://dx.doi.org/10.1063/1.1353552
http://dx.doi.org/10.1063/1.1353552
http://dx.doi.org/10.1063/1.1353552
http://dx.doi.org/10.1080/08927020211972
http://dx.doi.org/10.1080/08927020211972
http://dx.doi.org/10.1080/08927020211972
http://dx.doi.org/10.1080/08927020211972
http://dx.doi.org/10.1080/08927020211971
http://dx.doi.org/10.1080/08927020211971
http://dx.doi.org/10.1080/08927020211971
http://dx.doi.org/10.1080/08927020211971


FREE ENERGIES OF MOLECULAR CLUSTERS . . . PHYSICAL REVIEW E 91, 023308 (2015)

[38] D. Rodriguez-Gomez, E. Darve, and A. Pohorille, J. Chem.
Phys. 120, 3563 (2004).

[39] R. C. Lua and A. Y. Grosberg, J. Phys. Chem. B 109, 6805
(2005).

[40] A. Dhar, Phys. Rev. E 71, 036126 (2005).
[41] B. Palmieri and D. Ronis, Phys. Rev. E 75, 011133 (2007).
[42] G. Hummer, J. Chem. Phys. 114, 7330 (2001).
[43] F. Ritort, C. Bustamante, and I. Tinoco, Proc. Natl. Acad. Sci.

USA 99, 13544 (2002).
[44] J. Liphardt, S. Dumont, S. B. Smith, I. Tinoco, and

C. Bustamante, Science 296, 1832 (2002).
[45] D. Collin, F. Ritort, C. Jarzynski, S. B. Smith, I. Tinoco, and

C. Bustamante, Nature (London) 437, 231 (2005).
[46] F. Douarche, S. Ciliberto, and A. Petrosyan, J. Stat. Mech. (2005)

P09011.
[47] S. Joubaud, N. B. Garnier, F. Douarche, A. Petrosyan, and

S. Ciliberto, C. R. Phys. 8, 518 (2007).
[48] J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).

[49] T. P. Straatsma, H. J. C. Berendsen, and J. P. M. Postma, J.
Chem. Phys. 85, 6720 (1986).

[50] M. A. Miller and W. P. Reinhardt, J. Chem. Phys. 113, 7035
(2000).

[51] T. Schilling and F. Schmid, J. Chem. Phys. 131, 231102 (2009).
[52] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.91.023308 for movies of cluster disassem-
bly.

[53] V. G. Baidakov, S. P. Protsenko, Z. R. Kozlova, and G. G.
Chernykh, J. Chem. Phys. 126, 214505 (2007).

[54] G. V. Lau, P. A. Hunt, E. A. Müller, G. Jackson and I. J. Ford,
Water droplet surface tension determined by cluster mitosis
using guided molecular dynamics (unpublished).

[55] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular
Theory of Gases and Liquids (Wiley, New York, 1964).

[56] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd
ed. (Academic Press, San Diego, 1986).

[57] A. Ishihara, J. Phys. A 1, 539 (1968).

023308-13

http://dx.doi.org/10.1063/1.1642607
http://dx.doi.org/10.1063/1.1642607
http://dx.doi.org/10.1063/1.1642607
http://dx.doi.org/10.1063/1.1642607
http://dx.doi.org/10.1021/jp0455428
http://dx.doi.org/10.1021/jp0455428
http://dx.doi.org/10.1021/jp0455428
http://dx.doi.org/10.1021/jp0455428
http://dx.doi.org/10.1103/PhysRevE.71.036126
http://dx.doi.org/10.1103/PhysRevE.71.036126
http://dx.doi.org/10.1103/PhysRevE.71.036126
http://dx.doi.org/10.1103/PhysRevE.71.036126
http://dx.doi.org/10.1103/PhysRevE.75.011133
http://dx.doi.org/10.1103/PhysRevE.75.011133
http://dx.doi.org/10.1103/PhysRevE.75.011133
http://dx.doi.org/10.1103/PhysRevE.75.011133
http://dx.doi.org/10.1063/1.1363668
http://dx.doi.org/10.1063/1.1363668
http://dx.doi.org/10.1063/1.1363668
http://dx.doi.org/10.1063/1.1363668
http://dx.doi.org/10.1073/pnas.172525099
http://dx.doi.org/10.1073/pnas.172525099
http://dx.doi.org/10.1073/pnas.172525099
http://dx.doi.org/10.1073/pnas.172525099
http://dx.doi.org/10.1126/science.1071152
http://dx.doi.org/10.1126/science.1071152
http://dx.doi.org/10.1126/science.1071152
http://dx.doi.org/10.1126/science.1071152
http://dx.doi.org/10.1038/nature04061
http://dx.doi.org/10.1038/nature04061
http://dx.doi.org/10.1038/nature04061
http://dx.doi.org/10.1038/nature04061
http://dx.doi.org/10.1088/1742-5468/2005/09/P09011
http://dx.doi.org/10.1088/1742-5468/2005/09/P09011
http://dx.doi.org/10.1088/1742-5468/2005/09/P09011
http://dx.doi.org/10.1016/j.crhy.2007.04.012
http://dx.doi.org/10.1016/j.crhy.2007.04.012
http://dx.doi.org/10.1016/j.crhy.2007.04.012
http://dx.doi.org/10.1016/j.crhy.2007.04.012
http://dx.doi.org/10.1063/1.1749657
http://dx.doi.org/10.1063/1.1749657
http://dx.doi.org/10.1063/1.1749657
http://dx.doi.org/10.1063/1.1749657
http://dx.doi.org/10.1063/1.451846
http://dx.doi.org/10.1063/1.451846
http://dx.doi.org/10.1063/1.451846
http://dx.doi.org/10.1063/1.451846
http://dx.doi.org/10.1063/1.1313537
http://dx.doi.org/10.1063/1.1313537
http://dx.doi.org/10.1063/1.1313537
http://dx.doi.org/10.1063/1.1313537
http://dx.doi.org/10.1063/1.3274951
http://dx.doi.org/10.1063/1.3274951
http://dx.doi.org/10.1063/1.3274951
http://dx.doi.org/10.1063/1.3274951
http://link.aps.org/supplemental/10.1103/PhysRevE.91.023308
http://dx.doi.org/10.1063/1.2734964
http://dx.doi.org/10.1063/1.2734964
http://dx.doi.org/10.1063/1.2734964
http://dx.doi.org/10.1063/1.2734964
http://dx.doi.org/10.1088/0305-4470/1/5/305
http://dx.doi.org/10.1088/0305-4470/1/5/305
http://dx.doi.org/10.1088/0305-4470/1/5/305
http://dx.doi.org/10.1088/0305-4470/1/5/305



