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Analysis of the phase transition in the two-dimensional Ising ferromagnet using a Lempel-Ziv
string-parsing scheme and black-box data-compression utilities
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In this work we consider information-theoretic observables to analyze short symbolic sequences, comprising
time series that represent the orientation of a single spin in a two-dimensional (2D) Ising ferromagnet on a
square lattice of size L2 = 1282 for different system temperatures T . The latter were chosen from an interval
enclosing the critical point Tc of the model. At small temperatures the sequences are thus very regular; at high
temperatures they are maximally random. In the vicinity of the critical point, nontrivial, long-range correlations
appear. Here we implement estimators for the entropy rate, excess entropy (i.e., “complexity”), and multi-
information. First, we implement a Lempel-Ziv string-parsing scheme, providing seemingly elaborate entropy
rate and multi-information estimates and an approximate estimator for the excess entropy. Furthermore, we
apply easy-to-use black-box data-compression utilities, providing approximate estimators only. For comparison
and to yield results for benchmarking purposes, we implement the information-theoretic observables also based
on the well-established M-block Shannon entropy, which is more tedious to apply compared to the first two
“algorithmic” entropy estimation procedures. To test how well one can exploit the potential of such data-
compression techniques, we aim at detecting the critical point of the 2D Ising ferromagnet. Among the above
observables, the multi-information, which is known to exhibit an isolated peak at the critical point, is very easy to
replicate by means of both efficient algorithmic entropy estimation procedures. Finally, we assess how good the
various algorithmic entropy estimates compare to the more conventional block entropy estimates and illustrate a
simple modification that yields enhanced results.
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I. INTRODUCTION

The standard analysis of phase transitions in terms of
statistical mechanics involves the analysis of order parameters
and other derivatives of the free energy, related to a given
model system [1]. Routinely, one studies model systems
that involve many degrees of freedom and local interactions
that nevertheless result in a nontrivial, seemingly “complex”
behavior. Implying a rather naive use of the word, such systems
are regarded as being very complex, particularly right at
the point where a phase transitions occurs in the underlying
model. From a point of view of statistical mechanics, a large
degree of complexity is shown by growing correlations as one
approaches the critical point by tuning a proper system param-
eter. Correspondingly, throughout the analysis of observables
related to such model systems it is often desirable to find a
measure for what is naively referred to as the “complexity” of
the underlying system [2,3]. However, a precise definition of
the term complexity is often elusive. An alternative approach
to the analysis of phase transitions, which has recently gained
popularity in the analysis of complex systems, is based on
a purely information theoretic approach [4–6]. A variety
of previous studies employed such information-theoretic
methods to measure the entropy rate (i.e., disorder and
randomness) and statistical complexity (i.e., structure, patterns
and correlations) for d � 1-dimensional systems [4,7–12].
In particular for one-dimensional (1D) systems, the excess
entropy constitutes a well-understood information-theoretic
measure of complexity, providing a well-defined literal sense
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for that term. Effectively, the excess entropy accounts for the
rapidity of entropy convergence. In order to obtain numerical
values for the entropy rate and complexity, the well-established
information-theoretic approach presented in Ref. [5] is based
on the notion of a “block entropy”; see discussion below.
Among several intriguing findings, it led to the analysis of
complexity-entropy diagrams that allow for a characterization
of the temporal and spatial dynamics of various stochastic
processes, including simple maps as well as Ising spin systems,
in purely information-theoretic coordinates [4].

On the other hand, note that there are a variety of other
measures for what is known as algorithmic entropy, as, e.g.,
the description size of a minimal algorithm (or computer, or
circuit), which is able to generate an instance of the problem
under scrutiny [13–15]. However, such measures are often
impractical when it comes to the analysis of large systems.
In this regard, as discussed in the literature [16,17], particular
data-compression algorithms might render a natural and partic-
ularly simple candidate for estimating an algorithmic entropy.
The pivotal challenge of such data-compression algorithms,
readily available as black-box data-compression utilities such
as, e.g., the zlib [18], bzip2 [19], and lzma [20] utilities, is to
discover patterns (synonymous with regularities, correlations,
symmetries, and structure; see Sec. II of Ref. [21]) in the
given input data and to exploit the respective redundancies in
order to minimize the space required to store the data. Inter-
estingly, the pattern discovery and data-compression process
of particular data-compression schemes finds application in
contexts as diverse as, e.g., DNA sequence classification [22],
entropy estimation [16,23,24], and, more generally, time series
analysis [17]. However, at this point, please note that not all
of the applications of such methods reported in the scientific
literature are without critique; see [25–27].
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In this study we aim to assess how well algorithmic entropy
(AE) estimates, obtained using a Lempel-Ziv (LZ) string-
parsing scheme [28,29] and black-box data-compression
utilities, and the results obtained therewith compare to those
obtained by means of the respective block entropy (BE)
estimates used in the context of the information-theoretic
approach mentioned earlier. As raw data, to be processed
further by both approaches, we consider binary sequences
that represent the spin-flip dynamics, induced by single-spin-
flip Metropolis updates [30] of the 2D Ising ferromagnet
(FM) on a square lattice of side length L = 128 with fully
periodic boundary conditions at different temperatures T .
The temperatures are chosen from the interval T ∈ [2, 2.8],
enclosing the critical point Tc = 2.269 . . . of the model. In
order to model the binary sequences, a particular spin on the
lattice is chosen as a “source,” emitting symbols from the
binary alphabet A = {0,1} (after a simple transformation of
the spin variables). Therefore, the orientation of the source
spin is monitored during a number of N Monte Carlo (MC)
sweeps to yield symbolic sequences S = (s1, . . . ,sN ) of length
up to N = 5 × 105. Before the spin orientation is recorded,
a sufficient number of sweeps are performed to ensure
that the system is equilibrated. In this regard, for a square
lattice with side length L = 128, and starting with all spins
“up,” and by analyzing the magnetization of the system, we
observed an equilibration time of approximately τeq = 3000
MC sweeps for the lowest temperature. However, for each
system considered, we discarded the first 105 sweeps to avoid
initial transients.

The aim of this work is to use computer science methods,
related to the field of lossless data compression, and apply them
to a pivotal model system from statistical mechanics, namely
the 2D Ising FM and the continuous FM-to-paramagnet tran-
sition found therein. In particular, we want to clarify whether
the phase transition can be detected, located, and analyzed
numerically with high precision just by looking at entropy and
complexity measures derived via data-compression utilities.
Being well aware that such AE estimates based on sequence-
parsing schemes and data-compression utilities might only
be used to obtain upper bounds on the actual entropies of
the underlying (finite) symbolic sequences [16,28,31], we
compare our findings to those obtained using the BE estimators
that here serve as a benchmark.

The remainder of this article is organized as follows. In
Sec. II we introduce the information-theoretic observables
obtained from the limiting behavior of block entropies and
we detail the LZ string-parsing and data-compression based
entropy measures. In Sec. III we discuss the results obtained by
applying the aforementioned entropy estimators and in Sec. IV
we conclude with a summary.

II. INFORMATION-THEORETIC OBSERVABLES
FOR SYMBOLIC SEQUENCES

In Sec. II A we introduce the basic notation from informa-
tion theory, subsequently used to define the entropy rate, excess
entropy, and further related measures that might be associated
to a 1D symbolic sequence of finite length. Regarding the
definition of the entropy rate and excess entropy, we follow
the notation used in Refs. [4,5,21], where a more elaborate

discussion of the individual information-theoretic observables
can be found. In Sec. II B we further introduce the LZ
string-parsing scheme and data-compression based entropy
measures considered in the remainder.

A. Block entropy, entropy rate, and complexity

Given a symbolic sequence S of finite length N , i.e.,
S = (s1,s2, . . . ,sN ), where the individual symbols si assume
a symbolic value randomly drawn from an alphabet A of
finite size. Here, an individual symbol signifies the outcome
of a measurement on a random variable, i.e., the orientation
of a single Ising spin at a given point in (simulation) time.
Therefore, unless otherwise specified,Awill denote the binary
alphabet {−1, + 1}. For sM denoting a particular symbol
block of length M > 0, the M-block Shannon entropy, also
called BE, a prerequisite needed to define the subsequent
information-theoretic observables, reads

HBE,M [S] ≡ −
∑

sM∈AM

Pr(sM ) log2[Pr(sM )], (1)

wherein Pr(sM ) specifies the joint probability for blocks of
M consecutive symbols. Hence, considering a finite sequence,
Pr(sM ) represents the empirical rate of occurrence of sM in
the given sequence. Consequently, HBE,M depends on the
spin-flip dynamics of the chosen Ising spin, implemented by
the simulation procedure for the 2D Ising FM, over intervals
of M consecutive time steps. In the above formula, the sum
runs over all possible M blocks, i.e., combinations of M

consecutive symbols, that might be composed by means of
the alphabet A (considering a binary alphabet, there are
2M such blocks) and we imply to set 0 log2(0) ≡ 0. In
general, HBE,M is a nondecreasing function of M , bounded
by HBE,M � M log2 |A|. The upper bound is attained in the
limit of sequence length N → ∞ if the probability of a
string factorizes and each letter has the same probability of
occurrence, i.e., Pr(sM ) = 1/|A|M . In the limit of large block
sizes and sequence lengths N , HBE,M might thus not converge
to a finite value. As a remedy, due to the above bounding value,
the entropy rate

h ≡ lim
M,N→∞

HBE,M [S]/M (2)

might be considered instead. It specifies the asymptotic rate of
increase of the M-block Shannon entropy with block length
M , and, in the limit of large block size and sequence length,
indicates an upper bound on the number of bits needed to
encode a symbol of the observed sequence. At this point bear
in mind that we aim to analyze binary time series, i.e., 1D
symbolic sequences that represent the orientation of a single
spin located on an instance of a 2D square lattice Ising FM with
side length L = 128. In this regard, note that Eq. (2), i.e., the
M-block Shannon entropy for 1D symbolic sequences, does
not converge to the true entropy density of the full 2D Ising
FM. However, this is not an issue since our goal is to locate the
critical point Tc, not to provide an accurate entropy measure
for the full 2D Ising FM.

In most practical applications the finite length of the
underlying symbolic sequences imposes certain sampling
issues related to subsequences of a long enough length M ,
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rendering it unfeasible to proceed towards very large block
sizes. For example, for sequences of length N , where symbols
are independent and identically distributed (iid), one might
experience a severe undersampling of M blocks if, at a given
alphabet size |A|, M is too large or N is too short. In
particular, a naive upper bound Mmax might be obtained from
the constraint N � M2M [28,31]. Consequently, it is desirable
to consider proper finite-M approximations to the entropy
rate observed for sequences of finite length N , referred to
as apparent entropy rates. Two such estimators are given by
the per symbol M-BE

h′
BE,M [S] = HBE,M [S]/M (3)

and the discrete derivative of Eq. (2), defining the entropy rate
as a BE increment via

hBE,M [S] = HBE,M [S] − HBE,M−1[S] (4)

for sequences of finite length N and both equations presuming
M � 1. Viewed as a function of block size, the finite M

estimates of the entropy rates converge to the asymptotic
value h from above. Hence, considering small block sizes,
the underlying symbolic sequences tend to look more random
than in the limit M → ∞. Finally, note that the entropy rate
is a measure of randomness that might be attributed to the
underlying sequences [3,5]. Here, for sequences of finite size
N and for a maximally feasible block size Mmax we denote the
BE based estimate of the entropy rate as

hBE[S] ≡ hBE,Mmax [S]. (5)

For 1D symbolic sequences, there are three different but
equivalent expressions to define the excess entropy. These
are based on the convergence properties of the entropy rate,
the subextensive part of the BE in the limit of large block
sizes and the mutual information between two semi-infinite
blocks of variables; see Refs. [4,9]. Here we focus on the
definition of the excess entropy, also termed “effective measure
complexity” [2,21,32], related to the convergence properties
of the entropy rate in the form

CBE[S] =
∞∑

M=1

(hBE,M [S] − hBE[S]). (6)

As pointed out above, the conditional entropies hBE,M [S]
constitute upper bounds on the asymptotic entropy rate,
allowing, in principle, for an improving estimate of hBE for
increasing M . Note that since the sum in Eq. (6) extends
to M → ∞, it implies the limit N → ∞ and hBE[S] = h.
However, for practical purposes, i.e., since we consider
sequences of finite length N only, the sum in Eq. (6) needs
to be truncated at a maximally feasible block size Mmax that
still yields a reliable estimate of h (see discussion above).
Hence, for a symbolic sequence S of finite length N , CBE[S]
accounts for the randomness that is present at small values of
M that vanishes in the limit of large block sizes. The excess
entropy is considered a measure of statistical complexity [3,5]
with the ability to detect structure within the considered
sequences [2]. It satisfies the desirable “one-hump” criterion,
according to which a proper measure for statistical complexity
yields a small numerical value for highly ordered and highly
disordered sequences [33–37], thereby keeping the ability

to distinguish configurations that exhibit similar randomness
but are structurally distinct [3]. Further, note that also other
practically computable approaches exist, which indeed seem
to measure complexity as expected [2,32,38].

For 1D symbolic sequences, a further information-theoretic
observable, termed multi-information [39] is given by the first
summand in Eq. (6), i.e.,

IBE[S] = hBE,1[S] − hBE[S]. (7)

Albeit IBE is closely related to the excess entropy CBE (this
holds only in the limit of large block sizes M; see Ref. [39]
for a more general discussion of the multi-information), it
captures a particular contribution to the convergence of the
entropy density. In this regard, for sequences of infinite
length, i.e., in the limit N → ∞, it measures the decrease
of the entropy rate observed by switching from the level of
single variables (1-block) statistics to the statistics attained
as M → ∞. Recently, the multi-information was introduced
and used to characterize spin configurations for the 2D Ising
FM in the thermodynamic limit by analytic means [39]. It
was found to exhibit an isolated global maximum right at
the critical temperature Tc and thus also satisfies the “one-
hump” criterion desired for the full complexity measure. For
completeness, note that an early study, focused on computing
an information-theoretic complexity measure for the 2D Ising
FM was presented by Ref. [40]. Also, quite recently, Ref. [41]
reported on different ways to decompose the entropy of a 2D
lattice system into sums of conditional entropies. Also note
that a complementary approach, focused on carefully carving
out information-theoretic aspects of the 2D Ising model in
terms of mutual information, was presented by Ref. [42].

B. String-parsing and data-compression
based entropy measures

Below we illustrate the LZ string-parsing scheme and the
data-compression tools used to implement entropy measures
by algorithmic means.

Lempel-Ziv string-parsing scheme. The LZ string-parsing
scheme considered here is based on a coarse graining of the
input sequence S, yielding a quantity termed “LZ” complexity.
Therefore, the input sequence is split into several independent
blocks. By traversing the input sequence, a new block is
completed whenever one encounters a new subsequence of
consecutive symbols that does not match a subsequence of the
already traversed part of the input sequence.

More formally, given the symbolic sequence S =
(s1, . . . ,sN ), for which the subsequence (si, . . . ,sj ) might be
specified as S(i,j ), we obtain a parsed sequence S ′ using the
following procedure.

(1) Initialize the parsed sequence S ′ = (s1) and an empty
auxiliary sequence Q = ( ). Traverse the sequence S from left
to right, using an index i initialized as i = 1.

(2.1) In step i, advance i to i + 1 and extend the auxiliary
sequence Q via symbol si+1.

For example, after increasing i = 1 → i = 2, one has Q =
(s2). More general, if the auxiliary sequence already reads
Q = (sj , . . . ,si), it is extended to Q = (sj , . . . ,si,si+1).

(2.2) Check whether the current auxiliary sequence Q

matches any subsequence of S(1,i). If not, append the auxiliary
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sequence Q as a new “block” to the parsed sequence S ′ and
reset Q = ( ).

For example, in step (1) one has Q = (s2). If Q does not
match the symbol S(1,1) = s1, then set S ′ = (s1)(s2) and reset
Q = ( ).

(3) Repeat (2.1) and (2.2) until i = N and append Q to S ′
to yield the final parsing S ′.

Finally, the LZ complexity NLZ[S] associated with se-
quence S is simply the number of consecutive blocks found
after the coarse-graining procedure is completed [29]. As
an example, consider the sequence S = 1010000110. Fol-
lowing the above procedure yields the parsed sequences
S ′ = (1)(0)(100)(001)(10) for which the LZ complexity reads
NLZ[S] = 5.

The LZ complexity provides means to quantify the de-
gree of order or disorder in an observed symbolic se-
quences [28,29]. Therefore, the term complexity is somewhat
misleading in our context. As pointed out in Ref. [28], a proper
normalization makes it possible to relate the LZ complexity to
the entropy rate of the symbolic sequence, i.e.,

hLZ[S] = lim
N→∞

hLZ[S] = lim
N→∞

NLZ[S] ln(N )

N
. (8)

Note that in Ref. [28] two different variants of LZ parsing are
considered; here we use the parsing scheme that that reference
refers to as LZ 77.

The above string-parsing scheme might also be used to
compute an observable that closely follows the definition of
the BE based excess entropy. Therefore, bear in mind that
in the definition of the excess entropy Eq. (6), the individual
terms involve the entropy-rate estimates hBE,M for finite block
size M , i.e., containing symbol correlations up to length M

only. By using the LZ string-parsing scheme, similar estimates
of the entropy rate, restricted to feature correlations up to
some specified length M , might be obtained by preprocessing
the initial sequence by applying a M-block standard random
shuffle procedure. Thereby, the initial length-N sequence S

is first split into �N/M� blocks of length n and possibly
a remaining block of length Nmod(M). Then, these blocks
are brought into random order and merged to form the new,
M-block shuffled surrogate sequence S(M) = shuffle(S,M).
This maintains the individual symbol frequencies, destroys
all correlations that extend over lengths larger than M , and
yields a particular realization of a M-block shuffled surrogate
sequence. Note, however, that the distribution of M blocks,
obtained by sliding a window of length M over the initial
sequence and keeping track of all overlapping subsequences
of length M (e.g., used to compute M-block entropies), is not
conserved by this procedure. The case M = 1 corresponds
to the standard random shuffling procedure considered in
Ref. [43]. Finally, a standard random shuffle based excess
entropy (or similar: standard random shuffle based complexity)
that utilizes the LZ string-parsing scheme might be obtained
as

Cs[S] =
Mmax∑

M=1

(hLZ[S(M)] − hLZ[S]), (9)

where Mmax indicates a maximal feasible block size for the
shuffling procedure. Albeit the above observable is no direct

analog of the excess entropy Eq. (6), it is expected to behave
in a similar manner.

Similarly, the string-parsing scheme might be used to com-
pute a shuffling based equivalent of the multi-information [39]
Eq. (7) as

Is[S] = hLZ[S(1)] − hLZ[S]. (10)

Therein, S(1) simply represents a surrogate sequence obtained
by a 1-block standard random shuffle [43] which maintains
the symbol frequencies but destroys correlations on all scales.
Hence, Eq. (10) reflects the entropy overestimate observed
by going from a representation of the sequence with no
correlations at all to its original representation including all
correlations.

Data-compression tools. In addition we also consider three
commonly used black-box data compression tools, namely
zlib [18], bz2 [19], and lzma [20], in order to compute an AE
that is based on the compressibility of the underlying sequence
according to

halg[S] = length[compress(S)]

N
; (11)

see Ref. [16]. According to the latter reference, theis data-
compression tool based entropy should provide an upper
bound on the entropy of the underlying sequences. Note
that the shuffling based (approximate) excess entropy and
multi-information can also readily be computed using Eq. (11).

III. RESULTS

Subsequently we address two distinct issues: First, in
Sec. III A, we assess how well the aforementioned, string-
parsing and data-compression based entropy estimators might
be used to characterize the FM-to-paramagnet transition in the
2D Ising FM. Therefore, we consider the information-theoretic
observables introduced previously in Sec. II and capitalize on
their scaling behavior as a function of the system temperature.
Since these estimates are obtained by algorithmic means,
we here refer to the them as “AE estimates.” Second, in
Sec. III B, we evaluate how well the AE estimates compare
to the more conventional BE estimates and discuss further
means to improve on the difference between the respective
estimates.

A. Using algorithmic entropy estimates to locate
the critical point

In this section we summarize the results on the issue of
how well the phase transition in the 2D Ising FM can be
resolved by means of the LZ string-parsing scheme [28,29,31],
as well as the zlib [18], bz2 [19], and lzma [20] black-box
data compression utilities. Therein, we are not interested in
the absolute values of the entropy estimates thus obtained,
but merely in the data-curve characteristics as function of
the system temperature. The final estimates for the transition
points, resulting from the considered observables, and their
comparison to the literature value of the critical temperature,
i.e., T lit

c = 2.269, can be used to assess the value of the
AE estimators as easy-to-compute utilities that might yield
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valuable information on the structural change as visible in
measurements of finite-length symbolic sequences.

1. Lempel-Ziv string-parsing scheme

a. Entropy rate. As pointed out previously, for a given
input sequence S, consisting of N consecutive symbols,
the LZ string-parsing scheme yields a parsed sequence of
length NLZ[S], making it possible to compute the respective
entropy rates for sequences of finite length via hLZ,N [S]; see
Eq. (8). We applied this estimation procedure to ensembles
of length-N sequences, accounting for the orientation of a
selected spin in a 2D Ising FM at different values of the
temperature parameter T , considering various values of N up
to N = 216 = 65 536; see Fig. 1(a). Therein, the upper inset
of Fig. 1(a) illustrates the change of the average asymptotic
entropy rate at T = 2.267 ≈ Tc with increasing sequence
length N . For the extrapolation to the asymptotic limit, an
empirically motivated fit function of the form

hLZ,N = h∞ + [a log2(N )]/Nγ , (12)

motivated in Ref. [31] and also used in Ref. [28], was
employed. The main plot of Fig. 1(a) shows the extrapolated
asymptotic entropy rates h∞(T ). The asymptotic entropy rates
are in accord with intuition: At low T , the symbolic sequences
exhibit a high degree of order; hence, the associated entropy
rate is small (vanishing in the limit of perfect order). In con-
trast, at high T , the sequences exhibit maximal randomness,
i.e., subsequent spin orientations in the underlying model are
uncorrelated, and the entropy rate tends towards h∞ = 1. Of
pivotal interest is the region close to Tc where nontrivial, long-
range correlations between the successive orientations of the
monitored spin build up. Below it will be of interest to check
whether the previously introduced measures of statistical
complexity are sensitive to these structural changes and can be
used to locate the critical point by means of a finite-size scaling
analysis using sequences of different length N . The bottom
inset of the figure indicates the change of the fit-parameter
γ as function of the temperature. As evident from the figure,
in the high-temperature regime above the critical point Tc =
2.269 . . . , it assumes a stationary value γ (T > Tc) ≈ 0.73(2).
In the low-temperature regime it exhibits an increasing value
with decreasing temperature. Overall, the agreement between
the asymptotic entropy rate h∞, the entropy rate hLZ,N at
N = 216 = 65 536, and the common BE at hBE,N at N = 105

is remarkably good; see Table I. In particular, for all values of
T considered, hLZ,N seems to be a satisfactory approximation
to h∞, since both values agree within error bars.

b. Excess entropy. Figure 1(b) illustrates the block-shuffling
based excess entropy Eq. (9) as function of the system
temperature, averaged over a large number of input sequences.
In the analysis, we restricted the sum to Mmax = 23. As evident
from the figure, Cs(T ) assumes small values for both, the low-
T and high-T regimes. In between, i.e., in the paramagnetic
phase close to the critical point Tc, it assumes a peak value
thus satisfying the naive “one-hump” criterion [3,33]. For an
increasing sequence length the peak gets more pronounced
and shifts towards Tc. In order to assess whether the position
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FIG. 1. Results for the information-theoretic observables com-
puted using the LZ sequence-parsing scheme averaged over many
input sequences. (a) Extrapolated estimates h∞(T ) of the entropy rate
as function of the system temperature T . The upper inset illustrates
the extrapolation of the finite-length entropy-rate estimates hLZ,N at
T = 2.267 ≈ Tc using the fit function discussed in the text. The lower
inset shows the fit exponents γ (T ) as function of the temperature. (b)
Analysis of the block-shuffling based excess entropy, also termed
“complexity,” Cs(T ). The inset illustrates the extrapolation of the
system-size dependent peak locations Teff (N ) to the asymptotic
limit. The solid lines indicate cubic spline, fitted to the interval
T ∈ [2.24,2.5] and the dashed lines are a guide for the eyes only.
(c) Analysis of the block-shuffling based multi-information Is(T )
similar to (b).
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TABLE I. Comparison of entropy rates for different estimation
procedures at different temperatures. From left to right: system
temperature T , LZ-parsing based entropy rate hLZ,N at N = 216 =
65 536, LZ-parsing based asymptotic entropy rate h∞ [extrapolated
using Eq. (12)], and BE based estimate hBE,N at N = 105 (block
size 7).

T hLZ,N h∞ hBE,N

2.2 0.3442(6) 0.3441(5) 0.339(3)
2.267 0.436(1) 0.435(1) 0.428(3)
2.5 0.647(1) 0.645(1) 0.643(2)

of the peak in the asymptotic limit coincides with the critical
point, we performed a finite-size scaling analysis.

To accomplish this, we fitted cubic splines to the peak region
T ∈ [2.24,2.5] of the excess entropy data curves to obtain the
respective sequence length dependent, thus “effective,” peak
positions Teff(N ). In Fig. 1(b), the fit curves are shown as solid
lines (dashed lines are a guide for the eye only). Error bars for
the peak position are computed using bootstrap resampling of
the underlying data [44]. The asymptotic peak position is then
extrapolated using a fit to

Teff(N ) = T∞ + aN−b, (13)

yielding T∞ = 2.269(6), a = O(1), and b = 0.35(4) [reduced
χ2(χ2

red) = 0.58], see inset of Fig. 1(b), in good agreement
with the literature value Tc ≈ 2.269. Albeit not shown here,
we further observe that the fluctuations Nvar(Cs) are peaked
directly at Tc.

At this point, bear in mind that we study symbolic sequences
that represent the time series of the orientation of a selected
spin, recorded for N MC sweeps on a 2D square lattice
of finite side length L = 128. Analyzing the specific heat
C = (kBT 2)−1[〈E2〉 − 〈E〉2] [30] of the L = 128 2D Ising FM
we find an accentuated peak at Tpeak = 2.278(1), indicating
the “effective” location of the critical point for the finite
system (not shown). Note that this value is slightly larger
than the asymptotic critical point Tc = 2.269 . . . . Here we
obtain the interesting result that, by performing a scaling
analysis for the excess entropy peak locations for symbolic
sequences of different length N (all for the finite system size
L = 128), the results seem to extrapolate towards T∞, which
is in striking agreement with the asymptotic critical point Tc.
However, the results are also in reasonable agreement with the
effective critical point suggested by the specific heat. Hence,
within the precision reached by our current analysis we cannot
completely rule out that the results extrapolate towards Tpeak

instead of the asymptotic critical point Tc.
c. Multi-information. The results for the standard random

shuffle based multi-information Eq. (10) are shown in Fig. 1(c).
Here a finite-size scaling analysis of the effective peak

positions, again obtained by fitting cubic splines to the peak
region T ∈ [2.24,2.5] of the data curves, using bootstrap
resampling to compute error bars and Eq. (13) to extrapolate to
the asymptotic limit, yields the estimates T∞ = 2.268(5), a =
O(1), and b = 0.34(2) (χ2

red = 0.16). Similar to the findings
for the excess entropy, the estimate of T∞ is in good agreement
with the known value of Tc, indicating that Is is highly
sensitive to the correlations that emerge close to the critical

point. However, note that albeit the multi-information is able
to resolve the FM-to-paramagnet transition in the 2D Ising
FM considered here, it is by no means a universal measure
to reliably detect any order-disorder transition. Since it is
based on 1D symbolic sequences that relate to a single spin,
it neglects nontrivial correlations between adjacent spins on
the lattice. Consequently, as presented here, it is not able
to distinguish pure ferromagnetic order from, say, perfect
antiferromagnetic order.

d. S measure. For the purpose of comparing an observable
M computed for symbolic sequences of finite length to their
surrogate counterparts, Ref. [43] employed the S measure

S[S] = |Morig[S] − 〈Msurr[S]〉|
sDev(Msurr[S])

. (14)

Therein, in order to quantify a significant deviation between
both observables, it states the difference between the observ-
able for the original sequence to the average value of the
observable for an ensemble of proper surrogates, measured in
units of the standard deviation found for the surrogate ensem-
ble. Here, to probe the sensitivity of theS measure to structural
changes in the symbolic sequences at different temperatures,
we choose as an observable the LZ complexity based estimator
for the entropy rate. That is, for a given sequence S we consider
Morig[S] = hLZ[S] and Msurr[S] = hLZ[S(1)] (note that this
corresponds to the construction procedure 1 for surrogate
sequences in Ref. [43]), using 102 surrogate sequences for
averaging obtained by standard random shuffling. In Eq. (14),
the average 〈·〉 and standard deviation sDev(·) are computed
from 100 independent surrogate sequences. Figure 2 illustrates
the S measure, averaged over different (original) sequences
for various values of N . As evident from the figure, the S
measure exhibits an isolated peak close to the critical point.
This does not come as a surprise: Albeit normalized by a
temperature dependent quantity, the enumerator effectively
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FIG. 2. Results for the S measure as discussed in the text,
averaged over many input sequences. The main plot illustrates the S
measure for the LZ-parsing based entropy rate, considering a standard
random shuffle to obtain the surrogate sequences used to compute
Eq. (14). The solid lines represent cubic splines, fitted to the interval
T ∈ [2.2,2.55] and the dashed lines are a guide for eyes, only. The
inset shows the finite-size scaling analysis performed to extrapolate
the asymptotic peak location T∞.
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matches the random shuffle based multi-information Eq. (10).
Here a finite-size scaling analysis of the system-size dependent
peak locations (obtained by fitting cubic splines to the data
points in the interval T ∈ [2.2,2.55]) yields T∞ = 2.277(10),
a = O(1), and b = 0.40(7) (χ2

red = 1.11), in agreement with
the above results.

2. Common data-compression utilities

In the previous section we analyzed three different observ-
ables that appear to be very sensitive to structural changes in
the symbolic sequences of finite length as the critical point of
the underlying model is approached. These were the standard
random shuffle based excess entropy (also termed complexity),
multi-information, and theS measure for the LZ-parsing based
entropy rate. Subsequently, we restrict our further analysis to
the shuffling based multi-information since it is very simple to
compute and seems to be able to detect and quantify structural
changes in the recorded sequences that might be used to
locate the phase transition point of the underlying model with
ease. Furthermore, it has a clear-cut interpretation: It yields
the entropy rate difference observed for a symbolic sequence
including all symbol correlations and a surrogate sequence
featuring the same symbol frequencies without correlations.

As pointed out above, we here consider three commonly
used black-box data compression tools, namely zlib [18],
bz2 [19], and lzma [20], in order to compute an AE that is based
on the compressibility of the underlying sequence according
to Eq. (11); see Ref. [16].

a. Results obtained using zlib. The results obtained by im-
plementing the compress(·) statement in Eq. (11) by using the
zlib data-compression tool [18] is shown in Fig. 3(a). Therein,
by fitting the peaks using cubic splines and extrapolating to
the asymptotic limit via Eq. (13) we yield T∞ = 2.278(5),
a = O(1), and b = 0.5(1) (reduced chi-square χ2

red = 1.31),
slightly overestimating the literature value of the critical point
Tc but still within a distance of 2σ . For comparison, the results
obtained by fitting polynomials of order 8 to the data curves
are listed in Table II. Regarding the characteristics of the
data curves, note that albeit the peak location monotonously
decreases towards a value in decent agreement with Tc, the
peak height seems to first increase to a value 〈Is(Teff)〉 ≈ 0.55
for 5000 � N � 15 000. For larger value of N , the peak height
seems to decrease again.

b. Results obtained using bz2. Implementing the
compress(·) statement in Eq. (11) by using the bz2 data-
compression tool [19] is shown in Fig. 3(b). Therein, by
fitting the peaks using cubic splines and extrapolating to
the asymptotic limit, we yield T∞ = 2.26(1), a = O(1), and
b = 0.28(7) (χ2

red = 0.40), in agreement with the literature
value of the critical point Tc. Again, for comparison, the
results obtained by fitting polynomials of order 8 to the data
curves are listed in Table II. As evident from Fig. 3(b), and
in contrast to the results obtained using the zlib tools, the
peak of data curves behaves similar to the multi-information
considered in the context of the LZ-parsing scheme. That is,
the peak consistently shifts towards Tc and the peak height also
increases with increasing N (however, we made no attempt to
quantify the latter).
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FIG. 3. Results for the standard random shuffle based multi-
information computed using three black-box data-compression util-
ities, averaged over many input sequences. The subfigures illustrate
the analysis of the shuffling based multi-information using the AE,
where the compress(·) part is implemented using (a) the zlib data-
compression tool, (b) the bz2 data-compression tool, and (c) the lzma
data-compression tool. In the main figures, the solid lines indicate
fits to polynomials of order 8, fitted to the interval T ∈ [2.24,2.45]
and the dashed lines are a guide for eyes, only. The insets show
the extrapolation of the system size dependent peak locations to the
asymptotic limit using Eq. (13).
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TABLE II. List of the asymptotic critical points Tc and scaling
exponents b, estimated from the finite-size scaling [see Eq. (13)] of the
peak locations associated to the standard random shuffle based multi-
information, implemented by means of the zlib, bz2, and lzma data-
compression utilities. Therein, the peaks where fit by cubic splines
(CS) and polynomials of order 8 (P8). To facilitate comparison, note
that the known critical temperature of the 2D Ising FM reads Tc =
2.269 . . . .

CS P8

T∞ b T∞ b

ZLIB 2.278(5) 0.5(1) 2.24(1) 0.24(2)
BZ2 2.26(1) 0.28(7) 2.265(4) 0.31(12)
LZMA 2.276(4) 0.41(5) 2.274(9) 0.39(7)

c. Results obtained using lzma. Last, implementing the
compress(·) statement in Eq. (11) by using the lzma data-
compression tool [20] is shown in Fig. 3(c). Therein, by
fitting the peaks using splines and extrapolating to the limit
N → ∞ yields T∞ = 2.276(4), a = O(1), and b = 0.41(5)
(χ2

red = 0.29), in decent agreement with the literature value of
the critical point Tc. As can be seen from Table II, the results
obtained using a fitting procedure by means of polynomials
of order 8 compare even better to Tc. Note that here, the
peak gets narrower with increasing sequence length N with
the peak location shifting towards a value consistent with Tc.
However, here the effect already observed for the zlib tool,
i.e., a decreasing peak height for increasing N , is even more
pronounced.

B. Comparison of algorithmic entropy estimates
to block entropies

A further issue we addressed is the question of how well
the different entropy estimates (based on the LZ string-parsing
scheme and the three data-compression utilities discussed
earlier), compare to more conventional BE estimates, obtained
using well-established procedures; see Sec. II and Refs. [5,9].

Here, in order to prepare reference values for the entropy
rate Eq. (4) using the BE estimator Eq. (1) we considered
sequences of length N = 105 and a maximally feasible block
size Mmax = 7, i.e., hBE ≡ hBE[7] = HBE[7] − HBE[6]. As
noted earlier, for iid sequences one might experience a severe
undersampling of M blocks if, at a given alphabet size, M is too
large or N is too short. In particular, a naive upper bound Mmax

might be obtained from the constraint N � M2M [28,31].
Here, using Mmax = 7 and N = 105 we checked that hBE[7]
has converged properly for all considered temperatures. Albeit
this provides only an upper bound on the true entropy rate, it
might nevertheless yield a reasonable approximation to the
actual entropy of the considered sequences.

1. Lempel-Ziv string-parsing scheme

At first we compared the LZ string-parsing based entropy
rate estimates to those obtained using the BE estimator.
Thereby we performed a comparison to the entropy rates
observed for sequences of finite length N = 65 536 and to
the asymptotic estimates h∞, resulting from extrapolation via

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 2  2.1  2.2 Tc 2.3  2.4  2.5  2.6  2.7  2.8

h
(T

)

T

hLZ,N (N=65536)

hLZ,∞
hBE (N=105)

-0.01

 0

 0.01

 0.02
Δ(T)

 2  2.1 Tc  2.4  2.6 T

N=65536

extrapolated

FIG. 4. Comparison of the LZ string-parsing scheme based
entropy rates to those obtained using a well-established BE measure.
The main plot contrasts the data curves of hLZ,N (T ) (at N = 65 536),
the asymptotic estimate hLZ,∞(T ), and the BE based estimate
hBE,N (T ) (at N = 105) as function of the system temperature T .
The inset gives an account of the difference �(T ), referred to in the
text.

Eq. (12). The results are illustrated in Fig. 4. Therein, the main
plot shows the entropy rates hLZ(T ) and hBE(T ) as functions
of the system temperature T for the different estimators. The
inset indicates the difference,

�(T ) = hLZ(T ) − hBE(T ), (15)

between the respective string-parsing based entropy rate to
the BE estimates. As evident from the figure, the absolute
difference is typically smaller than 0.01 with the largest
deviation close to the critical point Tc. While both estimates
compare similarly well to the BE estimate at low temperatures
T < Tc, the extrapolated result h∞ is slightly closer to hBE for
T > Tc.

2. Common data-compression utilities

As reported in the previous paragraph and illustrated in
Fig. 4, the LZ string-parsing based entropy rate compares
astonishingly well to those estimates obtained using the BE
estimator (even for sequences of finite length N = 65 536).
Now, by considering the AE rate estimator Eq. (11), imple-
mented using the three data-compression utilities discussed
earlier, we find that the entropy-rate estimates for binary
sequences of length N = 105 significantly overestimate the
results obtained via the BE estimator; see the data curves for
m = 1, i.e., |A| = 2 (see discussion below), in Figs. 5(a)–5(c).
As mentioned earlier and pointed out in Ref. [16], the AE rate
Eq. (11) provides only an upper bound on the true entropy
rate of the underlying process. In order to explore possible
routes that might support a more reliable entropy estimate,
we next study auxiliary sequences of length N , consisting of
iid symbols, taken from a more general alphabet of size |A|
instead of binary sequences only.

In Fig. 6, we compare the entropy rates obtained via
Eq. (11) using the three data-compression tools—zlib, bz2,
and lzma—to the value log2(|A|) expected for such iid
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FIG. 5. Comparison of the data-compression based entropy-rate
measures to those obtained using a well-established BE measure. The
main plot contrasts the data curves of the normalized entropy estimate
hnorm

alg (T ) (at N = 105), to the block-entropy based estimate hBE(T )
as function of the system temperature T and different neighborhood-
template sizes M , as discussed in the text. The inset gives an account
of the difference �(T ), referred to in the text.

sequences. As evident from the figure, the respective ratio
approaches unity for increasing alphabet size and for N

not too small. For example, for |A| = 2 and for large N >

105, the respective estimates read halg/ log2(2) ≈ 1.27 (zlib),
halg/ log2(2) ≈ 1.24 (bz2), halg/ log2(2) ≈ 1.07 (lzma). For
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FIG. 6. Comparison of the compression-based entropy-rate es-
timates for iid sequences considering the three different data-
compression tools and alphabet sizes |A| = 2,8,64,256. For increas-
ing alphabet size, the estimate of the entropy rate for a given sequence
length approach the estimate log2(|A|).

the larger alphabet size |A| = 256 the respective estimates
read halg/ log2(256) ≈ 1.0003 (zlib), halg/ log2(256) ≈ 1.004
(bz2), halg/ log2(256) ≈ 1.07 (lzma). Albeit these results are
valid only for iid sequences, we might nevertheless expect to
find a tighter upper bound on the entropy rate for symbolic
sequences with possibly long-range correlations by simply
increasing the alphabet size |A|.

This can be achieved in the following manner. Instead
of monitoring the orientation of a single spin during the
simulation of the 2D Ising FM, we monitor the orientation of
a number of, say, m spins, located within a neighbor template
of size m, as introduced in Ref. [10] (to analyze the local
entropy in a frustrated 2D spin system) and used in Ref. [12]
to systematically parse a 2D configuration of spins into 1D
sequences of length m. These can then be interpreted as a
binary representation of a particular symbol from an alphabet
of size |A| = 2m. Following this approach, we show in Fig. 6
the estimates for the entropy rates obtained by considering
neighborhood templates of size m = 1,2,4,8, i.e., alphabet
sizes |A| = 2,4,16,256, to construct symbolic sequences of
length N = 105. So as to be able to compare these values to
those obtained by means of the BE based estimates (monitoring
the orientation of a single spin), we normalize the plain AE
estimates resulting from Eq. (11) using log2(|A|). That is, we
compute

hnorm
alg [S] = halg[S]

log2(|A|) ≡ length[compress(S)]

length[compress(Siid)]
, (16)

where Siid signifies a iid sequence with the same length and
alphabet size as S. The insets illustrate the difference between
hnorm

alg and hBE for an alphabet size |A| = 256 as function of
the system temperature. As evident from the Figs. 5(a)–5(c),
the estimates for increasing alphabet size indeed approach the
BE based estimates. Thereby, the difference �(T ) seems to
be smallest at low temperatures and increases towards higher
temperatures, fluctuating around a plateau value for T > Tc.
Overall, the lzma estimator seems to perform best, exhibiting
� ≈ 0.05–0.06 for T > Tc, while the zlib based estimator
performs worst, exhibiting � ≈ 0.09–0.11 for T > Tc. For
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comparison, close to the critical point, i.e., at T = 2.267,
we find hBE = 0.461(7), hnorm

alg = 0.532(1) (zlib), hnorm
alg =

0.487(1) (bz2), hnorm
alg = 0.4884(6) (lzma).

IV. SUMMARY

In this article we considered information-theoretic observ-
ables to analyze short symbolic sequences, comprising binary
time series that represent the orientation of a single spin in
the 2D Ising FM, for different system temperatures T . The
latter were chosen from the interval T ∈ [2,2.8], enclosing the
critical point Tc ≈ 2.269 of the model. Here our focus was
set on the estimation of the entropy rate via (i) a LZ based
string-parsing scheme and (ii) common data-compression
utilities (in particular, zlib [18], bz2 [19], and lzma [20]).
These approaches require a much smaller computational effort
compared to the standard BE approach. Furthermore, they can
be considered as simple yet useful versions of “algorithmic”
entropy calculations which, in principal, seek the shortest of
all programs generating a given sequence. In comparison to a
“model-tailored” analysis in terms of methods from statistical
mechanics, the presented information-theoretic approach is
model independent. Thus, the principal observables and
analysis methodology might also be applied to other kinds
of order-disorder transitions; see, e.g., [12] for an analysis of
ground-states for the 2D random bond Ising model and the
3D random field Ising magnet. Further, a slight generalization
of the monitored random variables that yield the symbolic
“input” sequences, e.g., via neighbor templates comprising
groups of adjacent spins, might be used to also resolve spatial
structure that possibly extends over several lattice spacings;
see, e.g., [9].

In a first analysis we demonstrated that certain standard
random shuffle based variants of the excess entropy, multi-
information as well as an entropy-rate related S measure
might be used to obtain reasonable estimates for the critical
point of the underlying model. Albeit we obtained good
results for all three observables when considering the LZ
string-parsing scheme, we restricted our analysis of the
common data-compression tools to the multi-information Is

since it was easy to compute by means of black-box data
compression utilities. As evident from Table II, the estimated
critical temperatures, obtained by an extrapolation of the
multi-information peak location via Eq. (13), compare well
to the known critical temperature. As pointed out earlier,
we here obtain the interesting result that, by performing a
scaling analysis for the multi-information peak locations for
symbolic sequences of different length N (all for the finite
system size L = 128), the results seem to extrapolate towards
values T∞ (see Table II), which are in striking agreement with
the asymptotic critical point Tc. However, the results are also
in reasonable agreement with the effective critical point Tpeak,
indicated by the accentuated peak of the specific heat for the
L = 128 square lattice. Hence, within the precision reached
by our current analysis we cannot completely rule out that
the results extrapolate towards Tpeak instead of the asymptotic
critical point Tc. Note that an unrelated study (Ref. [45]), where
a data-compression tool for the recognition of magnetic phases

was designed (based on a different algorithmic procedure
and using different observables to locate the critical point),
found TC ≈ 2.29 (for L = 128) and TC ≈ 2.28 (for L = 256)
and loosely concludes that the findings extrapolate to the
known asymptotic critical point. Also note that conceptually
similar analyses, considering BE based observables carried
out on 2D configurations of spins obtained from a simulation
of the 2D Ising FM, reported in Ref. [4], conclude that
the excess entropy is peaked at a temperature Tc ≈ 2.42
in the paramagnetic phase slightly above the true critical
temperature. Similar results on the mutual information [5] for
the 2D Ising FM (and more general classical 2D spin models)
where recently presented in Ref. [11]. Therein, the authors
conclude that the mutual information reaches a maximum
in the high-temperature paramagnetic phase close to the
system parameter K = J/kBT ≈ 0.41 (for J = kB = 1 this
corresponds to T ≈ 2.44). Our new results and analyses, which
go beyond the cited literature are presented in our main result
part, Sec. III.

In a second analysis we first prepared benchmark data
curves for the asymptotic entropy rate of the symbolic se-
quences via a BE based approach. Subsequently, we compared
the results of the various AE estimators to the latter. We found
that the LZ string-parsing scheme yields entropy-rate estimates
(for finite sequence length and extrapolated to the asymptotic
limit) that compare surprisingly well to the benchmark data
curves. Further, for the data-compression based estimators
we discussed an approach that makes it possible to increase
the size of the alphabet A from which symbols are drawn
by monitoring a neighborhood template [10,12], instead of a
single spin only. This was motivated by the observation that
data-compression based estimators strongly overestimate the
entropy rates used as a benchmark. Consequently, symbolic
sequences obtained by means of the amended approach encode
temporal as well as spatial correlations between the orientation
of the spins within the chosen neighborhood template. We
found that for an increasing alphabet size, the normalized
entropy rates for the sequences approach get closer to the
benchmark estimates, supporting the intuition previously
gained by analyzing iid sequences. However, the observed
difference between both might be due to the finite dictionary
size employed during the data-compression procedures and
hence the inability of the data-compression based estimators
to take advantage of long-range correlations in the symbolic
sequence. In principle, we found that the lzma (zlib) based
entropy-rate estimator performs best (worst).
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