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Bilinearization of the generalized coupled nonlinear Schrödinger equation with variable coefficients
and gain and dark-bright pair soliton solutions
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We investigate coupled nonlinear Schrödinger equations (NLSEs) with variable coefficients and gain. The
coupled NLSE is a model equation for optical soliton propagation and their interaction in a multimode
fiber medium or in a fiber array. By using Hirota’s bilinear method, we obtain the bright-bright, dark-bright
combinations of a one-soliton solution (1SS) and two-soliton solutions (2SS) for an n-coupled NLSE with
variable coefficients and gain. Crucial properties of two-soliton (dark-bright pair) interactions, such as elastic
and inelastic interactions and the dynamics of soliton bound states, are studied using asymptotic analysis and
graphical analysis. We show that a bright 2-soliton, in addition to elastic interactions, also exhibits multiple
inelastic interactions. A dark 2-soliton, on the other hand, exhibits only elastic interactions. We also observe
a breatherlike structure of a bright 2-soliton, a feature that become prominent with gain and disappears as the
amplitude acquires a minimum value, and after that the solitons remain parallel. The dark 2-soliton, however,
remains parallel irrespective of the gain. The results found by us might be useful for applications in soliton
control, a fiber amplifier, all optical switching, and optical computing.
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I. INTRODUCTION

After the first real breakthrough in optical communication
in 1970s with the development of the InGaAsP semiconductor
laser and low loss optical fibers, the most significant devel-
opment was the demonstration of an optical-soliton-based
communication system. It has been demonstrated both theoret-
ically [1] as well as experimentally [2] that a suitable balance
between the dispersion and the nonlinear effect can generate a
stable pulse, which can propagate through a fiber as a soliton. In
comparison to bright solitons, dark solitons are found to be less
affected by the background noise and perturbations, and their
interactions are weaker [3]. Over the past two decades there
have been many significant contributions to the experimental
and theoretical development of dark and bright optical soliton
(see Refs. [4,5], and the references therein).

Dispersion and nonlinear effect in some cases, for example
in a mode-locked fiber laser, can be so strong that the pulse
parameters, namely the width, chirp, phase, and position, vary
significantly from their initial values. To deal with such a
problem, the concept of soliton dispersion management and
soliton control in a fiber has been recently developed, that is,
with a suitable combination of fibers exhibiting normal and
anomalous dispersion, a stretched fiber laser can be realized
that can produce a dispersion-managed pulse in the form of a
soliton [4,6].

Dispersion management of a soliton is described by the
standard nonlinear Schrödinger equation (NLSE) model with
varying dispersion and nonlinear coefficients along with a gain
or loss coefficient [7],

iqz + β
D(z)

2
qt t + γR(z)|q|2q = i�(z)q, (1)
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where q(z,t) is a slowly varying pulse envelope in a reference
frame, moving with the group velocity of the pulse, D(z) and
R(z) represent the group velocity dispersion and nonlinearity
parameters, and �(z) = ∂zR(z)D(z)−R(z)∂zD(z)

2R(z)D(z) is the gain param-
eter. In [7], the authors reported for the first time the existence
of a dispersion managed (DM) soliton for such a system. The
fundamental bright and dark soliton solutions of Eq. (1) with
β = ±1, respectively, are

q =
⎧⎨
⎩

η
√

D(z)
γR(z) sech(ηt)e0.5iη2

∫ z

0 D(ζ )dζ (bright),

η
√

D(z)
γR(z) tanh(ηt)eiη2

∫ z

0 D(ζ )dζ (dark).
(2)

The fact that a DM soliton can not only be accelerated but
also be amplified preserving its shape and elastic character
makes it more suitable for physical applications compared
to a conventional soliton. Recently, there have been many
important publications based on the model (1) [7,8] and
also based on a more recently developed nonautonomous
soliton model [9,10], where researchers showed many new
results and predicted various applications of DM solitons.
For example, in [11] the authors analyzed the control of
soliton velocity with a dispersion-decreasing fiber profile in
the framework of a variable coefficient NLSE, and through
asymptotic analysis they verified the elastic character of two
soliton interaction. In [12] the authors studied the dynamics of
nonlinear pulse propagation in an averaged DM soliton system
by using a variable coefficient NLSE, and they showed that
the Hirota bilinear method, which is a well-known method
for conventional NLSEs, is also applicable to a variable
coefficient NLSE. In [13] the authors reported the interaction
of chirped solitons based on models described in [8]. In
more recent studies, authors reported on the dynamics of a
bright soliton [14,15] and a dark soliton [16] in a generalized
nonautonomous NLSE model. It may be noted here that Eq. (1)
also serves as a model for the Bose-Einstein condensates
(BECs) but with the roles of space and time interchanged
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FIG. 1. (Color online) Evolution of a bright soliton in two components, |q1|,|q2|, in (a) and (b) and a dark soliton in one component, |q3|, in
(c) with γ = 1, σ1 = σ2 = −σ3 = 1, η = 1 − i, ζ = 4, χ = 1 + 2i, α11 = 2 + i, α12 = 1 − i and the soliton management parameters k = π

4 ,
σ = 0.005, and �(z) = 0.0025.

and with nonlinearity management connected to the concept
of the Feshbach resonance [17].

In comparison to a scalar optical soliton, a vector soliton
(with more than one mutually self-trap components), pro-
posed by Manakov [18], has many additional aspects, such
as soliton propagation as bright-bright, bright-dark soliton
pair in a multimode fiber [19,20], soliton propagation as
coupled periodic waves with opposite dispersion in a nonlinear
fiber [21], soliton interactions in two-core optical fibers [22],
soliton shape-changing and intermodal energy exchange dur-
ing inelastic soliton interaction [23] (which have potential
applications in all optical switching devices, in long-distance
communication systems using a multimode fiber medium, in
construction of soliton-controlled logic gates [24–27], and in
signal amplification by transferring energy from “pump” to
“signal” [28]).

It is now natural to ask whether a DM vector soliton
is also possible, and if so, what would be the soliton
dynamics and the nature of their interaction. In addition,
can concepts such as a bright-bright soliton, a bright-dark
mixed-type soliton, inelastic soliton interactions, and soliton
complexes described in the framework of the Manakov model
also be described with a DM vector soliton. Secondly, can
the rich mathematical insight and techniques available for
conventional vector solitons also be used with a DM vector
soliton given the fact that the fundamental equation for a DM
soliton is the same NLSE, only with the modification that
the dispersion coefficient and the nonlinearity coefficient are
dependent on propagation distance. However, in the literature,
other than a few notable papers, study in this direction is
comparatively sparse. In [29] the authors studied a special

FIG. 2. (Color online) Elastic interactions between two bright
solitons in (a) component |q1| and (b) component |q2| with γ = 1,
σ1 = σ2 = σ3 = −σ4 = 1, η1 = 2 − i, η2 = 2 + i, ζ3 = 1, ζ4 = 3,
χ3 = 1 + 3i, χ4 = 1 − 3i, and α11 = α12 = α21 = α22 = 1, and soli-
ton management parameters k = π

18 , σ = 0.005, and �(z) = 0.0025.

case of a variable coefficient coupled NLSE with harmonic
potential [self-phase-modulation (SPM) coefficient �= cross-
phase-modulation (XPM) coefficient] by using a method based
on the homogeneous balance principle and the F-expansion
technique, and they obtained the traveling wave and soliton
solution and also showed that for such a system the interaction
between two solitons with opposite transverse velocities is
elastic. In [30], the authors obtained the soliton solutions
using a transformation between the coupled NLSE and the
coupled inhomogeneous NLSE. These papers address some
important aspects, such as the existence of a soliton solution in
an inhomogeneous coupled NLSE system and the connection
between the two types of systems. However, many other
aspects, such as elastic and inelastic soliton interactions,
soliton complexes (especially in a multimode system where
both bright and dark solitons coexist), and the required
methodology remain unaddressed or have not been discussed
anywhere in the literature to the best of our knowledge. These
aspects may have interesting consequences, especially in the
research of all optical logic gates using solitons.

Being motivated by the above intriguing aspects of a
DM vector soliton, we introduce the generalized NLSE with
variable coefficients:

iqj z
+ D(z)

2
qj tt

+ γR(z)
n∑

l=1

σl|ql|2qj = i�(z)qj , (3)

where qj (j = 1, . . . ,n) are complex amplitude of the j th field
component of an inhomogeneous dispersive and nonlinear
optical system, subscript z denotes the partial derivative
with respect to normalized distance along the direction of

FIG. 3. (Color online) Elastic interactions between two dark soli-
tons, component-wise, in (a) component |q3| and (b) component
|q4| with γ = 1, σ1 = σ2 = σ3 = −σ4 = 1, η1 = 2 − i, η2 = 2 + i,
ζ3 = 1, ζ4 = 3, χ3 = 1 + 3i, χ4 = 1 − 3i, and α11 = α12 = α21 =
α22 = 1, and soliton management parameters k = π

18 , σ = 0.005, and
�(z) = 0.0025.
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FIG. 4. Contour plot of elastic soliton interactions, component-wise, in (a) |q1|, (b) |q2|, (c) |q3|, and (d) |q4| with the parameters as given
in the caption of Figs. 2 and 3.

propagation, t denotes the partial derivative with respect to
time (in a retarded frame), D(z) and R(z) denote the variable
dispersion coefficient and the variable nonlinearity coefficient,
respectively, γ stands for the strength of nonlinearity, σl

(= ±1) defines the sign of the nonlinearity, σl = −1 (+1)
stands for a defocusing (focusing) -type nonlinearity, and �(z)
is the gain coefficient and is defined in terms of D(z) and
R(z) as �(z) = ∂zR(z)D(z)−R(z)∂zD(z)

2R(z)D(z) . If D(z) and R(z) are two
linearly independent functions, then we obtain a nonvanishing
gain coefficient (� �= 0). Alternatively, if they are linearly
dependent, then the gain coefficient vanishes. If σl = +1
(for l = 1,2, . . . ,n), then nonlinearity is only of a focusing
type. If σl = +1 (for l = 1,2, . . . ,k) and σl = −1 (for l =
k + 1,k + 2, . . . ,n), then both focusing (for k components)
and defocusing [for (n − k) components] -type nonlinearity
occur at the same time.

In the framework of the model (3), we propose that a bright-
bright-type soliton solution can be obtained when the bright
solitons coexist in all modes with at least one σl = +1 (for
l = 1,2, . . . ,n). For example, for a 2-coupled system (n = 2),
a bright-bright soliton can be obtained with (σ1,σ2) having
one of the following combinations: (1,1), (1,−1), and (−1,1).
When D(z) = R(z) = 1, the first of the combinations, (1,1),
refers to the focusing-type Manakov model [18], whereas the
other two combinations, (1,−1) and (−1,1), refer to a focusing
and defocusing mixed-type model [28]. On the other hand,
a bright-dark-type soliton solution with a bright soliton in
k modes and a dark soliton in (n − k) modes can be obtained
either with σl = −1 (for all l = 1,2, . . . ,n) or with at least one
σl = +1 (for l = 1,2, . . . ,k). For example, for a 3-coupled
system (n = 3) with a bright soliton in two modes (l = 1,2)

and a dark soliton in one mode (l = 3), (σ1,σ2,σ3) may have
any of the possible combinations (−1,−1,−1), (1,−1,−1),
(1,1,−1), (1,−1,1), (1,1,1), (−1,1,−1), and (−1,1,1). In
general for an n-coupled system, a bright-bright or a bright-
dark soliton may be obtained with one of the (2n − 1) possible
combinations of σ1,σ2, . . . ,σn.

In the present paper, using Eq. (3) as the model equation,
we will obtain the bright-bright and dark-bright one-soliton
solution and two-soliton solution. We will show various
cases of elastic and inelastic two-soliton interactions and
two-soliton complexes in a system with a bright 2-soliton
in two components and a dark 2-soliton in two components
using different combinations of σl , presented above. To
obtain the soliton solution, we will use Hirota’s bilinear
method [12,31–33], which is a direct and much more effective
method compared to the inverse scattering method [34], since
it does not require knowledge of the Lax pair. Moreover, the
construction of the τ function becomes straightforward in this
method. Secondly, to study the nature of soliton interaction and
soliton complexes, we will depend on the asymptotic analysis
as well as graphical analysis. The outcome of the analysis
might be useful for realization of optical logic gates using a DM
soliton.

This paper is organized as follows. Section I is the
Introduction. In Sec. II, the variable coefficient coupled
nonlinear Schrödinger Eq. (3) is bilinearized and a one-soliton
solution as well as a two-soliton solution are obtained by using
Hirota’s bilinear method. In Sec. III, bright-dark mixed-type
two-soliton interactions and soliton complexes are studied
using asymptotic and graphical analysis. Section IV concludes
the paper.

FIG. 5. (Color online) Elastic interactions between two bright solitons [in (a) |q1| and (b) |q2|] and between two dark solitons [in (c) |q3|
and (d) |q4|]: γ = 1, σ1 = σ2 = σ3 = −σ4 = 1, η1 = 4 − 0.5i, η2 = 4.1 + 0.5i, ζ3 = 4, ζ4 = 3, χ3 = 1 + 3i, χ4 = 1 − 3i, α11 = α22 = 0,
α12 = 2, and α21 = 1, and soliton management parameters k = π

16 , σ = 0.01, and �(z) = 0.005.
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FIG. 6. Contour plot of elastic soliton interactions, component-wise, in (a) |q1|, (b) |q2|, (c) |q3|, and (d) |q4| with the parameters as given
in the caption of Fig. 5.

II. SOLITON SOLUTIONS THROUGH HIROTA’S METHOD

To write Eq. (3) in bilinear form, we make the following
bilinear transformation:

qj = g(j )(t,z)

f (t,z)
, (4)

where g(j )(t,z) is complex and f (t,z) is real. Consequently, in
the new set of variables we have the following set of bilinear
equations:(

iDz + D(z)

2
D2

t − λ

)
(g(j ) · f ) = i�(z)(g(j ) · f ),

(5)(
D(z)

2
D2

t − λ

)
(f · f ) = γR(z)

n∑
l=1

σlg
(l)g(l)∗,

where Dz and D2
t are Hirota derivatives [31] that are defined

by

Dm
z Dn

t u(z,t) · v(z,t) =
(

∂

∂z
− ∂

∂z′

)m (
∂

∂t
− ∂

∂t ′

)n

× u(z,t)v(z′,t ′)|z′ = z,t ′ = t.

To obtain the soliton solutions, g(j ) (j = 1,2, . . . ,k), g(l) (l =
k + 1, . . . n), and f are expanded with respect to an arbitrary
parameter ε as follows:

g(j ) = εg
(j )
1 + ε3g

(j )
3 + · · · ,

g(l) = g
(l)
0

(
1 + ε2g

(l)
2 + · · · ), (6)

f = 1 + ε2f2 + · · · .

A. Bright 1SS in k components and dark
1SS in (n − k) components

To obtain a one-soliton solution (1SS) of Eq. (3), the
series (6) is truncated at ε2, such that the expression for the
bright-dark 1SS becomes

qj = g
(j )
1

1 + f2
(for j = 1,2, . . . ,k),

(7)

ql = g
(l)
0

(
1 + g

(l)
2

)
1 + f2

(for l = k + 1, . . . ,n).

Let us consider

g
(j )
1 = α

(j )
1 (z)eθ1 , g

(l)
0 = χ (l)(z)eφ1 ,

(8)
g

(l)
2 = κ1e

θ1+θ∗
1 , f2 = τ1e

θ1+θ∗
1 .

Substituting Eqs. (7) and (8) into Eq. (5), we obtain the
k-bright–(n − k)-dark 1SS, where the parameters are given
by

α
(j )
1 (z) = αj1

√
D(z)

γR(z)
, χ (l)(z) = χ (l)

√
D(z)

γR(z)
,

θ1 = iη2

2

∫ z

0
D(z)dz + ηt − iλz,

φ1 = −iζ 2

2

∫ z

0
D(z)dz + iζ t − iλz,

FIG. 7. (Color online) Elastic interactions between two bright solitons [in (a) |q1| and (b) |q2|] and between two dark solitons [in (c) |q3|
and (d) |q4|] with γ = 1, σ1 = σ2 = σ3 = −σ4 = 1, η1 = 4 + i, η2 = 4.1 + i, ζ3 = 4, ζ4 = 3, χ3 = 1 + 3i, χ4 = 1 − 3i, α12, α21 = 0, α11 = 4,
and α22 = 1, and soliton management parameters k = π

18 , σ = 0.01, and �(z) = 0.005.
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FIG. 8. Contour plot of elastic soliton interactions, component-wise, in (a) |q1|, (b) |q2|, (c) |q3|, and (d) |q4| with the parameters as given
in the caption of Fig. 7.

λ = −γR(z)
n∑

l=k+1

σl|χ (l)(z)|2, κ1 = τ1
ζ + iη

ζ − iη∗ ,

τ1 = γR(z)
(∑k

l=1 σl

∣∣α1
l (z)

∣∣2)|ζ + iη|2
(η + η∗)2[D(z)|ζ + iη|2 − λ]

. (9)

The vector DM soliton parameters given in Eq. (9) show that
by choosing α

(j )
1 (z) and D(z), a vector DM soliton can be

amplified and accelerated without changing the soliton width.
This is a property similar to the scalar DM soliton only with
the modification that the amplitude is now a vector, which
is interesting but not surprising. If (j = 1) and (l = 0), the
vector DM soliton Eqs. (7)–(9) reduce to a scalar bright soliton
[Eq. (2)]. For a better understanding of the soliton dynamics,
we use MATHEMATICA software and plot the solution (7) with
j = 1,2 and l = 3. To plot the figures, we have chosen D(z)
and R(z) as two linearly independent functions, for example
D(z) = eσz cos(kz) and R(z) = cos(kz), such that the gain
coefficient �(z) (=σ ) is nonvanishing. It goes to zero only in
the limit σ = 0. Figure 1 shows the soliton dynamics of bright
and dark solitons component-wise, with the bright soliton in
two components and the dark soliton in one component. It
shows that, boosted with gain, the soliton in each component is
accelerated and retarded periodically. However, for a complete
knowledge of DM vector soliton properties, we need to study
its particlelike behavior.

FIG. 9. (Color online) Inelastic interactions between two bright
solitons in two components, |q1| in (a) and |q2| in (b), with γ = 1,
σ1 = σ2 = −σ3 = σ4 = 1, η1 = 4 + i, η2 = 4.1 + i, ζ3 = 4, ζ4 = 3,
χ3 = 1 + 3i, χ4 = 1 − 3i, α11 = α12 = α21 = 1, and α22 = 8, and
soliton management parameters k = π

18 , σ = 0.005, and �(z) =
0.0025.

B. Bright 2SS in k components and dark 2SS
in (n − k) components

A two-soliton solution of Eq. (3) is obtained with the
series (6) truncated at ε4. The expression for the bright-dark
pair soliton is then given by

qj = g
(j )
1 + g

(j )
3

1 + f2 + f4
, ql = g

(l)
0

(
1 + g

(l)
2 + g

(l)
4

)
1 + f2 + f4

(10)

(for j = 1,2, . . . ,k and l = k + 1,k + 2, . . . ,n).
Now by choosing j and l, we may obtain a class of bright-

bright and bright-dark mixed-type two-soliton solutions. For
example, (i) with the choice j = 1,2, l = 3, and by substituting
Eq. (10) in Eq. (5), we obtain a two-soliton solution, where the
bright 2-soliton is in components 1 and 2 and the dark 2-soliton
is in component 3 [see solution (A1) in the Appendix].
(ii) Again with the choice j = 1,2, l = 3,4, and substituting
Eq. (10) in Eq. (5), we obtain another example of a two-soliton
solution, where a bright 2-soliton is in components 1 and 2 and
a dark 2-soliton is in components 3 and 4 [see solution (A2) in
the Appendix]. We may note that a bright-bright 2-soliton may
be obtained from Eq. (10) with j = 1,2 . . . ,n and l = 0, and
with the choice j = 1, l = 0 the solution reduces to the bright
2-soliton solution of a scalar inhomogeneous NLSE [11].

III. SOLITON INTERACTION AND
ASYMPTOTIC ANALYSIS

In a scalar inhomogeneous NLSE model, the velocity of
the soliton changes according to the functions D(z), that
is, if D(z) is a periodic function, then bound states are

FIG. 10. (Color online) Elastic interactions between two dark
solitons in two components, |q3| in (a) and |q4| in (b), with the same
values of the parameters as given in the caption of Fig. 9.
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FIG. 11. Contour plot of component-wise inelastic bright soliton interactions in (a) |q1| and (b) |q2|, and elastic dark soliton interaction in
(c) |q3| and (d) |q4|, with the parameters as given in the captions of Figs. 9 and 10.

formed periodically, as explained in [7,8]. However, in a
multicomponent system, soliton interaction has additional
aspects.

To understand the interaction explicitly, let us analyze the
asymptotic behavior of the two-soliton solution (10). Let us
consider a 4-coupled system with a bright soliton in two modes,
with j = 1,2, and a dark soliton in two modes, with l = 3,4
[see solution (A2) in the Appendix]. Variable coefficients
D(z) and R(z) are chosen to be two linearly independent
functions, namely D(z) = eσz cos(kz) and R(z) = cos(kz).
When σ = 0, two functions become linearly dependent (that is,
zero gain). The asymptotic limit is obtained when the solitons
are sufficiently apart such that there is no interaction between
them. Thus, asymptotically as z → −∞,

q
(j )
1

∣∣− =
αj1

√
D(z)
γR(z)e

θ1

1 + τ1e
θ1+θ∗

1
,

(11)

q
(l)
1

∣∣− =
χ (l)

√
D(z)
γR(z)e

φ(l)(
1 + κ

(l)
1 eθ1+θ∗

1
)

1 + τ1e
θ1+θ∗

1

for (θ2 + θ∗
2 → −∞), and

q
(j )
2

∣∣− = lj1e
θ2

τ1 + �eθ2+θ∗
2
,

(12)

q
(l)
2

∣∣− =
χ (l)

√
D(z)
γR(z)e

φ(l)(
κ

(l)
1 + ρ(l)eθ2+θ∗

2
)

τ1 + �eθ2+θ∗
2

for (θ1 + θ∗
1 → +∞).

As z → +∞,

q
(j )
1

∣∣+ = lj2e
θ1

τ4 + �eθ1+θ∗
1
,

(13)

q
(l)
1

∣∣+ =
χ (l)

√
D(z)
γR(z)e

φ(l)(
κ

(l)
4 + ρ(l)eθ1+θ∗

1
)

τ4 + �eθ1+θ∗
1

for (θ2 + θ∗
2 → +∞), and

q
(j )
2

∣∣+ =
αj2

√
D(z)
γR(z)e

θ2

1 + τ4e
θ2+θ∗

2
,

(14)

q
(l)
2

∣∣+ =
χ (l)

√
D(z)
γR(z)e

φ(l)(
1 + κ

(l)
4 eθ2+θ2

∗)
1 + τ4eθ2+θ2

∗

for (θ1 + θ∗
1 → −∞), where (j = 1,2) and (l = 3,4).

Let A1−
j , A2−

j denote the amplitudes and let �1−
j , �2−

j

denote the phases of soliton 1 and soliton 2, respectively,
before interaction, and let A1+

j ,A2+
j denote the amplitudes

and �1+
j ,�2+

j denote the phases of the same two solitons after
interaction. Then under one of the following conditions:∣∣∣∣∣α

(1)
1 (z)

α
(2)
1 (z)

∣∣∣∣∣ =
∣∣∣∣∣α

(1)
2 (z)

α
(2)
2 (z)

∣∣∣∣∣ , (15)

α
(1)
1 (z),α(2)

2 (z) = 0; α
(1)
2 (z) �= 0; α

(2)
1 (z) �= 0; (16)

α
(1)
2 (z),α(2)

1 (z) = 0; α
(1)
1 (z) �= 0; α

(2)
2 (z) �= 0; (17)

FIG. 12. (Color online) Soliton complexes of bright 2-solitons [in (a) |q1| and (b) |q2|] and of dark 2-solitons [in (c) |q3| and (d) |q4|]
with γ = 1, σ1 = σ2 = σ3 = σ4 = 1, η1 = 4, η2 = 4.1, ζ3 = 1, ζ4 = 3, χ3 = 1 + 3i, χ4 = 1 − 2i, and α11 = α22 = α12 = α21 = 1, and soliton
management parameters k = π

18 , σ = 0.05, and �(z) = 0.025.
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FIG. 13. Contour plot of 2-soliton complexes, component-wise, in (a) |q1|, (b) |q2|, (c) |q3|, and (d) |q4| with the parameters as given in the
caption of Fig. 12.

we obtain

A1−
j = A1+

j and A2−
j = A2+

j . (18)

That is, the amplitudes of the solitons remain the same before
and after interaction, which is the case of an elastic interaction.
However, each soliton suffers a phase shift due to interaction,
that is, �1−

j �= �1+
j . Figures 2 and 3 show an example

of elastic interactions between two bright solitons moving
with different velocities in components |q1| and |q2| and
between two dark solitons in components |q3| and |q4|, with
α

(1)
1 (z), α

(2)
1 (z), α

(1)
2 (z), and α

(2)
2 (z) satisfying condition (18).

Two solitons are periodically accelerated and retarded, and
as a result they interact at a regular interval. After each
interaction, the amplitude of each soliton remains the same in
all the components but the phase changes. However, after two
successive interactions, the net phase shift of each soliton turns
out to be zero. Figure 4 shows the component-wise contour
plot of the soliton interactions, shown in Figs. 2 and 3. Brighter
lines in the contour plot indicate solitons with higher amplitude
and darker lines indicate a dip in the amplitude in a brighter
background.

A special case of elastic interaction is obtained when one
bright soliton in each component vanishes asymptotically,
however Eq. (18) is still satisfied. Figures 5–7 show an example
of such interactions between two bright and two dark solitons
with α

(1)
1 (z), α(2)

1 (z), α(1)
2 (z), and α

(2)
2 (z) satisfying either of the

conditions given in Eqs. (16) and (17). One of the solitons in
each component vanishes asymptotically, and only one soliton
figures in components |q1| and |q2|. However, a phase shift
is still observed after each interaction, but the net phase shift
of each soliton after two consecutive interactions is always

zero. Figures 6–8 show the component-wise contour plot of
the soliton dynamics shown in Figs. 5–7, respectively.

On the other hand, if none of the conditions in Eqs. (15)–
(17) is satisfied, then we obtain

A1−
j �= A1+

j and A2−
j �= A2+

j (19)

and the interaction is an inelastic interaction, and then
shape-changing phenomena and energy exchange between
the soliton components are noticed. However, dark soliton
interactions are always found to be elastic. Figure 9 shows an
example of inelastic interactions between two bright solitons
in components |q1| and |q2| moving with different velocities,
and Fig. 10 displays the elastic interactions between two dark
solitons in components |q3| and |q4| moving with different
velocities, with α

(1)
1 (z), α

(2)
1 (z), α

(1)
2 (z), and α

(2)
2 (z) satisfying

the condition (19). In component |q1|, after an interaction, one
of the solitons (say soliton “1”) gains energy at the expanse
of the energy of the other (say soliton “2”). In component
|q2|, after interaction, soliton “2” recovers the parted energy
and soliton “1” sheds energy. In addition to that during the
interaction, solitons also suffer a phase shift. The exchange
of energy and phase-shift are only temporary, and during the
subsequent interaction, again there is an exchange of energy
combined with a phase shift, but on this occasion the inelastic
interaction exactly compensated the energy transfer, and phase
shift occurred in the preceding interaction. That is, the net
intercomponent energy transfer and soliton phase shift after
two successive interactions are zero, which is different from the
inelastic interaction in a Manakov two-soliton interaction [23],
where the velocity and the amplitude of the soliton are both
constant. This is interesting, and we may describe this as if an

FIG. 14. (Color online) Soliton complexes of bright 2-solitons [in (a) |q1| and (b) |q2|] and of dark 2-soliton [in (c) |q3| and (d) |q4|], with
γ = 1, σ1 = σ2 = σ3 = σ4 = 1, η1 = 4, η2 = 4.1, ζ3 = 1, ζ4 = 3, χ3 = 1 + 3i, χ4 = 1 − 2i, α11 = 1, α22 = 2, and α12 = α21 = 0, and soliton
management parameters k = π

18 , σ = 0.05, and �(z) = 0.025.
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FIG. 15. (Color online) Soliton complexes of a bright 2-soliton [in (a) |q1| and (b) |q2|] and of dark 2-solitons [in (c) |q3| and (d) |q4|] with
γ = 1, σ1 = σ2 = σ3 = −σ4 = 1, γ = 1, η1 = 4, η2 = 4.1, ζ3 = 1, ζ4 = 3, χ3 = 1 + 3i, χ4 = 1 − 2i, α12 = 1, α21 = 2, and α11 = α22 = 0,
and soliton management parameters k = π

18 , σ = 0.05, and �(z) = 0.025.

input signal is passing through two successive “NOT” gates and
ultimately remained unchanged. Dark solitons, however, do
not exhibit inelastic interaction; only a phase shift is noticed
after each interaction. The net soliton phase shift after two
successive interactions is again zero. Figure 11 shows the
component-wise contour plot of the soliton dynamics shown
in Figs. 9 and 10.

In a bound state, two interacting solitons, moving with
the same velocity (or no relative velocity), do not move
away sufficiently apart from each other, and hence asymptotic
analysis does not apply here. Figures 12–17 display different
cases of bound 2-solitons obtained under different conditions.
Figure 12 shows the bound state of a bright 2-soliton in
components |q1| and |q2| and a dark 2-soliton in components
|q3| and |q4|, with α11, α12, α21, and α22 chosen arbitrarily.
In all the components, solitons mutually attract and repel
each other but the interval of their attraction increases with
“z” [because of gain of the medium �(z)], and at “−z” the
intensity of solitons falls to such a level so that there is
no attraction and repulsion between them and they remain
parallel to each other, whereas in [1,5,26] the normal scalar and
vector solitons mutually interact via attraction and repulsion at
regular (z) intervals. However, such interactions may have an
adverse effect on an optical communication system, as reported
in [22]. Figure 13 shows the component-wise contour plot of
the soliton complexes shown in Fig. 12.

Figures 14 and 15 show the dynamics of a bound
2-soliton when the conditions Eqs. (16) and (17) are satis-
fied, respectively (Fig. 14 with α11 = 1, α12 = 0, α21 = 0,
and α22 = 2 and Fig. 15 with α11 = 0, α12 = 1, α21 = 2, and
α22 = 0). Two bright solitons in components |q1| and |q2| and

two dark solitons in components |q3| and |q4| just remain
parallel to each other without any interaction (attraction or
repulsion) even if the solitons overlap. The gain of the medium
makes no impact on the interaction profile.

We obtained an interesting breatherlike structure of soliton
complexes when one of the following conditions is satis-
fied. (i) α11 = −α21, α12 = α22; (ii) α11 = α21, α12 = −α22;
(iii) α∗

11 = α22, α12 = −α∗
21; (iv) α∗

11 = −α22, α12 = α∗
21.

Figure 16 demonstrates a breatherlike bright 2-soliton, breath-
ing alternately in components |q1| and |q2|, and a normal dark
2-soliton in |q3| and |q4|. In component |q1|, one of the solitons
maintains a smoother profile compared to the other, whereas
in component |q2| the role is just reversed; however, solitons
breath faster with increasing z [because of gain �(z)]. The
dark 2-solitons in components |q3| and |q4| just move parallel
to each other as two overlapping solitons. Figure 17 shows the
component-wise contour plot of the soliton complexes shown
in Fig. 16.

From the above analysis, it is interesting to note that
in two-soliton complexes, even though two solitons are not
involved in any collision, the presence of one may influence
properties such as the velocity and energy distribution of the
other soliton. These may have interesting consequences in
the higher-order soliton, when a two-soliton complex interacts
with another soliton. Furthermore, the analysis also reveals that
compared to dark solitons, bright solitons are more responsive
to interactions and exhibit many interesting behaviors, as
shown in Figs. 12–17, which might be useful in soliton control
and all optical switching devices. Dark solitons, however, may
be more useful for optical communications because of their
indifferent nature in interactions.

FIG. 16. (Color online) Breatherlike bright 2-soliton [in (a) |q1| and (b) |q2|] and of normal dark 2-solitons [in (c) |q3| and in (d) |q4|] with
γ = 1, σ1 = σ2 = σ3 = −σ4 = 1, η1 = 1, η2 = 1.6, ζ3 = 1, ζ4 = 3, χ3 = 1 + i, χ4 = 1 − i, α21 = −1, and α11 = α22 = α12 = 1, and soliton
management parameters k = π

12 , σ = 0.005, and �(z) = 0.0025.
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FIG. 17. Contour plot of 2-soliton complexes, component-wise, in (a) |q1|, (b) |q2|, (c) |q3|, and (d) |q4| with the parameters as given in the
caption of Fig. 16.

IV. CONCLUSION

We have studied the inhomogeneous coupled NLSE with
variable dispersion, nonlinear, and gain coefficients through
Hirota’s bilinear method. Bright-dark soliton interactions
and the soliton complexes are studied by asymptotic and
graphical analysis. Interesting shape-changing phenomena,
associated with energy exchanges between the bright soliton
components, are noticed under specific conditions. We have
also studied the soliton complexes through asymptotic and
graphical analysis, and we found that two comoving solitons of
sufficient amplitude (width-inverse) are subjected to periodic
attraction and repulsion, and under a specialized condition
the solitons demonstrate a breatherlike structure and all such
processes become faster with gain. The analysis done in this
paper might be useful for the development of all optical
communication systems, soliton control, switching devices,
and logic gates. The analysis for a 2-soliton in two components
can be straightforwardly generalized to an N -soliton in
n components.
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APPENDIX

A bright 2-soliton is in components 1 and 2 and a dark
2-soliton is in component 3,

qj = g
(j )
1 + g

(j )
3

1 + f2 + f4
(for j = 1,2),

(A1)

q3 = g
(3)
0

(
1 + g

(3)
2 + g

(3)
4

)
1 + f2 + f4

,

where

g1
(j ) = α

(j )
1 (z)eθ1 + α

(j )
2 (z)eθ2 ,

g3
(j ) = lj1e

θ1+θ1
∗+θ2 + lj2e

θ1+θ2+θ2
∗
,

g0
(3) = χ (3)(z)eφ(3),

g2
(3) = κ

(3)
1 eθ1+θ1

∗ + κ
(3)
2 eθ2+θ1

∗ + κ
(3)
3 eθ1+θ2

∗

+ κ
(3)
4 eθ2+θ2

∗
,

g4
(3) = ρ(3)eθ1+θ1

∗+θ2+θ2
∗
,

f2 = τ1e
θ1+θ1

∗ + τ2e
θ2+θ1

∗ + τ3e
θ1+θ2

∗ + τ4e
θ2+θ2

∗
,

f4 = �eθ1+θ1
∗+θ2+θ2

∗
,

θ1 = i
η1

2

2

∫
D(z)dz + η1t − iλz,

θ2 = i
η2

2

2

∫
D(z)dz + η2t − iλz,

α
(j )
1 (z) = α1j

√
D(z)

γR(z)
, α

(j )
2 (z) = α2j

√
D(z)

γR(z)
,

χ (3)(z) = χ (3)

√
D(z)

γR(z)
, λ = −γR(z)σ3|χ (3)(z)|2,

φ(3) = −i
ζ3

2

2

∫
D(z)dz + iζ3t − iλz,

lj1 = (η1 − η2)

√
D(z)

γR(z)

[
αj1τ2

η1 + η1
∗ − αj2τ1

η2 + η1
∗

]
,

lj2 = (η1 − η2)

√
D(z)

γR(z)

[
αj1τ4

η1 + η2
∗ − αj2τ3

η2 + η2
∗

]
,

ρ = �
(ζ3 + iη1)(ζ3 + iη2)

(ζ3 − iη2
∗)(ζ3 − iη1

∗)
,

� = |η1 − η2|2
[

τ1τ4

|η1 + η2
∗|2 − τ2τ3

(η2 + η2
∗)(η1 + η1

∗)

]
,

τ1 = γR(z)
(∑2

j=1σj

∣∣α1
j (z)

∣∣2)
(ζ3 + iη1)(ζ3 − iη1

∗)

(η1 + η1
∗)2[D(z)(ζ3 + iη1)(ζ3 − iη1

∗) + γR(z)σ3|χ (3)(z)|2]
, κ

(3)
1 = τ1

ζ3 + iη1

ζ3 − iη1
∗ ,
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τ2 = γR(z)
[
σ1α

1
1(z)

∗
α2

1(z) + σ2α
1
2(z)

∗
α2

2(z)
]
(ζ3 + iη2)(ζ3 − iη1

∗)

(η2 + η1
∗)2[D(z)(ζ3 + iη2)(ζ3 − iη1

∗) + γR(z)σ3|χ (3)(z)|2]
, κ

(3)
2 = τ2

ζ3 + iη2

ζ3 − iη1
∗ ,

τ3 = γR(z)
[
σ1α

2
1(z)

∗
α1

1(z) + σ2α
2
2(z)

∗
α1

2(z)
]
(ζ3 + iη1)(ζ3 − iη2

∗)

(η1 + η2
∗)2[D(z)(ζ3 + iη1)(ζ3 − iη2

∗) + γR(z)σ3|χ (3)(z)|2]
, κ

(3)
3 = τ3

ζ3 + iη1

ζ3 − iη2
∗ ,

τ4 = γR(z)
(∑2

j=1σj

∣∣α2
j (z)

∣∣2)
(ζ3 + iη2)(ζ3 − iη2

∗)

(η2 + η2
∗)2[D(z)(ζ3 + iη2)(ζ3 − iη2

∗) + γR(z)σ3|χ (3)(z)|2]
, κ

(3)
4 = τ4

ζ3 + iη2

ζ3 − iη2
∗ .

The bright 2-soliton is in components 1 and 2, and the dark
2-soliton is in components 3 and 4,

qj = g
(j )
1 + g

(j )
3

1 + f2 + f4
(for j = 1,2),

(A2)

ql = g
(l)
0

(
1 + g

(l)
2 + g

(l)
4

)
1 + f2 + f4

(for l = 3,4),

where

g1
(j ) = α

(j )
1 (z)eθ1 + α

(j )
2 (z)eθ2 ,

g3
(j ) = lj1e

θ1+θ1
∗+θ2 + lj2e

θ1+θ2+θ2
∗
,

g0
(l) = χ (l)(z)eφ(l),

g2
(l) = κ

(l)
1 eθ1+θ1

∗ + κ
(l)
2 eθ2+θ1

∗ + κ
(l)
3 eθ1+θ2

∗

+ κ
(l)
4 eθ2+θ2

∗
,

g4
(l) = ρ(l)eθ1+θ1

∗+θ2+θ2
∗
,

f2 = τ1e
θ1+θ1

∗ + τ2e
θ2+θ1

∗ + τ3e
θ1+θ2

∗ + τ4e
θ2+θ2

∗
,

f4 = �eθ1+θ1
∗+θ2+θ2

∗
,

θ1 = i
η1

2

2

∫
D(z)dz + η1t − iλz,

θ2 = i
η2

2

2

∫
D(z)dz + η2t − iλz,

φ(l) = −i
ζl

2

2

∫
D(z)dz + iζl t − iλz,

α
(j )
1 (z) = α1j

√
D(z)

γR(z)
, α

(j )
2 (z) = α2j

√
D(z)

γR(z)
,

χ (l)(z) = χ (l)

√
D(z)

γR(z)
, λ = −γR(z)

4∑
l=3

σl|χ (l)(z)|2,

lj1 = (η1 − η2)

√
D(z)

γR(z)

[
αj1τ2

η1 + η1
∗ − αj2τ1

η2 + η1
∗

]
,

lj2 = (η1 − η2)

√
D(z)

γR(z)

[
αj1τ4

η1 + η2
∗ − αj2τ3

η2 + η2
∗

]
,

τ1 = γR(z)
(∑2

j=1σj

∣∣α1
j (z)

∣∣2)
δ1δ2

(η1 + η1
∗)2{D(z)δ1δ2 + γR(z)[σ3|χ (3)(z)|2δ2 + σ4|χ (4)(z)|2δ1]} , κ

(3)
1 = τ1

ζ3 + iη1

ζ3 − iη1
∗ , κ

(4)
1 = τ1

ζ4 + iη1

ζ4 − iη1
∗ ,

τ2 = γR(z)
[
σ1α

1
1(z)

∗
α2

1(z) + σ2α
1
2(z)

∗
α2

2(z)
]
δ3δ4

(η2 + η1
∗)2{D(z)δ3δ4 + γR(z)[σ3|χ (3)(z)|2δ4 + σ4|χ (4)(z)|2δ3]} , κ

(3)
2 = τ2

ζ3 + iη2

ζ3 − iη1
∗ , κ

(4)
2 = τ2

ζ4 + iη2

ζ4 − iη1
∗ ,

τ3 = γR(z)
[
σ1α

2
1(z)

∗
α1

1(z) + σ2α
2
2(z)

∗
α1

2(z)
]
δ5δ6

(η1 + η2
∗)2{D(z)δ5δ6 + γR(z)[σ3|χ (3)(z)|2δ6 + σ4|χ (4)(z)|2δ5]} , κ

(3)
3 = τ3

ζ3 + iη1

ζ3 − iη2
∗ , κ

(4)
3 = τ3

ζ4 + iη1

ζ4 − iη2
∗ ,

τ4 = γR(z)
(∑2

j=1σj

∣∣α2
j (z)

∣∣2)
δ7δ8

(η2 + η2
∗)2{D(z)δ7δ8 + γR(z)[σ3|χ (3)(z)|2δ8 + σ4|χ (4)(z)|2δ7]} , κ

(3)
4 = τ4

ζ3 + iη2

ζ3 − iη2
∗ , κ

(4)
4 = τ4

ζ4 + iη2

ζ4 − iη2
∗ ,

δ1 = |(ζ3 + iη1)|2, δ2 = |(ζ4 + iη1)|2, δ3 = (ζ3 + iη2)(ζ3 − iη1
∗), δ4 = (ζ4 + iη2)(ζ4 − iη1

∗),

δ5 = (ζ3 + iη1)(ζ3 − iη2
∗), δ6 = (ζ4 + iη1)(ζ4 − iη2

∗), δ7 = |(ζ3 + iη2)|2, δ8 = |(ζ4 + iη2)|2,

� = |η1 − η2|2
[

τ1τ4

|η1 + η2|2 − τ2τ3

(η2 + η2
∗)(η1 + η1

∗)

]
, ρ(3) = �

δ5(ζ3 + iη2)2

δ3(ζ3 − iη2
∗)

, ρ(4) = �
δ6(ζ4 + iη2)

δ4(ζ4 − iη2
∗)2

.
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