
PHYSICAL REVIEW E 91, 023209 (2015)

Soliton transport in tubular networks: Transmission at vertices in the shrinking limit
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Soliton transport in tubelike networks is studied by solving the nonlinear Schrödinger equation (NLSE) on
finite thickness (“fat”) graphs. The dependence of the solution and of the reflection at vertices on the graph
thickness and on the angle between its bonds is studied and related to a special case considered in our previous
work, in the limit when the thickness of the graph goes to zero. It is found that both the wave function and
reflection coefficient reproduce the regime of reflectionless vertex transmission studied in our previous work.
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I. INTRODUCTION

Particle and wave transport in branched structures is of
importance for different topics of contemporary physics such
as optics, cold atom physics, fluid dynamics, and acoustics.
For instance, such problems as light propagation in optical
fiber networks, BEC in network type traps, and acoustic waves
in discrete structures deal with wave transport in branched
systems. In most of the practically important cases such
transport is described by linear and nonlinear Schrödinger
equations (NLSE) on graphs. The latter has become the topic
of extensive study during the past few years [1–10] and is still
rapidly progressing. Such interest in the NLSE on networks
is mainly caused by possible topology-dependent tuning of
soliton transport in branched structures which is relevant to
many technologically important problems such as BEC in
network type traps [11–13], information and charge transport
in DNA double helix [14,15], light propagation in waveguide
networks [16], etc.

Soliton solutions of the NLSE on simplest graphs and
connection formulas are derived in [1], showing that for
certain relations between the nonlinearity coefficients of the
bonds soliton transmission through the graph vertex can be
reflectionless (ballistic). Dispersion relations for linear and
nonlinear Schrödinger equations on networks are discussed in
[3]. The problem of fast solitons on star graphs is treated
in [4] where estimates for the transmission and reflection
coefficients are obtained in the limit of high velocities. The
problem of soliton transmission and reflection is studied in [2]
by solving numerically the stationary NLSE on graphs. More
recent progress in the study of the NLSE on graphs can be
found in [5–8]. Scattering solutions of the stationary NLSE
on graphs are obtained in [9], and analytical solutions of the
stationary NLSE on the simplest graphs are derived in [10].

In metric graphs the bonds and vertices are one and zero
dimensional, respectively. However, in realistic systems such
as electromagnetic waveguides and tubelike optical fibers, the
wave (particle) motion may occur along both longitudinal and
transverse directions [17–19]. Therefore, it is important to
study below which (critical) thickness the transverse motions
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become negligible and the wave (particle) motion can be
treated as one dimensional. In other words, studying the regime
of motion when wave dynamics in such tubelike network can
be considered the same as that in metric graph is of importance.

In this paper we study the NLSE on so-called fat graphs,
i.e., on two-dimensional networks having finite thickness. The
geometry will be explained in more detail below, but see Fig. 1
for a sketch. In particular, we consider the same relations
between the bond nonlinearity coefficients as those in [1] and
study the shrinking of the fat graph into the metric graph
keeping such relations. Initial conditions for the NLSE on fat
graph are taken as quasi-1D solitons. By solving the NLSE on
fat graphs we find that in the shrinking limit such fat graphs
reproduce the reflectionless regime of transport studied in [1],
i.e., the vertex transmission becomes ballistic.

The linear Schrödinger equation on fat graphs was the
subject of extensive study during the past decade (see, e.g.
[20–35]). The first treatment of particle transport on fat graphs
dates back to Rudenberg and Scherr [30], who used a Green
function based heuristic approach. A pioneering study of
particle transport in fat networks comes from the paper by
Mehran [36] on particle scattering in microstrip bends and
Y− junctions, where theoretical results on reflection and
transmission are compared with experimental data. However,
the dependence of the scattering on the bond thickness and the
shrinking limit is not considered in [36].

The main problem to be solved in the treatment of the
Schrödinger equation on fat graphs is reproducing of vertex
coupling rules in the shrinking limit, i.e., when the fat graph
shrinks to the metric graph. In the case of metric graphs,
“gluing” conditions, or vertex coupling rules, are needed
to ensure self-adjointness of the Schrödinger equation. The
most important example of a vertex coupling is the Kirchhoff
condition. For fat graphs there are no such coupling rules;
they only appear in the shrinking limit, and their form depends
on specifics of the fat graph, for example on the boundary
conditions imposed at the lateral boundary. For Neumann
boundary conditions, the resulting vertex coupling is the Kirch-
hoff condition, as was shown in [20,21], where convergence of
the eigenvalue spectrum of the Schrödinger equation is studied,
and in a series of papers by Exner and Post [22–27], who study
various aspects of the Schrödinger equation with Neumann
boundary conditions (including transport, resonances, and
magnetic-field effects). The vertex couplings obtained in the
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FIG. 1. Sketch of a metric graph � and a fat graph �ε = Vε ∪
B1 ∪ B2 ∪ B3, with bonds of width wj , where wj = O(ε). Ideally, the
lengths l1,l2,l3 of the bonds are infinite, but for numerical simulations
of the NLSE we use finite lengths with Dirichlet boundary conditions
(DBC) at the ends, and homogeneous Neumann boundary conditions
(NBC) elsewhere.

shrinking limit of the Schrödinger equation on the fat graph
with Dirichlet and other boundary conditions were obtained
in [31,35]. Recent studies of the linear Schrödinger equation
on fat graphs focused on the inverse problem of finding a
suitable fat graph problem which reproduces a given coupling
rule in the shrinking limit [28]. Further references on linear
Schrodinger equation on fat graphs are [26,27,32,33,37–42],
and the reviews [29,43]. All the above results have been limited
to linear and stationary cases, and spectral results. Related
problems also have a long history in (nonlinear) PDEs, see
[44] and the references therein, where however the focus is on
dissipative systems, and on damped wave equations.

The case of the NLSE on fat graphs is much more
complicated than the linear case. Therefore, one may expect
that the treatment of the NLSE with the same success as for
the linear problem is not possible. To our knowledge, the
only work dealing with nonlinearities on fat graphs is by
Kosugi [34], who considers semilinear elliptic problems and
shows L∞ convergence of solutions towards solutions of the
metric graph problem. However, for problems such as soliton
transport, scattering, and interaction with external potentials
which are described by time-dependent evolution equations on
fat graphs, we have to rely to a large extent on numerics.

In this paper, using the numerical solution of the NLSE on
a fat graph we explore the dependence of soliton transmission
and reflection at the fat graph vertex on the bond thickness
and the angle between the bonds. It is organized as follows. In
the next section we give detailed formulations of the problems
both for fat and metric graphs. Section III presents numerical
(soliton) solutions of the NLSE on fat graphs, and analysis of
the soliton reflection at the graph vertex in the shrinking limit,
including the dependence of the reflection coefficient on the
angle between the graph bonds. Section IV gives conclusions,
while the Appendix contains some details of the numerics.

II. NLSE ON METRIC AND FAT GRAPHS

Consider the nonlinear Schrödinger equation

∂tψk = i(ψ ′′
k + βk|ψk|2ψk), k = 1,2,3, (1)

on a metric star graph � with three edges �k , and nonlinearity
coefficients βk > 0. The graph is assumed to have semi-infinite
bonds �1 = (−∞,0), �2,3 = (0,∞), but the main part of our
analysis will be numerical, for which we assume finite lengths
lk of bonds, with coordinates ξ1 ∈ (−l1,0), ξ2,3 ∈ (0,l2,3),
and homogeneous Dirichlet boundary conditions at ξ1 =
−l1,ξ2,3 = l2,3. Furthermore, we assume that the solutions
ψk = ψk(t,ξk) ∈ C obey the vertex (at ξk = 0) conditions

α1ψ1 = α2ψ2 = α3ψ3,
1

α 1
ψ ′

1 = 1

α2
ψ ′

2 + 1

α3
ψ ′

3, (2)

with parameters αk , where it is understood that ψ ′
1 (ψ ′

2,3)
denote the derivatives from the left (right). In the following
we call Eqs. (1) and (2) problem (P0).

Soliton solutions of the problem (P0) that propagate without
reflection (i.e., ballistically) were obtained analytically in [1]
for the special case when the nonlinearity coefficients satisfy
the relation

1

β1
= 1

β2
+ 1

β3
. (3)

These solutions have, after properly identifying ξ with ξk on
�k , the form

ψk(t,ξ ) =
√

2√
βk

η sech[η(ξ − ξ0 − ct)]e−i[2cξ−(c2−4η2)t]/4, (4)

with free parameters amplitude η > 0, speed c (wave number
c/2), and reference position ξ0. Figure 2 presents amplitudes,
Ak = maxx∈�k

|ψk(t,x)|, for a nonballistic and a ballistic [i.e.,
satisfying (3)] case. The vertex boundary conditions given by
(2) are one possibility to make the linear part of (1) skew
adjoint. The problem (P0) conserves the norm N and the

FIG. 2. (Color online) Amplitudes Ak = maxx∈�k
|ψk(t,x)| for

(1) on the metric graph � with bond lengths 15. Initial soliton
of the form (4) with η,c = 1,10 and ξ0 = −7.5; see also (19).
(a) Nonballistic case, α = (1,1,1), β = (1,1,1); (b) ballistic case,
α = (1,1.73,1.22), β = (1,3,1.5). In (a), the blue line is hidden by
the red line.
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Hamiltonian H given by

N=
√

N2
1 + N2

2 + N2
3 , N2

k (t)=
∫

�k

|ψk(t,x)|2dξ, (5)

H = H1 + H2 + H3,
(6)

Hk(t) =
∫

�k

|∂ξψk(t,ξ )|2 − βk

2
|ψk(t,x)|4dξ.

It is a question of normalization to set

α1 = β1 = 1, (7)

which leaves four parameters for (P0), and, of course, the
choice of the initial conditions.

Our goal is to compare exact and numerical solutions
(ψ1,ψ2,ψ3) of (P0) with the numerical solutions φ = φ(t,x)
of an associated NLSE on a fat graph presented in Fig. 1, i.e.,

∂tφ = i[�φ + β̃(x)|φ|2φ], (8)

where � = ∂2
x1

+ ∂2
x2

, x = (x1,x2) ∈ �ε, and �ε = Vε ∪
B1,ε ∪ B2,ε ∪ B3,ε consists of a “vertex region” Vε of diameter
O(ε), and O(ε) tubes Bk around �k; see Fig. 1. In the following
Eq. (8) will be called the problem (Pε). We also use the notation
φk for φ|Bk

.
It is clear that different versions of �ε are possible. Here

we choose to give the following five parameters to �ε not a
priori present in Eq. (1).

(1) The angles θ2,θ3 between the bonds B2 and B3 and the
x1 axis.

(2) The widths w1,w2,w3 of the different bonds.
In the numerical calculations we impose homogeneous

Dirichlet boundary conditions (DBC) for both, (P0) and (Pε),
at the “ends” of bonds, and for (Pε) homogeneous Neumann
boundary conditions (NBC) ∂nψ = 0 everywhere else. As our
simulations will run on time scales where the solitons will be
well separated from the ends of the bonds, we could as well
pose NBC there. Also note that strictly speaking (4) is not a
solution over the finite graph, but it is exponentially small at
the ends of the bonds.

We take β̃(x) constant on bond k and with suitable jumps
near 0. Furthermore, we set

ε := w1, w2 = δ2ε, and w3 = δ3ε (9)

and write �ε for fixed δk,θk , k = 2,3. For definiteness we
choose

B1 = �ε ∩ {x1 < 0}, B2 = �ε ∩ {x2 > w1/2},
B3 = �ε ∩ {x2 < −w1/2}, (10)

and thus Vε = �ε\(B1 ∪ B2 ∪ B3). Motivated by
1
ε

∫
�ε

1 dx → l1 + δ2l2 + δ3l3 as ε → 0, corresponding
to N on � we define the scaled norms

Nε(t) =
(

1

ε

∫
�ε

|φ(t,x)|2dx

)1/2

, (11)

Nk,ε(t) :=
(

1

ε

∫
Bk

|φ(t,x)|2dx

)1/2

. (12)

Then Nε is conserved for (8), and the Nk,ε indicate how much
“mass” is in the different bonds.

For the linear problem it is known [25] that under the scaling

w1

wk

= α2
k , i.e., δk = 1

α2
k

, and ψk = 1

αk

φk|�k
, (13)

the vertex conditions (2) appear in the limit ε → 0. Then, at
least formally, we can expect (P0) as a “limit” of (Pε) if

β̃|Bk
= wkβk = α−2

k βk. (14)

If α2 	= 1 (or α3 	= 1), then the boundary conditions (2) give
jumps from ψ1 to ψ2 (ψ3) at the vertex. This, however, is
merely a question of scaling. For instance, setting ψ̂k = αkψk

[cf. (13)], we obtain

∂t ψ̂k = i(ψ̂ ′′
k + γk|ψ̂k|2ψ̂k), ψ̂1 = ψ̂2 = ψ̂3,

(15)

ψ̂ ′
1 = 1

α2
2

ψ̂ ′
2 + 1

α2
3

ψ̂ ′
3, at x = 0,

i.e., continuity at the vertex, where γk = βkα
−2
k , as in (14). For

this boundary condition the linear part is skew adjoint only
when replacing the measure dξk by δk dξk . Therefore, we stick
to (1) and (2) as the “limit problem,” as is more custom [1,25].
Note that the angles θ1,2 of the fat graph do not appear in (P0).

We expect that for ε → 0 solutions φk of (Pε) behave like
αkψk with ψk being the solutions of (P0), i.e., are constant in
transverse direction on each bond Bk , with width wk = δkε.
Therefore, from Eqs. (12) and (13), we expect

N2
k,ε(t) = 1

ε

∫
Bk

|φk(t,x)|2dx ≈ δk

∫
�k

|φk|�k
|2dξk

≈ δk

∫
�k

|αk|2|ψk|2dξk = N2
k (t). (16)

In the numerical calculations, in addition to Nk,ε we explore the
following functions (dropping the dependence on parameters
ε, δ2,3, θ2,3, c, and η):

Ak(t) = 1

αk

max
x∈Bk

|φk(t,x)| (scaled amplitude), (17)

mk(t) = max
x∈Bk

∣∣∣∣|ψ̃k(t,x)| − 1

αk

|φk(t,x)|
∣∣∣∣ (18)

[maximal amplitude distance between (Pε) and (P0)].

Here ψ̃k is the extension of ψk to Bk , constant in transverse
direction, and for ψk we either use the explicit formula (4) if (3)
holds, or numerics for (P0) if not. Note that (18) ignores phase
differences between ψ̃k and φk , as these are less important
from the viewpoint of applications.

III. SOLITON TRANSPORT IN FAT GRAPHS

The main practically important problem in the context
of wave propagation in branched systems is energy and
information transport via solitary waves. The dependence of
the soliton dynamics on the topology of a network makes such
systems attractive from the viewpoint of tunable transport
in low-dimensional optical, thermal, and electronic devices.
Therefore, the treatment of the problems (P0) and (Pε) from
the viewpoint of vertex soliton transmission is of importance.
Our main purpose is to compare propagation of solitons in �ε

with that in �, in particular we are interested in studying the
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“lift” of the earlier results [1] from � to �ε. Transition from
two- to one-dimensional wave motion in the shrinking limit is
of special importance for this analysis.

In a typical simulation, for (P0) we use a soliton-type initial
condition given as

ψ1(0,ξ1) =
√

2η sech[η(ξ1 − x0)]e−icξ1/2, ψ2,3(0,·) ≡ 0,

(19)

where x0 and η are chosen in such a way that ψ1(0,0) is very
close to 0. Similarly, for (Pε) we choose

φ(0,x)=
{√

2η sech[η(x1−x0)]e−icx1/2, x1 < 0,

0, else,
(20)

i.e., we extend the initial conditions (19) trivially in transverse
direction. We then run both, (P0) and (Pε), until some final
time t1 such that the solitons launched by (19) and (20),
respectively, have interacted with the vertex, and have been
reflected or transmitted sufficiently far into the bonds (see the
Appendix for the numerical methods used). Our main solution
diagnostics will be the time-dependent norms Nk(t),Nk,ε(t),
the amplitudes Ak(t),Ak,ε(t), the distances mk(t), and the
reflection coefficients defined below.

For definiteness, we consider �1 as the “incoming” bond
and �2,3 as “outgoing” ones. In Fig. 3 solutions of the
problem (Pε) for equal bond widths (and β̃ ≡ 1, which implies
nonballistic behavior) are presented for the case of a “relatively
fat” graph (ε = 0.5), while Fig. 4 shows the plots of the

FIG. 3. (Color online) Numerical solution of (Pε) for δ2,3 = 1
and ε = 0.5, i.e., w = (0.5,0.5,0.5); β̃ ≡ 1, l = (15,15,15), θ =
(π/3,π/3). Initial condition (20) with x0 = −l/2 and η,c = 1,10.
(a) Geometry and mesh near the vertex. (b) Reφ(0.5,·) real part
of incoming soliton at t = 0.5; (c),(d) |φ(·,x)| during and after
transmission and reflection through and at the vertex.

FIG. 4. (Color online) Norms and amplitudes corresponding to
the solutions presented in Fig. 3. Dashed lines present respective
quantities from (P0); the blue lines are all hidden by the red lines.

corresponding norms Nk and amplitudes Ak for the simulation
for (Pε) in Fig. 3, together with the respective quantities for
(P0). At this relatively large ε = 0.5 there is a significant
difference between (Pε) and (P0).

In the following we focus on soliton reflection and transmis-
sion in the shrinking limit, ε → 0, in the ballistic case, always
assuming β̃ ≡ 1. Note that (3), (13), and (14) then imply
w1 = w2 + w3. In Figs. 5 and 6 we plot the diagnostics defined
above for different ε on an otherwise fixed graph fulfilling (3),
i.e., for the ballistic case. As ε → 0, the amplitudes and masses

FIG. 5. (Color online) Norms and amplitudes for fat and metric
graphs with 1/α2

2 + 1/α2
3 = 1 and βk = α2

k , hence β̃ = 1, and plots
of the amplitude distances mk,ε; cf. (18). Here θ1 = θ2 = π/3, δ2 =
1/3,δ3 = 2/3, and ε = 0.5; hence w = (0.5,0.33,0.17) (see Fig. 6).
In (a1) we also plot the geometry and mesh near the vertex. For the
lengths of the bonds we again have l1 = l2 = l3 = 15. In (a2),(a3) the
full lines are Nε,k and 1

αk
Aε,k , respectively, and the dashed lines are

Nk and Ak , cf. Fig. 2(b), and similarly in (b1),(b2) and (c1),(c2).
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FIG. 6. (Color online) Continuation of Fig. 5; ε = 0.2 in (b) and
ε = 0.1 in (c).

in the different bonds get close to the metric graph case, and
also the (numerical) wave functions as a whole converge to
the ones on the metric graph, with one small qualification:
while the main mismatches between (Pε) and (P0) result
from reflection and position shifts of the incoming soliton
during interaction with the vertex around t = 7.5, already for
0 < t < 5, i.e., before interaction of the soliton with the vertex,
there is a small linear growth of m1,ε, i.e., of the amplitude
mismatch in the incoming bond. This is not a property of the fat
graph itself, but related to the fact that it is difficult to accurately
resolve the speed of the soliton numerically. In other words, for
small ε, a significant part of mismatch between our (numerical)
fat graph solution φ and the (analytical) metric graph solution
(ψ1,ψ2,ψ3) from [1] is not due to the behavior at the vertex,
but due to an error in (numerical) soliton speed, which results
in a position mismatch growing in time (see the Appendix
for further discussion). However, noting the different scales in
panels (a4), (b3), and (c3) strongly indicates the convergence

of the (Pε) wave function to the (P0) wave function in L∞
(modulo phases), uniformly on bounded time intervals.

From the viewpoint of practical applications, probably the
most important question is how much of an incoming soliton
is reflected (transmitted) in the vertex region of a fat graph. To
display this in a concise way, for (Pε) we define the reflection
and transmission coefficients

rA
k,ε := Ak,ε(t1)/A1,ε(0) (amplitude reflection), (21)

rN
k,ε := Nk,ε(t1)/N1,ε(0) (mass reflection), (22)

where again we dropped the dependence on parameters
w2,3, β2,3, c, and η here, but will plot rA

k,ε,r
N
k,ε as functions

of some parameters below. Thus, e.g., rA
1,ε = 0 (and thus also

rN
1,ε = 0) means zero reflection of an incoming soliton at the

vertex, while, e.g., rN
2,ε = 1 means that all of the “mass” was

transmitted to bond two. These extreme cases of course do not
occur, but the goal is, e.g., to tune r

N,A
k,ε . The corresponding

quantities for (P0) are defined as

rA
k := Ak(t1)/A1(0), rN

k := Nk(t1)/N1(0), (23)

and the transmission formula (3) means that r
A,N
1 → 0 in the

limit of infinite bonds and of t1 → ∞.
Figure 7 presents plots of the reflections as a function of

different parameters such as bond thickness, ε, angle between
the bonds, θ , and coefficient, δ3. Of course, the ballistic regime
is an idealization, and in order to quantify the reflections when
we perturb it, in Fig. 7(a) we study the dependence of rN

k,ε

and rA
k,ε on the mismatch 1

β1
− 1

β2
− 1

β 3
. As we have chosen

βk = w2
k = 1/δk , k = 2,3, in (a) we fix δ2 = 1/3 and let δ3 vary

between 1/3 and 4/3, such that again δ3 = 2/3 corresponds
to the minimal reflection case. Clearly, the minima of rN

k,ε

FIG. 7. (Color online) (a) rN
k,ε and rA

k,ε as functions of the (rela-
tive) thickness δ3 of the third bond, with fixed ε = 0.25, θ1,2 = π/4,
δ1 = 1,δ2 = 1/3, l = (15,15,15), and (η,c) = (1,10). (b) rN

k,ε and rA
k,ε

as functions of ε, with δ3 = 2/3 (ballistic case) and the remaining
parameters fixed as in (a). (c) rA

1,ε as a function of ε and angles
θ := θ1 = θ2; remaining parameters as in (b).
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FIG. 8. (Color online) Reflection coefficients as functions of
thickness ε, with fixed θ1,2 = π/4, l = (15,15,15) for differrent
values of (a) speeds (with fixed η = 1) and (b) amplitudes (with
fixed c = 10) of soliton in the ballistic case.

and rA
k,ε are attained close to δ3 = 2/3, and these functions

are somewhat steep. Similar graphs were obtained in other
geometries (e.g., angles), and thus in applications it appears
desirable to move as close as possible to the ballistic case
by, e.g., fine-tuning the widths of the bonds. In Fig. 7(b) the
vertex reflection coefficients (both for norm and amplitude)
are plotted as functions of the graph thickness ε for the case
described by (3). The limit ε → 0 again shows a rather smooth
transition from the “scattering” to ballistic regime. Figure 7(c)
presents the dependence of rA

1,ε on the graph thickness and
the angles θ = θ1 = θ2. Even though the angles do not appear
in the ε → 0 limit (P0), at finite ε they of course play an
important role. Ballistic transport through the vertex occurs in
the shrinking limit as well as in the limit of small angles.

Besides the equal angle case θ2 = θ3, we checked a
variety of other configurations with θ2 < θ3, for various θ1,2

between π/20 and π/2. The results remain qualitatively
similar to Figs. 5–7, i.e., in the ballistic case the reflection
coefficients vanish as ε → 0, and as above the (Pε) wave
functions converge to the θ2,3 independent wave functions
(ψ1,α2ψ2,α3ψ3) of (P0). As the convergence for ε → 0 is
clearly linear, an interesting question is how to choose a first
order in ε correction of the fat graph geometry or NLSE
coefficients that minimizes r

N,A
1,ε also for finite ε > 0.

An important issue for particle and wave transport in fat
graphs is the dependence of the scattering on initial soliton
velocity and amplitude. In Fig. 8 reflection coefficients are
plotted as functions of bond thickness ε for different initial
velocities (a) and amplitudes (b). The dependence of reflection
on initial data is significant for fat graphs, with, e.g., less
reflection for slower and longer waves, as should be expected.
However, in the shrinking limit the reflections vanish in all
cases considered.

Finally, although in Figs. 5–7 we mainly focused on the
ballistic case δ2 + δ3 = 1, for other values of δ2,δ3, as for
instance δ2 = δ3 = 1 in Fig. 4, as ε → 0 we have the same kind
of convergence of (Nk,ε,

1
αk

Ak,ε,r
N,A
k,ε ,mk,ε) to (Nk,Ak,r

N,A
k ,0)

as above, and altogether of φ to (ψ1,α2ψ2,α3ψ3), i.e., of (Pε)
to (P0).

IV. CONCLUSIONS

We studied soliton transport in tubelike networks modeled
by the time-dependent NLSE on fat graphs, i.e., graphs with
finite bond thickness. We numerically solved the NLSE on fat
graphs for different values of thickness, and studied behavior
of solutions and vertex reflection coefficients in the shrinking

limit. It is found that in the shrinking limit solutions of the
NLSE on fat graphs converge to those on the associated metric
graphs, and hence the conditions (3) for reflectionless transport
also work on fat graphs with small ε. The dependence of the
vertex reflection coefficient on the bond thickness and on the
angle between the bonds of the fat graph is also studied.

At this point it is not clear in which norms we can expect or
analytically show convergence of solutions of (Pε) to solutions
of (P0), as ε → 0. First, following [34] this will be discussed
for the stationary case, including some potentials at the vertex
in order to have nontrivial stationary solutions for the fat graph
and the metric graph; cf. [5,10]. An important point in the study
of wave (particle) dynamics in fat graphs is the definition of
the fat graph thickness at which one can neglect transverse
motion and consider the system as one dimensional. The
above treatment allows us to define such a regime. However,
the transition from two- to one-dimensional motion is rather
smooth and there is no critical value of the bond thickness
at which a “jump” from the fat to the metric graph occurs.
In any case, we believe that our numerical results should be
considered as a first step in the way for the study of particle and
wave transport described by nonlinear evolution equations on
fat graphs. In addition, they can be useful for further analytical
studies of the NLSE on such graphs.
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APPENDIX: DETAILS OF THE NUMERICAL APPROACH

We discretize (P0) by second-order spatial finite dif-
ferences (FD) and denote uj = uj (t) = ψ1(t,ξ1,j ), ξj =
−l1 + jδ, vj = vj (t) = ψ2(t,ξ2,j ),wj = wj (t) = ψ3(t,ξ3,j ),
j=1, . . . ,n − 1, such that, e.g., u′′

j = 1
δ2 (uj−1 − 2uj + uj+1).

Moreover, we set

u0 = ψ1(−l1) = 0, vn = ψ2(l2) = 0,

wn = ψ3(l3) = 0, and un = ψ1(0),

v0 = ψ2(0), and w0 = ψ3(0).

The vertex conditions then are un = α2v0 = α3w0 and u′
n =

1
α2

v′
0 + 1

α3
w′

0. Using one-sided FD for u′
n,v

′
0 and w′

0 we have

u′
n = 1

δ
(un − un−1) = 1

δ

(
1

α2
(v1 − v0) + 1

α3
(w1 − w0)

)
,

⇔ un

(
1 + 1

α2
2

+ 1

α2
3

)
= un−1 + 1

α2
v1 + 1

α3
w1, (A1)

which expresses un and hence v0,w0 in terms of un−1,v1,w1.
The resulting z′′ := (u′′

i ,v
′′
i ,w

′′
i )i=1,...,n−1 can be best expressed

by a matrix vector multiplication Mz. The scheme differs from
the one in [1], where the PDE is extended up to and including
the vertex from the left, which works well to discretize the
reflectionless solutions (4) in case of (3), but it introduces an
asymmetry between the bonds not present in (P0).

To integrate the resulting ODEs ∂tz = i(Mz + β|z|2z),
where β = (βu,βv,βw) with obvious meaning, we use an
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explicit scheme with stepsize τ in t , namely

zn+1 = zn−1 + 2τ (Mzn + β|z̃n|2zn), (A2)

where ũi = 1
2 (ui−1 + ui+1) and similar for ṽi and w̃i . For τ �

δ2/4 this conserves N (t) with high accuracy, and also H (t).
To simulate (Pε) we write it as a two-component real system

for z = (u,v) where ψ = u + iv. We set up and discretize
the domain �ε using routines from pde2path [45] which
are based on the FEM from the Matlab pdetoolbox. For
efficiency it is quite useful to apply some local mesh refinement
near the vertex. We typically work with meshes of 5000–20000
triangles, requiring a maximal mesh size of ε/6 before local
refinement. Equation (8) then translates into the system of
ODEs

Mzt = Kz + F (z), (A3)

where M is the mass matrix, K = Ki� is the stiffness matrix,
and F (z) is the FEM nonlinearity. For the time integration
of (A3) we use a semilinear trapeze rule, i.e., setting zn =
z(·,tn),tn = nτ , with typically τ ≈ 10−4 to 10−3,

[
M − τ

2
K

]
zn+1 =

[
M + τ

2
K

]
zn + τF (zn). (A4)

Over relevant time scales (A4) conserves (the discretized
version of) Nε from (12) reasonably well, see, e.g.,
Figs. 4, 5(a2), and 6(b1), 6(c1), but, as already indicated,
dependent on the discretizations there are some slightly
more significant errors in the numerical soliton speed.
To quantify this, we used (A4) to propagate a soliton

FIG. 9. (Color online) Numerical error of the scheme (A4) over
a straight bond. (a) Error dependence on τ ; (b) |φ̃(1,·)|−|φ(1,·)|,
τ = 10−4.

of amplitude and speed (η,c) = (1,10) on a straight bond x1 ∈
(−30,0) from (t,x1,s) = (0,−20) to position x1,e ≈ −10 at
t = 1 for various time steps τ and mesh sizes h, and calculated
the error

e(τ,h) := max
x

||φ̃(1,x)| − |φ(1,x)||,

where φ̃ and φ denote the numerical and the exact solution,
respectively. In reasonable τ,h ranges e(τ,h) turns out to be
roughly a linear function of τ,h. See Fig. 9(a) for e(·,0.04)
as an example, while (b) shows |φ̃(1,x)| − |φ(1,x)| for τ =
10−4 and thus illustrates that (A4) propagates the soliton too
quickly.

We also tried the relaxation scheme from [46] which
conserves Nε slightly better, but becomes computationally
much slower, mainly since one can no longer LU -prefactorize
M − τ

2 K . On the other hand, the stability requirements for
explicit schemes like (A2) become prohibitive for fine meshes
near the vertex. For (A4), typical computation times for the
propagation of a solitary wave through the network are on the
order of 1 min.
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