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Nonlinear resonances and energy transfer in finite granular chains
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In the present work we test experimentally and compute numerically the stability and dynamics of harmonically
driven monoatomic granular chains composed of an increasing number of particles N (N = 1–50). In particular,
we investigate the inherent effects of dissipation and finite size on the evolution of bifurcation instabilities in the
statically compressed case. The findings of the study suggest that the nonlinear bifurcation phenomena, which
arise due to finite size, can be useful for efficient energy transfer away from the drive frequency in transmitted
waves.
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I. INTRODUCTION

Acoustic imaging, sensing, energy harvesting, and com-
munication all rely on a firm understanding of the physics
of wave propagation and energy transport. To advance these
and other applications and to create new materials with
enhanced acoustic properties, phononic crystals and acoustic
metamaterials have been extensively studied [1,2]. These are
a class of engineered or structured materials that allow control
over wave propagation properties by exploiting geometry
and periodicity of subwavelength structures. One important
consequence of periodicity in an infinite material is the
presence of frequency band gaps, which results in the complete
reflection of excitations with frequencies in the band gap. In
reality, all materials are inherently finite, dissipative, and not
completely periodic. In systems with finite size, nonlinear
instabilities become increasingly more important, even for
relatively small dynamic excitations. In this work, we study
the nonlinear dynamic phenomena that result from finite size,
while considering dissipation. The presence of these nonlinear
effects in a finite system could be very useful in the design of
phononic crystals and metamaterials for practical applications.

To further advance the development of acoustic materials,
the complex behavior of nonlinear media offers enhanced
(i.e., amplitude and frequency dependent) control over the
wave propagation. By introducing nonlinear responses in
the design of materials, it is possible to control acoustic
propagation properties, achieve greater tunability on the
acoustic response of given systems, and observe new physical
phenomena. For example, nonlinear systems have a distinct
advantage over linear systems in their ability to transfer energy
between frequencies. Common examples of energy transfer in
the frequency domain are subharmonic and superharmonic
bifurcations [3]. While these bifurcations can be destructive
and are oftentimes avoided (as suggested by von Karman
in the design of parts in an airplane [4]), they are also
frequently engineered into systems, e.g., sum-frequency and
second harmonic generation in nonlinear optics devices [5].
In acoustics, this nonlinear transfer of energy resulted in the
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development of rectification devices [6,7] and has been used
in nondestructive evaluation and imaging techniques [8].

In this work, we study the propagation of energy in finite
periodic systems that results from similar nonlinear processes,
in which energy is exchanged between different frequencies of
the system. As mentioned above, in linear periodic materials
excitations in the band gap are completely reflected. However,
the presence of nonlinearity allows energy to propagate down
the chain. This can occur through nonlinear supratransmission
in which the energy of a signal in the frequency band gap is
transmitted by means of nonlinear modes [9–11]. This is shown
in a series of papers investigating nonlinear supratransmission
in sine-Gordon and Klein-Gordon [12], Josephson ladders
[9], and Fermi-Pasta-Ulam chains [10]. Here, we explore
similar nonlinear phenomena in systems of finite size. We
accomplish this by studying granular chains of particles as
fundamental models for nonlinear periodic structures. We
study the bifurcations arising in these systems, and we
explore the transition regime bridging the response of finite
systems with theoretical predictions based on infinite periodic
assumptions.

Granular chains are a class of nonlinear periodic media
governed by a highly tunable Hertzian contact interaction
between particles [13]: this allows the system to access
near-linear, weakly nonlinear, and strongly nonlinear dynamic
behavior [14]. In the weakly nonlinear regime, the granular
chains’ dynamics are similar to Fermi-Pasta-Ulam systems,
and they have demonstrated defect energy localization [15],
discrete breathers [16,17], higher order harmonic wave gener-
ation [18], as well as chaotic dynamics [19]. In the highly
nonlinear regime, coherent traveling waves were predicted
to exist such as highly localized solitary waves [14] and
periodic traveling waves [20]. Granular chains have been
suggested for application in tunable mechanical filtering
[21] and acoustic rectification [6]. In the field of dense
granular materials, frequency-mixing processes have been
reported for elastic waves [22]. Their experimental tractability
makes granular chains excellent platforms for studying lattice
dynamics with highly dependent amplitude and frequency
behavior. In addition, the granular chain is an ideal model
to study phenomena that occur across different dynamical
regimes. When the dynamics are weakly nonlinear and smooth
the granular interaction potential can be approximated by a
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polynomial expansion. This extends the applicability of the
results in this regime to similar lattice systems with weak
nonlinearities. We demonstrate that the bifurcations presented
occur both in the smooth weakly nonlinear regime and also the
strongly nonlinear regime, in which gaps open between beads.

II. EXPERIMENTAL SETUP

Figure 1(a) shows a schematic of the experimental setup.
We assemble a one-dimensional (1D) homogeneous granular
chain made of N stainless steel spheres (316 type, grade
100, provided by McMaster-Carr). The spheres have a mea-
sured radius R = 9.525 mm, measured mass m = 28.84 g,
Youngs modulus E = 193 GPa, and Poisson ratio ν = 0.3
[23]. We excite the system with a harmonic displacement
for approximately 400 ms, enough time to reach stationary
dynamics, using a low voltage piezoelectric actuator (blocking
force 800 N, resonance frequency 40 kHz, PST 150/5/7 VS10
provided by Piezomechanik). The actuator is mounted on a
steel block fixed to the table. N spheres (with N ranging
between 1 and 50) are then aligned with the head of the actuator
and supported by polycarbonate rods. We excite with a range
of static and dynamic loading that allows access to both the
weakly and strongly nonlinear dynamical regime. We use a
noncontact laser vibrometer to measure the dynamic response
of the short granular systems (i.e., N � 2) at the last bead,
ensuring no effects of the measurement system on the results.
In longer systems, we use calibrated sensor particles, placed
in the third and last bead, similar to Job et al. [24]. The applied
static load is measured using a calibrated static force sensor.
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FIG. 1. (Color online) (a) Schematic of the experimental setup
where the chain’s length is varied between 1 and 50 beads. For
one and two bead systems there was no embedded sensor. (b)–(d)
The experimental bifurcation dynamics in a 15 bead chain statically
compressed at 8 N and driven at 7.3 kHz. (b) The linear transfer
function measured using a white noise excitation. The dotted line at
6.8 kHz indicates the band cutoff frequency measured at the half
power point of the last peak. The drive frequency (7.3 kHz) for
the force time series in (c) is therefore in the band gap. (c) The
force time series measured at the end of the chain shows how
the bifurcation results in the amplitude growth and stabilization.
(d) The power spectral density (PSD) of the red portion of the
force signal in (c) shows that energy is transferred from the drive
frequency, fd = 7.3 kHz, to two new frequencies fN. We study how
this bifurcation results from the finite size of a 1D system.

In this paper, we explore the nonlinear bifurcations that
result from a system’s finite size. We motivate the research
by showing a typical bifurcation in a chain of 15 beads in
Figs. 1(b)–1(d). Figure 1(b) shows the linear transmission band
and the frequency band cutoff as a dotted line at 6.8 kHz. When
driving the system at 7.3 kHz above a threshold amplitude,
the oscillations grow and energy is transferred from the
drive frequency to new frequencies. A stable quasiperiodic
state is reached. The new frequencies and amplitudes depend
sensitively on the drive frequency. Even though the system is
driven in the stop band, energy can still propagate through the
lower frequency modes. Because the dynamics for systems
with many degrees of freedom are quite complex, we observe
a slightly different result (i.e., the stable amplitudes and
frequencies) for each experimental run. This means that
the amplitude of the bifurcation and the newly generated
frequencies depend sensitively on the initial compression. To
understand the bifurcation structure governing this energy
transfer, we start by studying smaller systems, i.e., a single
bead oscillator and a two bead system, and then proceed to
larger chains. The goal of this study is to understand the energy
transfer of signals above the band gap to lower frequency
modes that results from bifurcations. The systems of one and
two beads illustrate the fundamental physics of the bifurcations
and explain the dynamics present in larger systems. Therefore
we build up from these two specific systems.

III. NUMERICAL SETUP

We model the dynamics of the granular chain using
N coupled second order differential equations representing
the motion of the particles. Accordingly, the ith sphere’s
displacement ui from its equilibrium position can be described
as

mü1 = Aact[δact + Bcos(2πf t) − u1]3/2
+

−A (δ0 + u1 − u2)3/2
+ − mu̇1/τd,

müi = A (δ0 + ui−1 − ui)
3/2
+

−A (δ0 + ui − ui+1)3/2
+ − mu̇i/τd,

müN = A (δ0 + uN−1 − uN )3/2
+ − F0 − mu̇N/τd, (1)

where (s)+ takes the value of s if s > 0 and the value
of 0 if s � 0 which signifies that adjacent particles are
not in contact (gaps open). Here, m is the mass of the
bead, A = E

√
2R/[3(1 − υ2)] is the constant in the Hertz

interaction law [25], with the geometric and material properties
defined above. The initial compression F0 applied by the
soft spring results in an initial static overlap δ0 defined by
Hertz’s law F0 = Aδ

3/2
0 [14]. The first bead’s equation of

motion is modified to reflect the harmonic drive and the
contact between sphere and actuator, Aact = √

2A, modeled
as a moving wall. The last bead’s equation is modified to
reflect the experimental boundary condition, a spring with
force F0. The equations of motion include a viscous on-site
dissipation, τd . There is a slight variation around this value
in the dissipation constant between experimental runs. We
attribute this to change in the effect of the contact between
the last bead and spring. To account for this, the dissipation
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coefficient is calculated by fitting for each experiment’s linear
resonance response. It is important to note that these equations
can be nondimensionalized leaving three critical parameters,
the drive frequency, the drive amplitude, and the dissipation.
All the numerical figures are plotted in nondimensional units
to enhance readability.

For the analysis, we use a single shooting continuation
algorithm and a Newton method to find periodic limit cycles
in phase space [26]. The method computationally integrates
the equations of motions and obtains a periodic solution with
its associated Floquet multipliers (FMs), λj . The FMs are
complex valued, and their magnitude can be used to study
the linear stability of the solutions. In the case of dissipative
lattices, the FMs originally lie on a circle of radius e−1/(2τfd )

[27]. Bifurcation instabilities result when the FMs collide and
one leaves the unit circle, |λi | > 1. In this case, energy of the
system is transferred from the drive frequency to nonlinear
modes of the system at new frequencies. The argument of the
complex FM gives us the new frequencies, fN = Arg(λi )

2π
fd .

IV. RESULTS AND DISCUSSION

At small drive amplitudes, B/δact � 1, the system’s non-
linearity can be ignored and the response is nearly harmonic.
However, as the drive amplitude increases, the system becomes
nonlinear. The nonlinearity of a system can be described
as either softening or stiffening depending on whether the
maximum frequency response moves down or up as the drive
amplitude is increased. Figure 2(a) shows the experimental
nonlinear softening of the mode of a single bead. As the
amplitude of the drive is increased the response becomes
asymmetric, bending to lower frequencies (i.e., a soften-
ing nonlinear potential), deviating from the classic linear
Lorentzian response. The amplitude dependent mode profile
that we observe here is a property of nonlinear oscillators
commonly studied in the driven damped Duffing oscillator
[3]. Figure 2(b) shows experimental data demonstrating a
similar nonlinear softening response for each of the modes
of a two bead system. This mode softening is important
to the dynamics at higher amplitudes after the bifurcation
occurs. It illustrates the nonlinear behavior of the system
and explains asymmetry seen later in Fig. 5. The numerical
counterparts to Figs. 2(a) and 2(b) are shown in Figs. 2(c) and
2(d). The nonlinear softening of the system is qualitatively
similar in these plots. We notice a significant difference in the
quantitative amplitudes observed for the nonlinear softening.
We believe the quantitative difference in the measured and
computed values could be due to one or a combination of
many effects. Some of these could include the variation of
the surface roughness of the sphere, frictional nonlinearities
that become important at low amplitudes, or inaccuracy in
measurement and excitation techniques at these extremely low
amplitudes. A further investigation of this deviation from the
Hertzian contact law at low drive amplitudes would be an
interesting future study. However, the key result for our study
is the observation that the dynamics are nonlinear, and that
there is a softening of the resonance, i.e., the maximum of
the frequency moves to lower values as the drive amplitude is
increased. We discuss later how this softening could account
for the asymmetry bifurcations in frequency.
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FIG. 2. (Color online) Color maps of the experimentally mea-
sured rms velocity (mm/s) of single bead (a) and two bead (b)
systems as a function of the drive amplitude and frequency. The
velocity is measured in the second bead for the two bead system. The
dotted line in (a), which starts at 4.05 kHz for low amplitudes and
decreases in frequency at higher amplitudes, indicates the maximum
of the resonance at each drive amplitude. This clearly displays
the mode softening to lower frequencies as the amplitude of the
excitation increases. The insets show cross sections at selected drive
amplitudes. The horizontal axis of the insets is the same frequency
axes as each corresponding panel. The asymmetry and the mode
softening is a result of the nonlinear Hertzian contact interaction.
The measurements are taken using a lock-in amplifier to reduce
noise. In addition, the low amplitude response is used to estimate the
dissipation coefficients used in the one and two bead computational
results. Panels (c) and (d) are the computational counterparts to (a)
and (b). The system depends sensitively on the initial compression
F0 and the diagrams are fit to have the same linear (low amplitude)
frequency as the experimental plots. This corresponds to a 8.67 N
static compression for the single bead and 4.36 N for two beads.

We are interested in changes of the wave dynamics before
and after the bifurcation. Figure 3 shows an experimentally
measured bifurcation in a single bead system when the particle
is driven at approximately twice the natural frequency. Initially,
a stable harmonic solution develops [Fig. 3(a)], but as the
drive amplitude is increased, the velocity sharply increases
and the dynamic response changes [Fig. 3(b)]. The data in
Fig. 3(c) show a sudden jump in the dynamic response at a
critical drive amplitude, Bcrit = 0.07 μm. The power spectral
density (PSD) [see Figs. 3(d) and 3(g)] shows that this solution
went from being composed of the single drive frequency
to being dominated by a subharmonic, fd/2. Figure 3(e)
shows the Poincaré section change from a single grouping
of points to two distinct groups, indicative of a subharmonic
bifurcation [28]. After the bifurcation, approximately 20 times
more energy is transferred to the bead, indicating much more
efficient coupling between the particle chain and the actuator.
In addition, the increase in the oscillation amplitude of the
bead, as a result of the bifurcation, depends on the drive
frequency. Figure 3(f) shows the computationally calculated
hysteresis diagram that corresponds to the experiment. The
disagreement observed in the predicted and measured velocity
amplitudes can be explained by uncertainty in measurements
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FIG. 3. (Color online) The experimental nonlinear resonance and
bifurcation behavior of a single bead driven at 6.85 kHz. (a),(b) The
velocity of the bead (a) before and (b) after the bifurcation. (c) The
maximum velocity measured at each drive amplitude. The two crosses
indicate the drive amplitudes for the time series in (a), red lower left
cross, and (b) right lower left cross. (d) The corresponding PSD of
two time series, showing the dominant subharmonic frequency at
f d/2 for the excitation above the bifurcation amplitude. The dotted
lines indicate the drive frequency (right) and new subharmonic (left)
frequency. (e) the Poincaré section of the dynamics of the bead before
(red, central points) and after (blue, side points) the bifurcation. The
splitting of the section from one point to two points is characteristic
of a period doubling subharmonic bifurcation. Panels (f) and (g) are
the computational plots that correspond to the experimental panels
(c) and (d). (g) The PSD clearly shows that a subharmonic bifurcation
occurs after the critical amplitude is crossed.

of the static compression applied to the chain, even though all
qualitative features of the bifurcation are maintained.

In longer chains, there is more than one natural frequency,
and therefore the system can undergo bifurcations resulting
in both subharmonic or quasiperiodic dynamics. When the
drive frequency is a multiple of a linear mode’s frequency,
a subharmonic bifurcation emerges, and the dynamics are
qualitatively similar to the results shown for a single bead.
However, when the drive frequency is near the sum of the
system’s two natural frequencies, quasiperiodic dynamics may
arise. Figure 4 shows the response of a two bead system that
goes from a sinusoidal response [Fig. 4(a)] to a solution that
is quasiperiodic [Fig. 4(b)]. Quasiperiodic dynamics occur
because the ratios between the drive frequency fd and new fre-
quencies fN1 and fN2 are not necessarily rational. Figure 4(c)
shows the PSDs of the signals, and illustrates the transfer of
energy to the two lower modes. Figure 4(d) shows the Poincaré
section of the second bead. It contains points forming a closed
curve coming from the intersection of the torus flow in phase
space (characteristic of quasiperiodic dynamics) with a plane.
In summary, the system goes through a bifurcation in which the
dynamics drastically change. There is an order of magnitude
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FIG. 4. (Color online) Experimental nonlinear resonance and
quasiperiodic bifurcation behavior in a system of two beads driven
at 6.94 kHz. (a),(b) The velocity of the second bead (a) before and
(b) after the bifurcation. (c) The corresponding PSD of two time
series, showing the new frequencies fN1 and fN2 supported by the
nonlinearity of the system, where fN1 + fN2 = fd . The PSD of
the time series clearly shows that energy is transferred from the drive
frequency fd to the two new frequencies. (d) Poincaré sections of the
dynamics of the second bead before (red, central point) and after (blue,
surrounding points) the bifurcation. This Poincaré shows the classic
intersection of a torus and a plane for quasiperiodic dynamics. The
finite number of points is due to the finite length of the signal. (e) The
PSD of the computational time series taken at the drive amplitudes
indicated in (f) and using the same parameters as measured during the
experimental runs. The lower left cross indicates the drive amplitude
chosen before the bifurcation, and the upper right cross is at a higher
amplitude after the bifurcation.

change in the amplitude, the total energy transferred to the
system, and fraction of energy localized around the drive
frequency. To confirm the quasiperiodic behavior, we also
performed a computational integration using the same pa-
rameters as in the experiment. Figure 4(e) shows the power
spectral density before and after the critical amplitude of
the bifurcation. The values are shown in the hysteresis
plot of Fig. 4(f). The dynamics agree quite well, and the
qualitative disagreements can be attributed to uncertainty in the
static compression and reconfigurations of the system coming
from misalignment of the spheres during each experimental
run.

The analysis for one and two bead systems illustrates the
two fundamental types of bifurcations that occur in granular
chains. Figure 5 shows how the bifurcations depend on the
different parameters of the system, i.e., drive amplitude and
drive frequency. We observed that these bifurcations occur in
certain areas of the parameter space and call these regions
tongues, due to their similarity with parametric tongues.
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FIG. 5. (Color online) The experimentally measured bifurcation
tongues observed in (a) one bead and (b) two bead systems. The
color scale corresponds to maximum velocity amplitude (dB), and it
demonstrates that as the mode moves further from its linear frequency,
the change in dynamics becomes more drastic. The numerically
calculated tongue edge is plotted directly on top of the experimental
data as closely spaced solid black dots. Panels (c) and (d) show
the computational results for one and two bead chains, respectively
(the units are nondimensional). The solid points indicate where a
bifurcation has occurred (i.e., a FM has left the unit circle). Red
points (at the higher frequency portions for each tongue) indicate
gaps have opened between beads. The dashed rectangles indicate
the parameter range for the experimental measurements in (a) and
(b). The vertical dotted lines correspond to the Floquet diagrams in
(e)–(g). We show the unit circle to guide the eye.

This region indicates that, where a sharp transition in the
dynamics occurs, the stable solution goes from sinusoidal to
either subharmonic or quasiperiodic. The tongues are centered
around the multiples and sums of the linear mode frequencies
in each system. Numerically we can determine where to sweep
these frequencies by solving the eigenvalue problem associated
with the equations of motion (1), and experimentally we
measure the linear mode frequencies using a broad range
frequency sweep. We start by showing the experimental and
computational bifurcation tongues of a one and two bead
system and then proceed to larger systems. The edge of the
tongue shows the edge of a stable harmonic solution. Above the
critical drive amplitude the system exhibits either subharmonic
or quasiperiodic dynamics.

Figure 5(a) shows the experimentally observed nonlinear
tongue for a single bead oscillator. Here, the entire tongue is
characterized as subharmonic. The minimum of this region
corresponds to twice the frequency of the linear mode.
The disagreement between the minimum of the tongue in
Fig. 5(a) (7.4 kHz) and twice the linear frequency, 4.0 kHz
shown in Fig. 2(a), is due to different static compressions

between runs. The linear frequency measurements were taken
at approximately 8 N compression, while the bifurcation is
measured at approximately 4 N. On top of the experimental
results, we also plot the computationally computed tongue
edge as a black dotted line. The tongue is asymmetric due
to the modes softening to lower frequencies (Fig. 2). As
amplitudes of the oscillations increase, the natural frequencies
decrease. This causes the tongue in Fig. 5(a) to bend towards
lower frequencies. In addition, the color scale shows that
the bifurcation becomes more drastic as the mode bends
further from its linear natural frequency. Figure 5(c) shows
the computationally calculated bifurcation tongue for a single
bead (with the experimentally investigated region indicated
with the dashed blue rectangle). The quantity f0 used to
nondimensionalize the frequency is the linear mode frequency.
Here it is clear the minimum is at 2, or twice this frequency.
This is because the drive frequency determines how far apart
the nonlinear modes must move in frequency. If the drive
frequency is chosen as the minimum in the tounge, it is already
a multiple of the linear mode frequency. In the context of the
Floquet multipliers, the multipliers start on top of each other.
If a frequency slightly lower or above the minimum is chosen,
the nonlinear modes decrease or increase in frequency to be
a multiple of the drive frequency. The Floquet multipliers
must first move before colliding. Therefore the bifurcation
occurs most easily at a multiple of the linear mode frequency,
leading to a minimum at this point. The solid points in
Figs. 5(a)–5(d) are computed using a parameter continuation,
and they correspond to the pairs of the driving frequency and
amplitude at which FMs leave the unit circle, an indicator of
the existence of bifurcations. In these plots, the asymmetry
becomes clear. Points in red indicate that gaps are opening,
which explains why the shape of the tongue changes; the
dynamics at this point go from weakly to strongly nonlinear.
The units are shown in nondimensional units to stress that the
onset of this nonlinear bifurcation may occur at seemingly
small drive amplitudes, at a fraction of the static overlap of the
chain.

For two beads [Figs. 5(b) and 5(d)] we see two tongues: one
at the sum of the two mode frequencies, 7 kHz, and one at twice
the higher mode’s frequency, 9.8 kHz. The tongue associated
with the sum is characterized by quasiperiodic bifurcation
dynamics, whereas the tongue at twice the mode’s frequency is
subharmonic. A single slice from the quasiperiodic tongue was
previously shown in Fig. 4, where the frequency is fixed and
the drive amplitude is quasistatically increased. It is important
to note that our computations predict that high amplitude
subharmonic and quasiperiodic stable solutions exist despite
gaps opening, i.e., gaps openings do not directly lead to chaotic
dynamics. In this case, the dynamics are nonsmooth yet still
periodic. While this is somewhat surprising, the possibility
of such dynamics is supported by the nonsmooth periodic
solutions that have previously been observed in granular chains
at the uncompressed limit [20,29]. Figures 5(e)–5(g) show
a representative of the FMs calculated for each tongue. If
the FMs leave the unit circle on the negative real axis, it
indicates a subharmonic bifurcation, and otherwise quasiperi-
odic dynamics. These simulations confirm the subharmonic
and quasiperiodic dynamics observed experimentally for each
tongue in Figs. 3 and 4 in which we increase the amplitude
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FIG. 6. (Color online) The interplay between finite size and
dissipation. The points indicate a critical bifurcation amplitude,
calculated using numeric. In (a) we hold the dissipation of the system
constant (Q = 27) and vary the size of the system. The individual
tongues begin to overlap and the bifurcations begin to occur at higher
amplitudes. In (b) the finite size (N = 15) is held constant and the
dissipation is varied. For lower dissipations the bifurcation tongues
start at lower amplitude. All units shown are nondimensional.

entering the nonlinear tongue region. The critical driving
amplitude for bifurcation shows a good agreement in the
experimental and computational results for one and two beads.

The results from one and two beads help us understand the
dynamics that can take place in larger systems. Any linear
combination or multiple of the mode frequencies can result
in a bifurcation tongue, and for slightly larger systems the
number of combinations quickly grows and so does the number
of tongues. In lattices of longer length, the attenuation band
that forms prevents the propagation of signals above a certain
frequency. However, the previous study of a one and two
bead system shows that energy can be transferred through
lower frequencies. When this happens in longer chains, the
attenuation band will no longer reflect all of the incident signal,
but instead energy will be transferred to lower frequencies that
can still propagate.

In Fig. 6, we study the effect of the size of the system and the
losses of the system on the existence and the structure of these
bifurcation tongues. In particular, Fig. 6(a) shows the effect of
increasing the size of the system for a given amount of losses
that correspond to the nondimensional quality factor (Q = 27)
of the single bead system. For five beads there are already many
more tongues, but they can still be distinguished. For 15 beads
the tongues can no longer be distinguished and the amplitude,
at which the bifurcations happen, is larger. This explains the
sensitivity of the bifurcation that we observed for 15 beads
shown and discussed in Fig. 1. Finally, for 25 beads we barely
see the tongue structure while for systems of 40 and 50 beads
we observe no bifurcations even when driving up to 1.5 times
the static overlap. Figure 6(b) shows the effect of the losses for
a given chain length (N = 15). As the dissipation is decreased
(increasing quality factor) the system can much more easily
bifurcate. In both panels, we also observe that as the driving
frequency increases, the appearance of bifurcations happens
at larger driving amplitudes. In conclusion, as the system gets
longer and/or more lossy, the bifurcations happens at larger
driving amplitude and at some point they are no longer present.
Thus, there is an important interplay between the losses and
the length of the system that leads to the existence or not of
bifurcations and thus to the nonlinear energy transfer between
phonon modes.

This could be explained from the perspective of FM as
follows: The bifurcations are associated with what is called
oscillatory instability, which arises from the collision of
two Floquet multipliers and the associated spatially extended
eigenvectors, a well-known finite-size effect. When this col-
lision occurs, if a FM leaves the unit circle, then the solution
is unstable and grows. The magnitude of this multiplier is
also a measure of the strength of the instability and how
quickly it grows. As discussed in Ref. [17] the strength of
such instabilities depends on the system size. In particular,
when the size of the system is increased, the magnitude
of such instabilities weakens uniformly. In other words, the
unstable FMs become smaller in magnitude as the system
size grows. Simultaneously, the number of such instabilities
increases with system size due to the increasing density of
colliding Floquet multipliers. Eventually, these instabilities
vanish in the limit of an infinitely large system. Since in
Hamiltonian lattices, all the FMs must lie on the unit circle,
collisions result in their departure from the unit circle and are
directly associated with instabilities. However, this is not the
case for the driven-damped lattices. As we mentioned above,
for a linearly stable periodic solution all the FMs lie on a
circle of radius, e−1/(2τfd ), which is smaller than 1. As the
dissipation increases, the Floquet multipliers have a smaller
magnitude and the instability must be strong enough to allow
the FM to completely leave the unit circle. Thus, it is possible
for FMs to collide but still not exit the unit circle. This
is due to the weak strength of the oscillatory instabilities,
which becomes weaker as the size of the lattice becomes
larger. Therefore, at longer lengths there is no manifestation of
bifurcations and thus no nonlinear energy transfer to the lower
frequency phonon modes. This means that in shorter “periodic”
systems, even relatively weak nonlinearities may become
important. The bifurcations in our system occur at much
lower drive amplitudes than we had previously thought, and
at amplitudes where the dynamics are still weakly nonlinear
and smooth. When the dynamics are weakly nonlinear the
Hertzian potential can be expressed as a polynomial expansion.
Therefore, periodic materials with a coupling interaction that
is not strictly linear, but instead has an asymmetric or nonlinear
content, may exhibit similar bifurcation dynamics. This could
lead to the failure of linear approximations in other finite length
systems due to weak nonlinearities.

Furthermore, we observe that at higher frequencies the
bifurcations happen at higher amplitudes. This could be
explained in two ways. First, the linear on-site damping in
a lattice results in an increased effective damping of the
higher frequency phonon modes (see for example Chap. 6
of Ref. [1]). This is evident in our experiments for example
in Fig. 1(b), where one can see that close to the band edge,
the linear response flattens out into a low pass filter and there
are no longer distinct resonances. As a result, bifurcations at
higher drive frequencies, which are due to the excitation of
a pair of high frequency phonon modes, are more difficult to
appear. Second, this can also be interpreted as a consequence
of the evanescent wave breaking down [30]. The further the
excitation frequency is above the band edge, the more the
evanescent wave corresponding to this frequency is localized.
The evanescent wave does not penetrate as deeply into the
lattice at higher frequencies and the interaction between the
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evanescent wave and the extended modes of the crystal become
increasingly smaller. This interaction becomes smaller as the
chain length increases (longer extended modes) and as the
dissipation increases (weaker evanescent waves in amplitude).
Correspondingly, the bifurcation instabilities occur at larger
amplitudes.

V. CONCLUSION

We have experimentally and computationally investigated
the nonlinear resonance phenomena and the resulting bi-
furcation instabilities in finite, monodisperse, harmonically
driven 1D granular chains, taking into account losses. The
nonlinear bifurcation tongues arise from the finite size of
the discrete system, and the tongues’ shapes depend on
the type of nonlinear coupling in the lattice. This dynamic
response demonstrates how energy can be transferred from
a single excitation signal to other frequencies fundamental
to a material lattice. The nonlinear interactions in granular

chains provide a completely passive mechanical mechanism
to control the transmitted frequency spectrum. The structural
stability and nonlinear bifurcation dynamics of homogeneous
granular chains may be used in multifunctional material
design where previous solutions were limited to actively
controlled mechanical systems. The findings of this paper
should be considered in the design of new devices consisting of
nonlinear finite lattices, for example, for amplitude dependent
filtering applications or for mechanical structures aiming at an
enhanced frequency control of propagating waves.
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