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A crucial part of segmented or multiple-aperture systems is control of the optical path difference between
the segments or subapertures. In order to achieve optimal performance we have to phase subapertures to within
a fraction of the wavelength, and this requires high accuracy of positioning for each subaperture. We present
simulations and hardware realization of a simulated annealing algorithm in an active optical system with sparse
segments. In order to align the optical system we applied the optimization algorithm to the image itself. The main
advantage of this method over traditional correction methods is that wave-front-sensing hardware and software
are no longer required, making the optical and mechanical system much simpler. The results of simulations and
laboratory experiments demonstrate the ability of this optimization algorithm to correct both piston and tip-tilt
errors.
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I. INTRODUCTION

The angular resolution of ground-based telescopes is
limited by their weight and size. Large mirrors are difficult to
fabricate and mount, and the mirrors can deform due to gravity.
These limitations are much more serious for space telescopes,
which are restricted by launch vehicle and in-orbit constraints.
Segmented and multiaperture systems allow us to go beyond
this limit and have the advantage of low cost as well as light
weight. If we apply the multiple-aperture approach to optical
wavelengths we have to phase subapertures to within a fraction
of the wavelength in order to achieve optimal performance, and
this requires high accuracy of positioning for alignment of each
subaperture.

The angular resolution of a telescope is given by the
Rayleigh criterion

�θ = 1.22
λ

D
, (1)

where D is the aperture diameter and λ is wavelength.
Therefore, the resolution can be improved by either decreasing
the wavelength or increasing the diameter of the aperture.
The wavelength of observation is typically fixed; therefore,
the diameter of the aperture is the only independent variable.
However, large primary mirrors are difficult to fabricate and
mount and for space telescopes there is a practical limit to
the size of a mirror that can be stowed in current launch
vehicles, for example, limited by the size of the Hubble Space
Telescope. Large telescopes, such as the Keck Observatory and
the future Thirty Meter Telescope, the European Extremely
Large Telescope, and the James Webb Space Telescope
employ arrays of hexagonal segments to create a primary
mirror. The planned 25.4-m Giant Magellan Telescope is an
extremely large ground-based sparse aperture telescope, which
consists of seven noncontiguous circular 8.4-m primary mirror
segments and an identically segmented secondary mirror [1].
The phasing system includes both edge sensors and wave-front
sensors, such as capacitive edge sensors, pyramid wave-front
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sensors, and a phasing camera [2], which employs the concept
of the dispersed Hartmann design.

In order to phase these contiguous arrays of panels, it
is possible to use mechanical means or optical means to
align their edges into a continuous array [3,4], thus easing
the problem of array phasing. However, this solution relies
heavily on the assumption that the edges of the segments are
in line with the rest of the optical surface, which requires
very accurate polishing of the segment boundaries. In the case
of sparse noncontiguous panels it is simply not possible to
tie together panel borders. Standard wave-front sensors, such
as Hartmann-Shack and curvature sensors [5–7], measure a
second or third derivative of the wave front that needs to be
integrated, but with separated panels this integration is not
possible.

The present study concentrates on an approach for aligning
multiple-aperture optical systems that is able to use only
information available in the image itself. It is iterative, using
a feedback loop to correct the phase errors. The idea behind
this method is that we can consider the problem of multiple-
aperture phasing as an optimization problem, by defining
a performance metric (sharpness function) as a function
of the control parameters. Optimization algorithms can be
applied to find the extremum (maximum or minimum) of
this sharpness function, which means that wave-front sensing
hardware and software are no longer necessary, simplifying the
optical and mechanical system. In order to align a multiple-
aperture optical system we applied a simulated annealing (SA)
algorithm [8], which is an optimization algorithm designed to
find the global minimum.

Following a review of previous optimization approaches
to adaptive optics systems in the next section, we present
our selection of performance metric (sharpness function) in
Sec. III. An introduction to salient aspects of our preferred
optimization algorithm of simulated annealing is given in
Sec. IV and details of the optical systems known as Golay
nonredundant arrays are presented, together with a comparison
of different cases, in Sec. V. Simulation results for different
cost functions are given in Sec. VI, where restoration tech-
niques are also introduced and compared. The experimental
system is introduced in Sec. VII and results for three different
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light sources are given in Sec. VIII. The experimental system
provides important proof of concept. Section IX summarizes
the work.

II. PREVIOUS OPTIMIZATION APPROACHES
FOR ADAPTIVE OPTICS SYSTEMS

Previous theoretical work and simulations [9] have shown
that the optical problem can be mapped onto a model for crystal
roughening that has provided a guide to implementation of SA.
The analogy was made between columns of atoms in solid
with a surface (known as a solid-on-solid model [10]) and
segmented mirrors of different height and will be presented in
detail in Sec. IV. The main difference is that a Hamiltonian
is to be minimized, while the telescope cost function is
to be maximized. Other stochastic algorithms, such as the
stochastic parallel gradient descent (SPGD) [11,12] and the
genetic algorithm (GA) [13], have been successfully used
as the control algorithms for adaptive optics systems. For
example, the GA has been applied by Yang et al. [14] and
SPGD by Vorontsov et al. [15]. These algorithms have some
stochastic nature, which can help the algorithm escape from
local extrema. Therefore, any of the above algorithms may be a
possible algorithm for control of sparse aperture active optical
systems. Still, most prior applications were for continuous
wave fronts, whereas here we deal with sparse ones. These
optimization algorithms also have been successfully used as
the control algorithms for coherent beam combining of fiber
arrays [16–19]. The convergence rate of the SA algorithm
was compared to other optimization algorithms by a number
of authors [20,21] and these papers show that the GA is
the slowest algorithm, while SA and SPGD have comparable
convergence rates.

III. IMAGE SHARPENING

A crucial part of the segmented or multiple-aperture
system’s design is control of the optical path difference (OPD)
between the segments or subapertures. Unfortunately, there
is no direct method of measuring the phase of propagating
light and the best we can do is to measure intensity. One way
of extracting phase information from intensity measurements
is interferometry, which requires the light beam to have
high spatial coherence as well as a reference beam. The
Hartmann-Shack and curvature sensors are preferable to
interferometry because these devices do not require coherent
light and a reference beam. Another random and iterative
method is phase diversity [22,23] that uses images captured
by an optical system, taken at zero and small defocusing, to
recover optical phase information. Another form of diversity
is the piston [24]. This technique has been used successfully
for wave-front sensing in multiple-aperture telescopes [25].
The main disadvantages of the method are the extensive
computations to obtain convergence and preference to a
narrow spectral band, which leads to 2π ambiguity. The main
advantage of our approach over phase diversity is that it does
not suffer from this ambiguity.

In our approach to alignment of the noncontiguous or
sparse aperture active optics, we consider the problem of
multiple-aperture phasing as an optimization problem, by

defining a performance metric (sharpness function) as a
function of the control parameters. This approach is based
on the work of Muller and Buffington [26], who defined
several sharpness functions that reach their maximum value
only in the absence of aberrations. The sharpness function
plays an important role in the optimization process and
different sharpness functions can produce different results,
i.e., convergence rates. It is possible to construct a sharpness
metric that will take into account the properties of a specific
image. In this case the optimization algorithm will be sensitive
to certain image features that can improve the convergence rate
of the algorithm [27]. It is also possible to create other cost
functions by adding suitable constraints or penalty terms. The
number of measurements required during this optimization
process depends upon the optimization algorithm, sharpness
function, and number of control parameters used.

We applied the following metrics assuming an object that
is a point source. The irradiance at a fixed point in the image
plane is given by Eq. (2) and the mean radius (MR) in Eq. (3),
where r is the radial coordinate in the image plane and (u,v)
are the image plane coordinates:

E1 = I (u0,v0), (2)

E2 = EMR =
∫ |r − r|I (r)dr∫

I (r)dr
, r =

∫
r I (r)dr∫

I (r)
. (3)

On extended objects we apply a sharpness function E3 defined
as

E3 =
∫

du dv[I (u,v) − I0]2, (4)

where I0 is the average irradiance and (u,v) are image plane
coordinates. Sharpness functions E1 and E3 increase as the
quality of the image is improved and reach their maximum only
in the absence of aberrations, while E2 decreases as the quality
of the image is improved and the minimum of E2 corresponds
to the smallest energy spread. Sharpness functions E1 and E3

can be changed by adding the minus sign and in this case
the metrics will reach their minimum in the optimum mirror
configuration.

IV. SIMULATED ANNEALING

Simulated annealing is an optimization algorithm designed
to find the global minimum of a specific cost function, which
is analogous to the Hamiltonian (energy) of the system, and
is based on the physical annealing process. Annealing is a
physical process whereby a solid is heated to a temperature
close to its melting point and then is allowed to cool slowly.
The aim is to remove internal stresses and nonuniformities
and form long-range correlations and as result to achieve
a structure that is as close as possible to the ground-state
equilibrium configuration. The SA algorithm is a stochastic
algorithm that generates random states. At each step, the values
of two states (the current state and newly selected state) are
compared. Cost-improving states are always accepted, while
only a fraction of nonimproving states are accepted, the latter
providing a mechanism of escape from local optima. The
probability of accepting nonimproving states depends on the
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control parameter T, which is equivalent to the temperature
of the physical system. Therefore, the key algorithmic feature
of SA is its ability to avoid being trapped in local minima
or maxima by accepting not only the states that decrease the
energy, but occasionally also some states that increase the
energy to help the algorithm climb out of a local minimum.
Application of this algorithm to general optimization problems
was first suggested and outlined by Kirkpatrick et al. [8] and
was based on the Metropolis algorithm [28], which was by
that time a powerful tool for studying the thermodynamic
equilibrium in statistical mechanical simulations.

Our first application of SA to a mosaic telescope was
described in [9], with details of the mapping presented in [10].
Specifically, the analogy between the multivalleyed spin-glass
energy landscape and the landscape of a solid-on-solid model
and hence a mosaic telescope was presented. As described
in [9], the optimization approach of [26] for a mosaic telescope
is a simulated quench, which would be appropriate only if
the energy valley were parabolic. A further discussion of the
multivalleyed nature of the configuration space with a figure
is given in [29].

We do not necessarily expect to find a totally global
minimum. In both the Lennard-Jones crystal of [29] and the
earlier telescope models we aimed to find a defect-free (but
perturbed boundary) or an optically “good enough” state,
respectively, even if it were not precisely the perfect global
minimum. Reference [29] presents an educational application
of simulated annealing to a small two-dimensional group
of atoms interacting via a simple Lennard-Jones potential
suited to a rare gas. The system was closer to the optical
applications than we realized at the time, because while an
infinite or periodically bounded crystal has only one perfectly
ordered state of minimum energy, our system was selected
for computational ease and also to mimic applications such as
droplets on surfaces. With a potential suitable for the study of,
for example, an aluminium drop on a sapphire substrate [30],
the vapor pressure is so low that atoms will not escape, but
the Lennard-Jones system has a high vapor pressure, so many
or even most atoms will disappear into the surroundings at
room temperature and pressure. In order to minimize the
technical complications of periodic boundary conditions, we
chose to use the unphysical boundary condition of reflecting
boundaries, where each atom saw ghost particles that were
mirror images of the actual bulk neighbors. This led to the
situation where a nice looking crystal with minor boundary
perturbations was achieved and hence we were satisfied with
a good enough state very close to the global energy minimum
that would have perfect boundaries. We obtained similar results
in the telescope case, where we may not have the absolute
global minimum but rather the good enough, which is also
reminiscent of actual laboratory spin-glass materials (see [31]
for a discussion of the difference between laboratory and
computational spin glasses).

Each step of the SA algorithm can be described as follows.
Given a current state i of the system with energy Ei , a new
state j is then generated by a small perturbation following
some probability distribution. Then the energy difference
�E = Ej − Ei between the previous state energy Ei and the
new state energy Ej is calculated and if the energy difference
is negative, then the new state is always accepted. If the energy

difference is positive, then depending on the temperature, there
is a chance that the state will be accepted with probability
equal to exp(−�E/T ); otherwise the perturbation is returned
to the previous state. After a sufficiently large number of
iterations the system will eventually reach the equilibrium state
at temperature T. Then T is lowered again. The temperature
is reduced between iterations according to the exponential
schedule Ti+1 = γ Ti , where γ is the cooling rate factor, which
we chose to be 0.99. In this homogeneous algorithm that we
have chosen, we stop at each temperature until thermalization
is achieved. In contrast, in an inhomogeneous algorithm the
temperature would drop at each and every step, but at a much
slower rate. The total number of steps is similar for the two
methods [32]. The system is able to climb out of local minima,
due to the randomness of state configurations and the variations
in temperature. For SA one must provide parameters such as
the initial temperature and the cooling schedule, which can
have a significant impact on the algorithm’s convergence and
speed. In the present study the probability distributions were
uniform [0,1] random numbers and we cooled very slowly.
Further technical details can be found in [32,33].

V. OPTICAL MODEL

We carried out and analyzed computer simulations in order
to gain a better understanding of the physical system and to
examine the ability of the SA algorithm to align multiple-
aperture systems. With Fourier optics [34] we can describe
the imaging process as a series of Fourier transforms. A two-
dimensional Fourier transform on the complex pupil function
simulates the effect of Fraunhofer diffraction and can provide
the point spread function (PSF) of the system. In our simulation
model the telescope pupil is considered as consisting of N
identical circular and nonoverlapping subapertures with unit
reflectivity. The complex pupil function W (x,y,λ) is given by
a sum over the subaperture functions

W (x,y,λ) =
N∑

n=1

C(x − xn,y − yn)exp[iφn(x,y,λ)], (5)

where (x,y) are the pupil plane coordinates, C is the shape of
subaperture, φn(x,y,λ) is the contribution of the phase of each
subaperture n that depends on the wavelength λ, and (xn,yn)
is the center coordinate of the nth subaperture.

We only considered piston and tip-tilt aberrations, assuming
rigid subapertures. Each array element carries a piston error
Pn represented by

Pn = exp

(
2πi

λ
2pn

)
= exp(2ikpn), (6)

where pn is the height of the nth subaperture, measured from
the same reference plane, and k = 2π/λ is the wave number.
If a subaperture moves from its ideal position, by a distance
�p, the light travels this additional distance twice, so the OPD
is 2p. The tip-tilt error is a result of rotations in the x and y

axes of each subaperture about its center. The tip-tilt error of
the nth subaperture is given by

TTn = exp{ik[αn(x − xn) + βn(y − yn)]}, (7)
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where αn and βn are the subaperture gradients in the x and
y directions, respectively. Therefore, if we take into account
only piston and tip-tilt errors, the pupil function can be written
as

W (x,y,λ)
N∑

n=1

C(x − xn,y − yn)exp(2ikpn)

× exp{ik[αn(x − xn) + βn(y − yn)]}. (8)

For a simple flat spectral density, the intensity distribution on
the detector from a point source or PSF is

PSF(u,v) =
∫ λ2

λ1

|U (u,v,λ)|2dλ, (9)

where (u,v) are angular image plane coordinates and U is the
electromagnetic field at each wavelength that can be written
as the Fourier transform of the pupil function

U (u,v,λ) = F{W (x,y,λ)}. (10)

If we define Un(u,v,λ) as the field of the nth segment, then the
Fourier transform gives [Eqs. (8) and (10)]

Un(u,v,λ) = A(u − αn,v − βn)exp[ik(2pn + xnu + ynv)].

(11)

For circular subapertures the amplitude is

A(u,v,λ) = D
J1(πD

√
u2 + v2/λ)

2
√

u2 + v2
(12)

and the combined intensity

I (u,v,λ) = |U (u,v,λ)|2 =
N∑

l=1

N∑
m=1

Ul(u,v,λ)U ∗
m(u,v,λ)

is

I (u,v,λ) =
N∑

l=1

N∑
m=1

Alm(u,v,λ)

× exp[ik(�xlmu + �ylmv + 2�plm)], (13)

where (�xlm,�ylm) are the vector separations between pairs
of subaperture centers, �plm = pl − pm, and

Alm(u,v,λ) = A(u− αl,v − βl,λ)A(u− αm,v −βm,λ). (14)

Finally we have

I (u,v,λ) =
N∑

l=1

N∑
m=l+1

2Alm(u,v,λ)

× cos[k(�xlmu + �ylmv + 2plm)] +
N∑

l=1

All.

(15)

The combined intensity I (u,v,λ) of any multiaperture array
consisting of N identical phased subapertures is given by
Eq. (16), where (�xn,�yn) are the vector separations between
pairs of subaperture centers. A sparse aperture system, consist-
ing of N subapertures, has N (N − 1)/2 baselines (subaperture
pairs) and for a nonredundant array geometry each subaperture
pair produces a fringe pattern at different spatial frequency.

FIG. 1. System configurations: Golay-3 and Golay-4 nonredun-
dant arrays.

Phased subapertures here mean that mirrors adjust such that
the reflected wave front has zero phase difference across the
whole telescope surface:

I (u,v,λ)

= [A(u,v,λ)]2

{
N + 2

N(N−1)/2∑
n=1

cos[k(�xnu + �ynv)]

}
.

(16)

In the case of incoherent illumination and an extended object,
the Fourier transform of the image intensity distribution
GI (fx,fy) is

GI (fx,fy) =
∫ λ2

λ1

GO(fx,fy,λ)OTF(fx,fy,λ)dλ, (17)

where GO(fx,fy,λ) is the object Fourier transform,
OTF(fx,fy,λ) is the optical transfer function (OTF), which is
the autocorrelation of the complex pupil function W (x,y,λ),
and (fx,fy) are the spatial frequency coordinates.

In simulations, we use two multiple-aperture configura-
tions, the Golay-3 and Golay-4 (Fig. 1), in support of the
experimental system (Sec. VIII). Golay arrays are sparse
arrays with compact nonredundant autocorrelations [35].
The potential advantage of these arrays is that they allow
maximizing the spatial frequency bandwidth by the widest
spread of subapertures that avoids zeros in the OTF. They
represent the highest possible resolution for a fixed number
of subapertures. The OTF of multiple-aperture arrays has
significantly reduced modulation and suffers from contrast
loss in the middle range spatial frequencies as shown in
Fig. 2(a), while the OTF of an ideal aberration-free filled
circular aperture is a monotonically decreasing function as
depicted in Fig. 2(b). Therefore, multiple-aperture systems will
generally produce images with significantly reduced contrast
compared to a filled aperture. In order to recover some of
this lost image quality, an appropriate filtering technique
can be applied. Therefore, image reconstruction is crucial
in multiple-aperture imaging. In Fig. 2(a) the middle blob
corresponds to all possible vectors connecting two points on
the same subaperture. The side blobs correspond to all possible
vectors that connect one point on one subaperture with another
point on the other subaperture. It can be seen that the blobs
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FIG. 2. (Color online) (a) and (b) The OTF of a nonredundant Golay-4 array and of an ideal aberration-free filled circular aperture of the
same size. (c) and (d) Corresponding cross sections of the Golay-4 and of the filled circular aperture in the fx and fy directions.

are centrally bright and dropping off toward the edge. The
corresponding cross sections of the Golay-4 and filled aperture
in the fx and fy directions are shown in Figs. 2(c) and 2(d).
Detailed information about how the form of the PSF and OTF
varies with applied aberrations can be found in [36].

VI. RESULTS OF SIMULATIONS

The simulations were divided into two parts. In the first part
SA was investigated on a point source and in the second part
the performance of SA on the extended image was studied. The
behavior of SA under different cost functions was examined
and we saw that different image cost functions can produce
different results. The image improvement was measured by the
Strehl ratio (SR), which is the actual irradiance at the PSF peak
divided by the maximum irradiance possible. The SR can be a
good estimate of the variance of the wave-front phase across
the exit pupil of the system. It is related to the wave-front error
through the extended Marechal approximation [6]

SR ≈ exp(−σ 2), (18)

where σ1 is the root mean square wave-front error in
radians.

For the point source we investigated the performance of
SA on two different cost functions, the irradiance at a fixed
point in the image plane [E1, Eq. (2)] and the mean radius [E2,
Eq. (3)]. We began the simulations by initializing the mirrors’
actuators with random values. After that, sequential changes to
the mirror actuators were applied and the corresponding image
was calculated and its quality evaluated by the cost function.
This process is repeated until the image quality is considered
acceptable. The optimization process was performed for each
cost function over 20 different initial phase realizations; the
phase was added by changing the heights of mirror actuators.
The image of the point source (PSF) was modeled within
a bandwidth of 500 nm, centered at 600 nm. We use ten
random wavelengths to simulate this bandwidth. It is possible
to remove the tilt degeneracy by looking at the irradiance at a
fixed point in the image plane, but piston degeneracy cannot
be removed and the mirrors can reach any flat state.

Simulation results for the irradiance at a fixed point in
the image plane and comparison between different sharpness
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FIG. 3. (Color online) Optimization process during 1600 iterations averaged over 20 different phase realizations for the Golay-3 array and
comparison between correction abilities of different image-quality metrics: (a) Strehl ratio, (b) average cost function E1, (c) standard deviation,
(d) comparison between correction abilities of image-quality metrics, the irradiance at a fixed point E1 in the image plane (2) versus the
MR (3).

functions [E1, Eq. (2), and MR, Eq. (3)] are shown in
Fig. 3. The system configuration used for these simulations
is Golay-3, as illustrated in Fig. 1(a). The averaged SR
for the irradiance at a fixed point in the image plane is
shown in Fig. 3(a). The corresponding averaged cost function
and standard deviation evolution curves are presented in
Figs. 3(b) and 3(c), respectively. This averaged cost function
is normalized to be 1 in the optimal case. As was explained
above, the SR can be used for comparison between correction
abilities of image-quality metrics. Shown in Fig. 3(d) are the
corresponding averaged SR evolution curves, averaged over
20 different initial realizations of the mirrors actuators, for the
irradiance at a fixed point in the image plane [E1, Eq. (2)]
and MR [Eq. (3)]. From this figure we see that different cost
functions can produce different results and the irradiance at a
fixed point in the image plane is a better metric for the point
source than the MR.

The next phase of the simulations was to examine the
performance of SA on an extended image. Figure 4 illustrates
the typical behavior of SA when the energy is calculated over
the whole image using cost function E3 [Eq. (4)]. The object

used for this study is the 1951 USAF resolution test chart,
which shown in Fig. 4(a). The chart consists of groups of
three bars. The smallest of these bars for which the imaging
system can differentiate between two bars is its resolution
limit. Images were simulated for a Golay-4 configuration,
as shown in Fig. 1(b) at a bandwidth 1 μm, centered at
1.5 μm. The initial image before optimization and after
optimization is given in Figs. 4(b) and 4(c), respectively. In
addition, the image from the aberration-free filled circular
aperture of the same size is shown in Fig. 4(d). Sparse aperture
systems have significantly reduced modulation relative to a
filled aperture, as shown in Fig. 2, and as result will produce
images with significantly reduced contrast compared to the
filled aperture. Figure 4(c) illustrates that image of resolution
target after optimization is of low contrast and blurred. In
order to recover the image quality, an appropriate filtering
technique can be applied, such as Wiener-Helstrom, Lucy-
Richardson, or blind deconvolution [37]. In Fig. 5 we show
a comparison between two different restoration techniques,
the blind deconvolution (left) and Lucy-Richardson (right)
methods.
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FIG. 4. Performance of SA on an extended image: (a) 1951 USAF resolution test chart, (b) initial image before optimization, (c) image
after SA optimization cost function E3 (4), and (d) image from ideal aberration-free filled circular aperture of the same size.

VII. EXPERIMENTAL SYSTEM

In parallel with the simulations, we constructed two systems
in the laboratory. The initial one was composed of four separate

3-in. spherical mirrors with a focal length of 18 in. [Fig. 6(a)].
Each mirror had three piezoelectric bimorph bending actuators
(Johnson Matthey 427.YYY4.50N), 120◦ apart, which allow it
to correct piston, tip, and tilt errors, and three screws for manual

FIG. 5. Comparison between blind deconvolution (left) and the Lucy-Richardson method (right), applied to the previous result of Fig. 4(c).
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FIG. 6. (Color online) Experimental systems: (a) first system and (b) second system, the Golay-4 nonredundant array.

coarse tuning, also 120◦ apart. The mirrors are arranged on a
large radius creating a diluted spherical mirror with a 13-in.
diameter and an f-number of 1.4 with 12 actuators. This system
functioned well, but suffered from vibrations and turbulence
effects owing to its size, which did not allow us to work with
wideband sources.

The second system is more compact, composed of four
separate 1-in. spherical mirrors with a 10-in. focal length,
as shown in Fig. 6(b), where each mirror is attached to three
motorized piezoelectric actuators (ThorLabs KC1-PZ/M) with
a translation length of several microns. The actuators are
capable of subwavelength steps that allow accurate positioning
of each mirror with the three degrees of freedom of a
spherical surface. The four mirrors were designed in a Golay-4
nonredundant array Fig. 1(b) with a diameter of 6.5 in. and an
f-number of 1.5 with 12 actuators. The system was coarse
tuned until the first interference fringes from a light-emitting
diode (LED) source were observed. Both systems were driven
with a 16-bit D2A (MC USB-3114), which was amplified by
a multichannel adaptive optics amplifier (WaveScope WFS-
01-DFM) allowing translation of tens of nanometers. Both
systems were also read out by a PCO pixelfly 640 × 480
black-and-white camera with a pixel size of 10 μm2. Since
we used spherical optics components, in both systems we put
our source and camera at the center of curvature of the sphere,
separated by a beam splitter. For that configuration we were
not expecting optical aberration. Because of the low f-number
of the system we had to use a magnifying objective in front of
the camera in order to expand the interference fringes spacing
beyond a pixel size.

It should be remarked that when working with a monochro-
matic source such as a laser, we cannot expect the system
to correct piston errors since the improvement of visibility
even along tens of microns suffers from 2π ambiguity and is
beneath the noise of any practical system. For a similar reason,
we cannot correct the piston error with a wideband source if
the initial error is much larger that the source coherence length.
In this case the visibility itself is governed by the noise. If we
want to phase the system when starting with a large piston error
we should start working with a narrow-band filter and broaden
it during the calibration process. We chose to use different

sources instead. Working with a wideband source, the fringes
contrast is too low to be identified by the eye and can be
observed only with the assistance of a camera and computer.

We have used three light sources. In the first system
we worked with a simple diode laser, where the beam was
broadened by a microscope objective. In the second system
we used a 617 ± 18 nm high power LED source (Thorlabs
M617F1) and a tungsten-halogen thermal white source, both
brought to the system with multimode fiber optics. The end
of the fiber, serving as a source, does not allow proper
focusing: The modes carried along the fiber change shape
during focusing through and into the fiber edge.

VIII. RESULTS OF EXPERIMENT

A. Laser source

We used a diode laser in the first system. We began this
experiment with manual coarse calibration, where images
from two of the mirrors lie at the same place, while the
third image is deflected [Fig. 7(a)]. As mentioned, we
cannot expect the system to correct piston-type errors with a
monochromatic source; therefore we will focus on the tip-tilt
errors. Figures 7(a)–7(c) were taken during the progress of the
algorithm at the points marked on the graph. In Fig. 7(b) all
images already overlapped, but the PSF is smeared like a tip-tilt
error effect. It seems as if the tip-tilt errors were corrected
because the PSF is sharp and clear by the end of the execution
(point C). During this experiment, the system suffered from
strong vibrations. In order to overcome those vibrations we
took a series of pictures at each location and averaged over the
best fifth of them. This experiment ended before converging
to the final state because of a mechanical problem, but despite
this problem, we observe an explicit improvement of the PSF.
Figures 7(d) and 7(e) are simulations of three mirrors’ intensity
PSF with and without tip-tilt errors.

B. The LED source

The images with the LED source are smeared as a
consequence of using an extended source of a wide spectrum.
Therefore, we cannot identify interference fringes by eye.
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FIG. 7. (Color online) Convergence with a laser diode in the first system with three mirrors. The graph shows the cost function value during
the operation of the algorithm. (a)–(c) Images of the system during the operation, at the times indicated by the arrows. (d) and (e) Numerical
PSF without and with tip-tilt error, respectively.

Instead we look at the Fourier transform of the image, letting
the computer identify the spatial frequencies of the fringes.
Figure 8 shows details from an execution of the algorithm
with a LED source. The starting point was when all spots

overlapped. In the beginning the temperature was very high and
almost every suggested step was accepted. This meant that the
system almost made a random walk in its phase space and the
cost function decreased. At point A the temperature reached

FIG. 8. (Color online) Simulated annealing convergence with a LED source, the Golay-4 configuration. The graph shows the cost function,
the arrows indicating the place where the images were taken. (a)–(d) Images and their logarithmic Fourier transforms during the operation of
the algorithm. As is visible in (a), one of the panels was not fully illuminated, but the system, being immune to such errors, still converged.
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FIG. 9. (Color online) Illustration of algorithm operation with a LED source after manual connection and restart. The graph shows the
cost function, with indications of the times where the images shown were taken. (a)–(f) Fourier transforms of the corresponding images. The
ellipses in (f) show regions that began to be active near the end of the process.

a working value and the cost function started to improve. By
point B the algorithm succeeded in stacking all images and
achieving an explicit interference pattern between each of the
three outer mirrors and the central one. The algorithm kept
searching, relinquishing one of the interference patterns in
order to find another pattern between two of the outer mirrors
as appears in Fig. 8(c). By the end of the process (point D) the
algorithm succeeded in finding all patterns, but with different
sharpness. As we see, we cannot distinguish by eye between
the images of Figs. 8(b)–8(d). In order to overcome the limited
translation length of the actuators we ran the system several
times in a similar way in order to attain the required coarse
manual adjustment to the mirrors.

After readjusting the mirrors we executed the system again.
In Fig. 9 we see that even for the lowest value of the cost
function (point A), the program can still recognize low-contrast
interference patterns. During the optimization process at points
B − E the algorithm found and lost interference patterns
while improving their contrast and by the end all of them
appeared with a better contrast than we could see before the
readjustment, in Fig. 8. The ellipses in Fig. 9(e) are the areas in
Fourier space that just start to be active during the last stage of
the algorithm’s operation. This might indicate that another two
mirrors started to be phased, but apparently the piston error is
larger than the translation length and the system cannot fix it
without a prior readjustment.

To summarize, the smeared picture did not allow us to
see the improvement by eye or allow us to estimate the
tip-tilt errors; however, we see that the algorithm collected all
images and stacked them together, performed a search for an
interference pattern, and then increased the fringes contrast.
The improvement of contrast indicates correction of piston
errors. We should note that initially we did not succeed in
phasing all mirrors; one of the outer mirrors was not phased
with the two others outer mirrors, due to uneven illumination,
which reduced the signal-to-noise ratio on the outer elements
[Fig. 8(a)].

C. White-light source

The images taken with a white-light source suffer from
the same smearing problem as the images taken with the LED
source. Because of the short coherence length, the interference
fringes had lower contrast and the system was much more
sensitive to noise. Therefore, in addition to showing the Fourier
transform of images during the system operation, we also
summed over several images around each step in order to
reduce the noise and reveal the interference pattern appearing
in the system. Figure 10 illustrates the optimization process
using the white source. Two more points can be concluded
from our observations from Fig. 10. The elongation of the
Fourier lobes is a direct result of using a wideband source,
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FIG. 10. (Color online) Illustration of algorithm convergence with the white source. The graph shows the cost function, the arrows indicating
the places where the photographs were taken. (a)–(d) On the left is a logarithmic Fourier transform of the images during the algorithm operation.
On the right is the average over several images. Note the spectral elongation (15).

where each wavelength creates an interference pattern slightly
stretched compared to the others [Eq. (15)]. The second point
is that the whole pattern seems to be slightly shrunk when
compared to the LED source images. This is a result of
changing magnification in the system. In Fig 10 we again
see the process of phasing up more and more mirrors and
an increase of the fringe contrast until we see the same
interference patterns as with the LED source. With the white
source we see again that even when starting in a state where the
program could not recognize fringes, the algorithm succeeded
in phasing the mirrors. The limited translation of the actuator
did not allow us to estimate how well the system was phased.
Yet the algorithm succeeded in improving the alignment while
using only a white source.

IX. CONCLUSION

To summarize, the SA algorithm achieved good results in
converging into a close to global optimum in simulations.
These results prove that SA can be successfully used for
alignment of segments of sparse aperture telescopes and allows
us to correct degrees of freedom in our system such as tilt
and piston. The behavior of SA under different cost functions
was examined and we saw that different image cost func-
tions can produce different results. Additional experiments

and simulations should be performed in order to study the
algorithm convergence abilities with regard to the different
cost functions and the observed image properties. Also,
further work is needed to compare the different optimization
algorithms. The main advantage of this method is that no
prior knowledge of the optical system is needed and the only
necessary input is the images acquired in each step. The
experimental work was focused on proving the concept and not
on improving the algorithm efficiency, but this is an important
conclusion by itself. With LED and white sources we see
that even when starting in a state where the program could
not recognize fringes, the algorithm succeeded in aligning the
telescope. Most of the experimental convergence trials lasted
6000–12 000 steps and it took from 20 min to a few hours
to converge. This was dependent on the exposure time of the
camera, which in turn depended on the source intensity. Under
turbulence, the contrast should be poorer (but not disappear,
especially in the Fourier domain), which means that this
method can be applied to ground-based segmented telescopes
without actually measuring the locations of the segments.
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