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Acoustic solitons in waveguides with Helmholtz resonators: Transmission line approach
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We report experimental results and study theoretically soliton formation and propagation in an air-filled
acoustic waveguide side loaded with Helmholtz resonators. We propose a theoretical modeling of the system,
which relies on a transmission-line approach, leading to a nonlinear dynamical lattice model. The latter allows for
an analytical description of the various soliton solutions for the pressure, which are found by means of dynamical
systems and multiscale expansion techniques. These solutions include Boussinesq-like and Korteweg-de Vries
pulse-shaped solitons that are observed in the experiment, as well as nonlinear Schrödinger envelope solitons,
that are predicted theoretically. The analytical predictions are in excellent agreement with direct numerical
simulations and in qualitative agreement with the experimental observations.
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I. INTRODUCTION

Solitons, namely robust localized waves propagating undis-
torted in nonlinear dispersive media [1–3], have been studied
extensively in various physical contexts. Indeed, soliton forma-
tion, stability, dynamics, and interactions have been analyzed,
both in theory and in experiments, in water waves [4,5],
plasma physics [5], nonlinear optics [6], atomic Bose-Einstein
condensation (BEC) [7], and so on.

On the other hand, solitons have also been studied in
acoustics, both in solids and in fluids [8]. In particular,
nonlinear solitary waves have been the subject of many studies
over the past few years in granular chains [9] and crystalline
solids (see Ref. [10], and references therein). In the latter case,
solitons and solitary waves in crystals and their surfaces have
been attained by nanosecond and picosecond laser ultrasonics
methods. However, solitons in fluids have been studied less
extensively: In fact, pertinent studies include seminal work
by Sugimoto and coworkers, who studied theoretically [11–
13] and demonstrated experimentally [12,13] propagation of
one-dimensional (1D) acoustic solitary waves in an air-filled
waveguide, with a periodic array of Helmholtz resonators.
In these works, the analysis was based on nonlinear wave
equations with fractional derivative terms accounting for
losses. For this model, soliton solutions were found in an
implicit form and turned out to be close to Korteweg-de
Vries (KdV) solitons in some asymptotic limit; additionally,
numerical studies on the model proposed in Refs. [11–13]
were recently reported, too [14]. Other relevant works include
Refs. [15], where diffusive soliton solutions to the so-called
Kuznetsov equation (which models weakly nonlinear acoustic
wave propagation in viscoelastic media) were studied. Note
that traveling wave solutions of a higher-order nonlinear
acoustic wave equation of the Kuznetsov type (valid for larger
values of acoustic Mach number) were rigorously studied as
well [16]. It is also relevant to mention the work of Ref. [17],
where envelope solitons (holes) were predicted to occur in
cylindrical acoustic waveguides (in this system, higher-order
dispersive modes were taken into account).

In this work, we revisit the theme of a lattice made of
Helmholtz resonators side connected to a tube [18]. We present
experimental observations of acoustic solitons in this setting

and propose an analytically tractable modeling, relying on an
effective nonlinear transmission line (TL) description of the
system. Our approach allows for both an efficient description
of the relevant experimental findings and the prediction of
other localized nonlinear structures that can be supported in
the system.

Generally speaking, the TL approach is a powerful tool
commonly used in electromagnetic (EM) wave applica-
tions [19] and has recently gained considerable attention due
to its applicability in the analysis and design of both EM [20]
and acoustic [21–23] metamaterials. This approach also allows
for the study of nonlinear effects, and particularly soliton
formation and propagation, a theme that has been studied
extensively in the past in the context of electrical TLs [2]
and more recently in the realm of TL metamaterials [24].

In our setting, namely the 1D lattice of Helmholtz res-
onators, the proposed TL model correctly reproduces—in the
linear limit—the dispersion relation. Furthermore, in the non-
linear regime, and in the small-amplitude, long-wavelentgth
limit, the TL model describes—in a good agreement with the
experiment—the soliton propagation in the waveguide. This
simplified model also allows for an analytical study of the
solitary waves based on universal nonlinear evolution equa-
tions that are derived by means of asymptotic expansions (see
below). A direct numerical integration of the model provides
numerical results that are consistent with the analytics and the
experimental observations. Additionally, in the framework of
the TL model, it is also possible to predict the formation of
envelope solitons (both of the bright and the dark type).

We now proceed with a more specific description of our
analysis and findings. First, we note that our analysis relies
on the study of an electrical TL, as per the electroacoustic
analogy, where the voltage corresponds to the acoustic pressure
and the current to the volume velocity flowing through the
waveguide’s cross-sectional area [25]. Nonlinear effects are
taken into consideration by incorporating nonlinear elements
into the unit-cell circuit, accounting for the dependence of
wave celerity on the pressure (note that Helmholtz resonators
are assumed to have a linear response, while nonlinearity
originates only for the large-amplitude wave propagation
within the waveguide). This representation allows for the
derivation of a nonlinear lattice model, which is studied
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numerically and analytically. In the numerical simulations,
using initial conditions relevant to our experiments, we are able
to reproduce soliton profiles and characteristics (speed, width,
etc.) in a good agreement with the experimental observations.
Furthermore, employing the continuum approximation, we
study analytically the lattice model and show that it is inti-
mately related (in proper temporal and spatial scales) to models
that have been studied in the past in other branches of physics:
These include a Boussinesq-type model and a KdV equation
(originally used to describe shallow-water waves [3,4], waves
in plasmas [5], solitons in electrical TLs [2], etc.), as well as a
nonlinear Schrödinger (NLS) equation (describing deep-water
waves [3,4], optical solitons [1–3,6], dynamics of BEC [7],
etc.). This way, we derive approximate pulselike solitons of the
Boussinesq and KdV type, as well as bright and dark envelope
solitons satisfying an effective NLS equation. In all cases, we
identify parameter regimes where different types of solitons
can be formed and present numerical results that are found to
be in an excellent agreement with the analytical predictions.

The paper is structured as follows. In Sec. II, we describe
the experimental setup and present experimental results for the
formation of acoustic solitons in the 1D lattice of Helmholtz
resonators. We also introduce our model and, by employing
the TL approach, derive the nonlinear lattice equation and
compare numerical findings for the latter with relevant
experimental results. Section III is devoted to our analytical
study: There we present the various types of solitons that can
be formed in our setting, identify relevant parameter regimes
and spatiotemporal scales, and investigate their propagation
characteristics. Finally, in Sec. IV, we present our conclusions
and discuss future research directions.

II. THE HELMHOLTZ RESONATOR LATTICE

A. Experimental setup and observations

We start by presenting our experimental setup, which
consists of a long cylindrical waveguide, of length L = 6 m,
with a cross section S = πR2 with an inner radius R =
25 × 10−3 m and a 5 × 10−3 m thick wall. This waveguide
is connected to an array of 60 Helmholtz resonators, which are
periodically distributed. The distance between two consecutive
resonators is d = 0.1 m. Each resonator is composed by a
neck (cylindrical tube with an inner radius r = 10 × 10−3 m
and a length � = 20 × 10−3 m) and a variable-length cavity
(cylindrical tube with an inner radius rv = 21.5 × 10−3 m and
a maximum length h = 165 × 10−3 m). Notice that the end of
the waveguide, located at d/2 from the last resonator, is rigidly
closed.

The input signal is generated by the explosion of a balloon.
The balloon is located at 20 cm of the lattice into a waveguide
connected to the main tube and is inflated until its explosion.
The produced acoustic wave is measured with 2 PCB106B

microphones, carefully calibrated, which are located 20 cm in
front of the lattice and at the end of lattice (the microphone is
embedded in the rigid end); recall that the propagation distance
is L = 6.2 m. The experimental setup is shown in Fig. 1.

Figure 2(a) shows the temporal profiles of the normalized
acoustic pressure measured at the first microphone located
20 cm before the first resonator (x = 0 m). The input signal,

FIG. 1. Schematic illustration of the experimental setup.

generated by the balloon explosion, can be described by a
gate signal with a large amplitude (around 30 kPa) and a
width around 1.5 ms. Figures 2(b), 2(c), and 2(d) present the
temporal profiles of the acoustic pressure measured after a 6-m
propagation in the Helmholtz resonators lattice (x = 6.2 m)
for the cases of h = 0.02 m, h = 0.07 m, and h = 0.165 m,
respectively. Oppositely to the case of a waveguide without
resonators where a shock wave is formed [13,26], we observe
the propagation of a wave with a smooth shape through the
lattice. The characteristics of this wave, namely shape, ampli-
tude, and velocity, are strongly dependent on the cavity length
of the resonators, which defines the dispersion characteristics
of the lattice (see Sec. III.B). As shown, for h = 0.07 m and
h = 0.165 m, the wave shape is clearly symmetrical, while for
h = 0.02 m this is not the case. Generally, it is observed that
the competition between nonlinearities (due to a cumulative
effect occurring for large amplitude pulse input) and dispersion
in the medium (due to the presence of Helmholtz resonators)
produces waves of constant shape, with amplitude-dependent
velocity, which are in fact acoustic solitons (note that we use
the term “soliton” in a loose sense, without implying complete
integrability [3]).

B. The discrete model: Transmission line approach

Next, in order to model our system and provide theoretical
results for the above experimental observations of acoustic

FIG. 2. Panel (a) shows the initial acoustic pressure, measured
at x = 0 m. Panels (b), (c), and (d) show, respectively, the acoustic
pressure measured at the end of the lattice (x = 6.2 m) for resonator
cavity length h = 0.02 m, h = 0.07 m, and h = 0.165 m.
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solitons, we will employ the TL approach. Our starting point
relies on the consideration of an ideal fluid, and use of the fluid-
dynamic equations, neglecting viscosity and other dissipative
terms. If we restrict our analysis to 1D flow—as in the case
of the experimental results of Fig. 2—wave propagation is
described by the following equations:

∂�

∂t
+ ∂

∂x
(�v) = 0, (1)

∂v

∂t
+ v

∂v

∂x
= − 1

�

∂p

∂x
, (2)

where �(p,s) is the fluid mass density, s is the entropy, v

is the acoustic fluid velocity, and p is the acoustic pressure.
We assume that the entropy s is constant, while the mass
density � and wave celerity c ≡ (∂p/∂�)1/2 are considered as
functions of the total pressure p. Accordingly, the acoustic
fluid velocity v can can be written as a single-valued function
of the pressure p so ∂v/∂t = (dv/dp)∂p/∂t . We wish to
model the acoustic propagation along the waveguide in the
low-frequency regime, where only plane waves can propagate,
by means of the electroacoustic analogy [25]. Considering
the long-wavelength limit, the mass conservation and Euler’s
equations (1) and (2) between two points separated by
dx (much smaller than the acoustic wavelength) can be
approximated as:

un = Cw

∂pn+1

∂t
+ un+1, (3)

pn = Lw

∂un+1

∂t
+ pn+1, (4)

where u is the acoustic volume velocity and the subscripts n

and n + 1 are related, respectively, to left and right sides of the
tube at some point dx. According to the electrical analogy, the
propagation along a unit cell with length dx can be modelled by
a simple electrical circuit for the “current” un and the “voltage”
pn, consisting of an inductance Lw and a capacitance Cw. In
the linear regime, these are given by:

Lw0 = �0dx/S, Cw0 = Sdx/�0c
2
0, (5)

where �0 is the density evaluated at the equilibrium state and
c0 is the speed of sound. Notice that in the nonlinear regime Lw

and Cw can define a wave celerity as c2
NL = 1/LwCw. For our

analysis below, we will assume that the inductance is linear,
Lw = Lw0, while the capacitance defined as Cw = Sdx/�0c

2
NL

is nonlinear, depending on the pressure p; this choice relies on
the approximation that (to a first order) the density does not
depend on p, while the wave celerity cNL depends on p.

In order to model the experimental setup that incorporates
the Helmholtz resonators, we will include an additional
parallel branch in the unit-cell circuit, composed by a serial
combination of an inductance LH and a capacitance CH , as
shown in Fig. 3. We consider the response of the Helmholtz
resonators to be linear. Nonlinearity originates only from the
large-amplitude acoustic propagation within the waveguide.
Thus, in the low-frequency approximation, the relevant in-
ductance and capacitance are given by LH = �0�/Sn and
CH = VH/�0c

2
0, respectively, where �, Sn, and VH are the

length and the cross-sectional area of the resonator neck, and

FIG. 3. The unit-cell circuit of the nonlinear Helmholtz lattice
model.

the total volume of the resonator cavity, respectively. Notice
that by including a resonator in each unit cell, it is natural to set
dx = d (recall that d is the distance between two successive
resonators).

Using the unit-cell circuit of Fig. 3, we can now use
Kirchhoff’s voltage and current laws and derive an evolution
equation for the pressure pn in the n-th cell of the lattice. Let
us first consider the Kirchhoff’s voltage law for two successive
cells, which yields:

pn−1 − pn = Lw

d

dt
un, (6)

pn − pn+1 = Lw

d

dt
un+1. (7)

Subtracting the above equations, we obtain the difference
equation:

δ̂2pn = L̂(un − un+1), (8)

where δ̂2pn ≡ pn+1 − 2pn + pn−1 and L̂ ≡ Lwd/dt . On the
other hand, Kirchhoff’s current law yields:

un − un+1 = d

dt
(Cwpn) + P̂ −1 dpn

dt
, (9)

where the first and second terms in the right-hand side denote
the currents across the capacitance Cw and the Helmholtz
branch, respectively, with P̂ −1 being the inverse of the operator
P̂ ≡ LHd2/dt2 + 1/CH .

Substituting Eq. (9) into Eq. (8), we obtain the following
equation for the pressure pn:

LwCH

d2pn

dt2
−

(
1 + LHCH

d2

dt2

)
δ̂2pn

+Lw

d2

dt2

(
1 + LHCH

d2

dt2

)
(Cwpn) = 0, (10)

where we note that the capacitance Cw depends on the pressure.
In order to quantify this dependence, and take into account the
nonlinear processes in the propagation, we can add a nonlinear
term in the celerity as [25,27]:

cNL ≈ c0
(
1 + β0p/�0c

2
0

)
, (11)

where c0 = 343.26 m/s is the speed of sound at room
temperature and β0 = 1.2 for the case of air. Then the second of
Eqs. (5) leads to the following pressure-dependent capacitance
Cw:

Cw(pn) ≈ Cw0 + C ′
wpn, (12)
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where Cw0 = Sd/�0c
2
0 is a constant capacitance (relevant to

the linear case) and C ′
w = −2 β0

�0c
2
0
Cw0.

Substituting Eq. (12) into Eq. (10), we obtain the equation:

d2pn

dt2
− c2

0

κd2

(
1 + 1

ω2
0

d2

dt2

)
δ̂2pn + 1

κ

d2

dt2

(
1 + 1

ω2
0

d2

dt2

)

×
[
pn

(
1 − 2

β0

�0c
2
0

pn

)]
= 0, (13)

where ω0 = c0
√

Sn/Svh� is the Helmholtz resonance fre-
quency (Sn = πr2 and Sv = πr2

v are the cross-sectional areas
of the resonator neck and cavity, respectively) and κ = VH /V

is a geometrical factor (ratio of the volume of the Helmholtz
resonator VH over the tube volume V in a unit cell of length d),
and we have used the following equations connecting the
transmission line parameters with the acoustic waveguide
characteristics:

LwCH = κ

d2c2
0

, LHCH = 1

ω2
0

, LwCw0 = d2

c2
0

, (14)

where Lw is also evaluated at � = �0. The above nonlinear
dynamical lattice equation is one of the main results of the
present work: It describes the propagation of acoustic waves
in a tube with an array of Helmholtz resonators. This simplified
model will be used below in order to derive analytical solitary
wave solutions that are supported in this setting—as is also
evident from the experimental results shown in Fig. 2.

C. Comparison with the experiment

Let us now proceed by comparing results that can be
derived in the framework of the lattice model (13) with the
experimental results presented above.

We numerically integrate Eq. (13) by means of a 4th-order
Runge-Kutta method, using an initial condition similar to the
experiments, as shown in the top panel of Fig. 2. In particular,
we use a super-Gaussian pulse of the form

pn=0(t) = A exp[−((t − t0)/w0)16], (15)

of amplitude A = 30 kPa and width w0/2 = 400 Hz. The
values of the coefficients of the various terms of Eq. (13)
depend actually only on the cavity length h, since all other
parameters are fixed.

The results of the direct numerical simulations, correspond-
ing to the three different cavity lengths used in the experiment
(h = 0.02,0.07,0.165 m), are shown in Fig. 4. In all cases
shown in Figs. 4(b)–4(d), the profile of each pulse is shown
for the lattice cite n = 60, corresponding to a distance 6 m
from the first resonator. The profiles in Figs. 4(b)–4(d) are
time shifted by 
t ≈ 0.9 ms corresponding to the propagating
time needed for the initial pulse to reach the first resonator; this
is done to facilitate direct comparison with the experimental
results of Fig. 2.

Comparing corresponding panels of Figs. 2 and 4 for each
of the three different values of h, it is seen that the solitary
waves obtained numerically via Eq. (13) have approximately
the same width as those observed in the experiment. Notice that
quantitative differences between numerical and experimental
soliton amplitudes, as well as the presence of “tails” attached
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FIG. 4. Top panel: Initial condition p0 used for the numerical
integration of Eq. (13). Rest of the panels (time shifted by 0.9 ms, see
text) show the pressure at n = 60 as a function of time for the same
value of the cavity length as in the respective experimental data (cf.
Fig. 2).

to the solitons (which are absent in the experimental data), may
be qualitatively understood by (i) the presence of losses in the
experiment [which are not included in the simplified model of
Eq. (13)] and (ii) the fact that the initial conditions used in the
experiment and simulations differ.

In any case, the above comparison shows that Eq. (13)
can be used to describe, in a fairly good agreement with the
experiment, the formation of acoustic solitary waves. Below
we will show that, using this simplified model, we can obtain
analytically different types of acoustic solitons in different
experimentally relevant regimes.

III. ACOUSTIC SOLITONS

A. The continuum approximation

For our analytical considerations, we will focus on the
continuum limit of Eq. (13), corresponding to n → ∞ and
d → 0 (but with nd being finite); in such a case, the pressure
becomes pn(t) → p(x,t), where x = nd is a continuous
variable. Then the difference operator δ̂2 is approximated by
δ̂2pn ≈ d2pxx , where terms of the order O(d4) and higher are
neglected, and subscripts denote partial derivatives. It is also
convenient to express our model in dimensionless form; this
can be done upon introducing the normalized variables χ and τ

and normalized pressure P [of order O(1)], which are defined
as follows:

τ = ω̃0t, χ = ω̃0

c0
√

α
x,

p

p0
= εP, (16)

where ω̃0 is a characteristic spectral width or inverse temporal
width (which is set by the initial condition), p0 = �0c

2
0/2β0,

α = 1/(1 + κ), and ε is a dimensionless small parameter (ε �
1), defining the strength of the nonlinearity. In these variables,
the continuum limit of Eq. (13) reads:

Pττ − Pχχ − �2(Pχχττ − αPττττ )

− εα[(P 2)ττ + �2(P 2)ττττ ] = 0, (17)
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where � = ω̃0/ω0. Equation (17) is a Boussinesq-like model,
which has been originally proposed for studies of solitons in
shallow water [3,4] but later was used in studies of solitons
in different contexts, including electrical TLs [2]. In our case,
the dispersion terms of Eq. (17) are due to the presence of
Helmholtz resonators, and their strength is measured by the
dimensionless parameter �. The strength of the nonlinear
terms, on the other hand, is set by the parameter ε. Notice that
in the absence of the Helmholtz resonators, i.e., for ω0 → ∞
and κ = 0 (i.e., � = 0 and α = 1), Eq. (17) is reduced to the
well-known Westervelt equation, which is a common nonlinear
model describing 1D acoustic wave propagation [27].

B. Linear theory

We start by considering the linear limit of Eq. (17) and the
respective dispersion relation. Note that in the limit of ε → 0,
Eq. (17) is reduced to the linear wave equation (in the lossless
case) studied in Ref. [28] [see Eq. (61) of this work].

Assuming propagation of plane waves in the lattice, of the
form P ∝ exp[i(kχ − ωτ )], we obtain the following disper-
sion relation connecting the wave number k and frequency ω:

D(ω,k) ≡ k2 − ω2 − �2(k2ω2 − αω4) = 0. (18)

Since all quantities in the above dispersion relation are
dimensionless, it is also relevant to express Eq. (18) in physical
units. In particular, taking into regard that the frequency ωph

and wave number kph in physical units are connected with
their dimensionless counterparts through ω = ωph/ω̃0 and
k = kphc0

√
α/ω̃0, we can express Eq. (18) in the following

form:

k2
ph − ω2

ph

c2
0α

− 1

ω2
0

(
k2

phω
2
ph − ω4

ph

c2
0

)
= 0. (19)

Solving Eq. (19) analytically with respect to kph, we then
can determine the frequency f = ωph/2π as a function of the
normalized wave number kphd and plot the resulting dispersion
relation. The relevant result is depicted in Fig. 5 by the dotted
(black) line for the three different values of the Helmholtz
resonator cavity length h used in the experiment, namely h =
0.02 m, h = 0.07 m, and h = 0.165 m.

On the other hand, the solid (green) line in the same
figure shows the respective result (for the lossless case under
consideration) for the dispersion relation, as obtained using
Bloch theory and the transfer matrix method [28]:

cos(kphd) = cos

(
ωph

c0
d

)
+ i

Z0

2Zb

sin

(
ωph

c0
d

)
, (20)

where Zb is the input impedance of the Helmholtz res-
onator branch and Z0 = �0c0/S is the acoustic character-
istic impedance of the waveguide; for the lossless case
Zb = i(ωphLH − 1/ωphCH ). Note that, in the linear regime,
the transmission line approach to acoustic waveguides with
periodically arranged Helmholtz resonators has also been pro-
posed and discussed in other works (see, e.g., Refs. [22,23]).

The dispersion relation (20) obviously reflects the peri-
odicity of the system, featuring a band-gap structure. This
becomes clear upon observing the upper gap shown in Fig. 5,
which originates from Bragg-type constructive interference
of reflections and is characterized by the Bragg frequency

FIG. 5. (Color online) The dispersion relation, expressed in
physical units, as obtained via Eq. (20) [solid (green) line] for three
different values of the Helmholtz resonator cavity length h. This
result is compared to the approximate one of Eq. (19) [dotted (black)
line]. The lower and upper horizontal dashed (red) lines depict the
Helmholtz resonance frequency f0 ≡ ω0/2π and the Bragg frequency
fB , respectively. Note that f0 takes the values 1270 Hz (h = 0.02 m),
679 Hz (h = 0.07), and 442 Hz (h = 0.165 m), while in all cases
fB is fixed from the lattice constant d = 0.1 m and takes the value
fB = c0/2d = 1720 Hz.

fB = c0/2d; the latter is equal to 1720 Hz for our setting
and is depicted by the upper dashed (red) lines in the three
panels of Fig. 5. In addition, the dispersion relation features
still another gap (usually called “resonator” or “hybridization”
band gap), originating from Fano resonances or interference,
due to the presence of the Helmholtz resonators. This gap is
around the resonance frequency of the Helmholtz resonator,
f0 = ω0/2π , which is chosen to be sufficiently smaller than
the Bragg frequency fB ; such a choice is possible by properly
fixing the cavity length h. The location of f0 for the three
different values of h that are used in the experiment is depicted
by the lower dashed (red) lines in the three panels of Fig. 5.
Observing the structure of the first (lower) band, it is clear
that by increasing the Helmholtz cavity length the resonance
frequency decreases, and, additionally, the dispersion in the
low-frequency regime increases. On the other hand, observing
the structure of the second band, it is evident that the increase of
the Helmholtz cavity length results in a decrease of dispersion
near the Brillouin boundary.

Comparing the dispersion relation (20) with the one
resulting from the continuum approximation [cf. Eq. (19)],
we find a very good agreement between the two, especially
in the regime of low frequencies (note that in this regime the
transmission line approach is expected to be more accurate).
In particular, the dispersion relation (19) is able to follow the
lower band, the first gap, and the second band, especially in
the regime of kphd � 1 (where the continuum approximation
is formally more accurate). For instance, the upper band gap
edge for kph = 0 is found from Eq. (19) as ωph = ω0/

√
α,

which is in agreement with the effective medium approach of
Ref. [22].

In addition, the result of the continuum approximation is
still in reasonable agreement with the result of Eq. (20) for
moderate and larger values of kphd, even sufficiently close to
the Brillouin boundary. For the lower band, this agreement
can be attributed to the fact that the first gap is only due to the
Helmholtz resonance and not due to the system’s periodicity. In
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other words, dispersion only comes into play due to Helmholtz
resonance [recall that dispersion in Eq. (17) vanishes for � = 0
or ω0 → ∞]. As concerns the second band, it can be observed
that, for sufficiently large kph, the dispersion relation (19)
becomes ωph = kphc0 for every cavity length h. The same
behavior is also found from Eq. (20), which can explain the
agreement with Eq. (19), even close to the Brillouin boundary
(at least for the parameter values used in the experiment).
There, it is obvious that the continuum approximation becomes
invalid, because the dispersion relation (19) does not take into
regard the periodicity of the system, thus failing to capture the
band gap around fB (as well as the structure of the spectrum
for f > fB). Notice that this failure is more pronounced for
smaller values of cavity length (cf. left panel of Fig. 5) due
to the fact that, in this case, periodicity-induced dispersion is
enhanced.

Thus, concluding this section, the continuum approxima-
tion Eq. (17) is quite accurate in capturing the (Helmholtz
resonance-induced) dispersion properties of the system in
the low-frequency and long-wavelength regimes—as is the
case for the parameter values used in the experiment. It is
thus reasonable to expect that different types of solitons may
be obtained in different regimes of the dispersion relation
by exploiting the relative strength between dispersion and
nonlinearity. A relevant study is appended in the following
sections.

C. Boussinesq and KdV pulselike solitons

First we focus on the regime where the dispersion and
nonlinearity terms of Eq. (17) are of the same order, i.e., ε ∼
�2. Given that we have already assumed a weak nonlinearity,
it is obvious that the last term in the left-hand side of Eq. (17),
which is ∝ε�2, can be neglected. In such a case, Eq. (17) is
reduced to the following equation:

Pττ − Pχχ − �2(Pχχττ − αPττττ ) − εα(P 2)ττ = 0, (21)

which is actually a combination of the so-called bad and
improved Boussinesq equation (see, e.g., Ref. [29] for the
definition and discussion of these models). Travelling wave
solutions of the above equation can readily be obtained by in-
troducing the ansatz P (χ,τ ) = �(ξ ), where ξ = δ(τ − χ/v),
while v and δ denote the velocity and inverse width of the wave.
Then, assuming vanishing boundary conditions for �, namely
� → 0 as |ξ | → ∞, we derive from Eq. (21) the following
ordinary differential equation (ODE) for �(ξ ):

A�′′ + B� − εα�2 = 0, (22)

where primes denote differentiation with respect to ξ , while
A = �2(α − 1/v2) and B = 1 − 1/v2. Equation (22) can be
seen as an equation of motion of a particle in the presence of
the potential V (�) = (B/2A)�2 − (εα/3A)�3. A straightfor-
ward analysis shows that the only physically relevant solution,
with the correct (vanishing) boundary conditions, corresponds
to a homoclinic orbit, for A < 0, B > 0, relevant to the
hyperbolic fixed point � = 3B/2εα. This solution reads:

P (χ,τ ) =
(

�2

ε

)(
6κδ2

1 + 4δ2�2

)
sech2

[
δ

(
τ − χ

v

)]
, (23)

where the velocity is given by v = [(1 + 4δ2�2)/(1 +
4αδ2�2)]1/2. Obviously, the above solution is characterized
by one free parameter, the inverse width δ. Note that since
�2/ε ∼ 1 (as per our assumption above), the free parameter
δ is also ∼1. Thus, the normalized pressure P , along with its
spectral width, are of the order of unity as well. Using Eq. (23),
we can express—for the sake of clarity—the corresponding
approximate solution of Eq. (13) in terms of the original space
and time coordinates as follows:

p(x,t)

p0
≈ 3κδ2(ω̃0/ω0)2

1 + 4δ2(ω̃0/ω0)2
sech2

[
δω̃0

(
t − x

v

)]
. (24)

Notice that, in physical units, the velocity of the soliton reads:

v = c0
√

α

√
ω2

0 + 4δ2ω̃2
0

ω2
0 + 4αδ2ω̃2

0

, (25)

and is bounded (as follows from the requirements A < 0 and
B > 0 mentioned above) according to:

c0
√

α < v < c0. (26)

This shows that the velocity of the Boussinesq-type soliton
of Eq. (24) is lower than the speed of sound (i.e., the soliton
is subsonic), in accordance with the analysis of Ref. [13] for
small geometrical factor κ [see Eq. (2.14) of this work].

We have numerically integrated the nonlinear lattice model
of Eq. (13), using as an initial condition, p1 (i.e., the pressure
at the first site of the lattice), the functional form of the soliton
of Eq. (24) at x = 0; we have used the parameter values
δω̃0 = 0.1 and a cavity length h = 0.07 m. The results of
our simulations are shown in Fig. 6. The top panel shows
a three-dimensional (3D) plot depicting the evolution of the
pressure p, while the bottom panel shows the temporal profile
of the pressure at the lattice site n = 60, corresponding to
a physical distance x = 6 m. It is observed that the soliton
propagates for about 20 m with almost no distortion. In fact, the
only noticeable effect is a small amount of radiation emitted
by the soliton during its evolution (cf. the structure formed
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FIG. 6. (Color online) Top panel: Three-dimensional plot depict-
ing the evolution of a soliton of the form of Eq. (23), obtained
by numerically integrating Eq. (13) for a distance corresponding to
200 sites (physical distance x = 20 m). The bottom panel shows the
temporal profile of the normalized pressure, p/p0, at the site n = 60.
Parameter values correspond to the experimental ones for a Helmholtz
resonator with cavity length h = 0.07 m. The dashed (red) line in the
bottom panel depicts the analytical result of Eq. (23), while the solid
(black) line the result of the simulation.
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at the leading edge of the pulse); this effect can naturally be
attributed to the fact that Eq. (24) is nothing but an approximate
solution—derived in the continuum limit—of the lattice model
of Eq. (13). Nevertheless, as is also shown in the bottom panel
of Fig. 6, our analytical approximation is very good, at least
for propagation distances up to 40 m: Indeed, the analytical
result [dashed (red) line] for the soliton profile (at x = 6 m)
in the bottom panel of the figure almost coincides with the
corresponding numerical result [solid (black) line].

For longer propagation distances (x � 40 m), however,
the continuous emission of radiation of the Boussinesq-type
solitons eventually lead to their disintegration. More robust
soliton solutions—in the same parametric region—can be
obtained upon considering the long-wavelength, far-field limit
of the Boussinesq-type Eq. (17), which is the KdV equation.
Indeed, using a formal multiscale expansion method, we can
reduce Eq. (17) to a KdV equation and use the latter to derive
approximate solutions of Eq. (13). We thus proceed upon using
the slow variables

T = ε1/2(τ − χ ), X = ε3/2χ, (27)

and express Eq. (17) as follows:

2ε2PXT − ε3PXX − �2(ε2PT T T T − 2ε3PXX + ε4PXX

−αε2PT T T T ) − ε2α[(P 2)T T + ε(P 2)T T T T ] = 0. (28)

Next, introducing the expansion P = P1 + εP2 + · · · , and
integrating Eq. (28) once in T , at order O(ε2) we obtain the
following KdV equation for P1:

P1X − �2

2
(1 − α)P1T T T − αP1P1T = 0. (29)

To this end, using the soliton solution of Eq. (29) for P1,
namely P1 = 6κ�2sech2(T − X/V ) (where V −1 = 2�2κα),
we can write the approximate KdV soliton solution for p(x,t)
as follows:

p(x,t)

p0
≈ 3εκ(ω̃0/ω0)2sech2

[√
εω̃0

(
t − x

v

)]
, (30)

where the velocity of the KdV soliton is given by

v ≈ c0
√

a(1 + 2ε�2κα). (31)

It is observed that the amplitude of the normalized pressure
p/p0 is now of order ε�2 and, thus, KdV solitons are of smaller
amplitude than the Boussinesq-type solitons [cf. Eq. (23)].
In fact, the KdV soliton (30) can be obtained as the small-
amplitude limit of Eq. (23), corresponding to δ = √

ε � 1
[and, accordingly, the velocity (25) is reduced to (31) in the
same limit].

The evolution of the small-amplitude KdV soliton was also
studied numerically: In Fig. 7 we show the result of a direct
numerical simulation for the same parameters as in Fig. 6,
where the initial condition (at the first site as before) for
Eq. (13) was the KdV soliton (30) at x = 0, with an amplitude
ε�2 = 0.05. It is observed that the KdV soliton is much more
robust, and no noticeable emission of radiation occurs; this is
natural as, in this case, the KdV Eq. (29) is the long-wavelength
far-field limit of Eq. (13) as mentioned above. The analytical
result for the temporal soliton profile (cf. bottom panel of
the figure) is found to be in excellent agreement with the
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FIG. 7. (Color online) Same as in Fig. 6 but for an initial
condition corresponding to a KdV soliton of the form of Eq. (30).

numerically obtained solution. Notice that the KdV solitons
were found to be robust for propagation distances of the order
of 60 m (which was the distance used in the simulations).

It is interesting to compare the above approximate KdV
soliton solution with the corresponding solution discussed in
Refs. [11–13]. In both cases, the soliton amplitude is analogous
to the square root of the soliton inverse width and analogous
to the geometrical factor κ . Additionally, both in our case and
in Refs. [11–13], the KdV solitons were obtained in the same
asymptotic limit of small amplitude and large width.

We complete this subsection by noting the following: If
the initial condition for Eq. (13) is fixed (i.e., the spectral
width ω̃0 and amplitude are fixed), then the soliton amplitude
will also be fixed. Nevertheless, if the cavity length h is
increased, then the soliton width w = (δω̃0)−1 [cf. Eq. (24)]
is also increased (this occurs for both the Boussinesq-like and
KdV solitons). This theoretical prediction—which is based
on our analytical approximations—is in accordance with the
numerical and experimental results shown in Figs. 4 and 2,
respectively; for the latter, however, the presence of dissipation
results, additionally, in unequal soliton amplitudes.

D. NLS envelope solitons

Our analytical approach allows us to predict still another
type of soliton solution, namely envelope solitons of the bright
and dark type [6], that can be supported in the acoustic
waveguide structure under consideration. In particular, in this
section we will show that such solitons can be found as
approximate solutions of the nonlinear evolution equation (17).
Our methodology relies on the use of the multiple scales
perturbation method [30], by means of which Eq. (17) is
reduced to an effective NLS equation; then, employing the
latter, we identify parameter regimes envelope bright or dark
acoustic solitons can be formed in our setting.

We start our analysis by introducing the slow variables

χn = εnχ, τn = εnτ, n = 0,1,2, . . . , (32)

where parameter ε is the one appearing in Eq. (17) and will
again be treated as a formal small parameter; furthermore, we
express P as an asymptotic series in ε:

P = P0 + εP1 + ε2P2 + . . . , (33)

where the unknown real functions Pn (n = 0,1,2, . . .) depend
on the variables (32). Then, substituting Eq. (33) into Eq. (17),
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and using Eq. (32), we obtain a hierarchy of equations at
various orders in ε (see Appendix).

In particular, at the leading order, i.e., at O(1), the resulting
equation [cf. Eq. (A1) in Appendix] corresponds to the linear
limit of Eq. (17); this equation possesses plane-wave solutions
of the form:

P0(τ0,χ0,τ1,χ1, . . .) = �(τ1,χ1,τ2,χ2, . . .)

× exp[iθ (τ0,χ0)] + c.c., (34)

where � is the unknown envelope function of P0, the phase
θ (τ0,χ0) is given by θ (τ0,χ0) = kχ0 − ωτ0, while k and ω

satisfy the linear dispersion relation, cf. Eq. (18).
Next, at the order O(ε), the solvability condition for the

corresponding equation [cf. Eq. (A2) in Appendix] is L̃1P0 =
0; this condition is nothing but the requirement that the secular
part (which is in resonance with L̃0P1) vanishes. This condition
yields the following equation:(

k′ ∂

∂τ1
− ∂

∂χ1

)
�(χ1,τ1, . . .) = 0, (35)

where k′ ≡ ∂k/∂ω is the inverse group velocity. Equation (35)
is satisfied as long as � depends on the variables χ1 and
τ1 through the traveling-wave coordinate τ̃1 = τ1 + k′χ1 (i.e.,
� travels with the group velocity), namely �(χ1,τ1, . . .) =
�(τ̃1,χ2,τ2, . . .). Additionally, at the same order, we obtain
the form of the field P1, namely:

P1 = −4αω2(1 − 4�2ω2)

D(2ω,2k)
�2(τ̃1)e2iθ + Beiθ + c.c., (36)

where B is an unknown function that in principle can be found
at a higher-order approximation.

Finally, following a similar procedure as above, and using
the functional forms of � and P1, the nonsecularity condition
of the equation at the order O(ε2) [cf. Eq. (A3) in Appendix]
yields a NLS equation for the envelope function �:

i
∂�

∂χ2
− 1

2
k′′ ∂

2�

∂τ̃ 2
1

+ q|�|2� = 0, (37)

where the dispersion and nonlinearity coefficients are respec-
tively given by:

k′′ ≡ ∂2k

∂ω2

= 1 − k′2(1 − �2ω2) + �2(k2 − 6�2ω2 − 4�2ωkk′)
k(1 − �2ω2)

,

(38)

q(ω,k) = α2(1 − �2ω2)(1 − 4�2ω2)

3k�2(1 − α)
. (39)

Importantly, the sign of the product σ ≡ sgn(qk′′) deter-
mines the nature of the NLS equation, focusing (σ = +1) or
defocusing (σ = −1), and, hence, the type of the soliton—
bright soliton and dark soliton, respectively [6]. In Fig. 8
we show an example of the dependence of the product qk′′
with respect to the frequency ω, corresponding to a Helmholtz
resonator of a cavity length h = 0.07 m. As seen in the figure,
there exist two different regimes: the low- (high-) frequency

0.1 0.2 0.3 0.4 0.5 0.6 0.7
ω/ω0

−8

−4

0

4

8

qk k

q

qk

FIG. 8. (Color online) The solid line shows the frequency de-
pendence of the product qk′′ of the dispersion and nonlinearity
coefficients of the NLS Eq. (37). Dashed and dotted lines shows
the frequency dependence of k′′ and q, respectively. Parameter values
correspond to the experimental ones for a Helmholtz resonator with
cavity length h = 0.07 m.

regime where σ = +1 (σ = −1) and where bright (dark)
solitons can be formed.

First, we consider the low-frequency regime of Fig. 8,
where the NLS Eq. (37) is focusing and supports
an exact analytical bright soliton solution of the form
� = (η/

√
q)sech(η/

√|k′′|τ̃1) exp[i(η2/2)χ2]. This expres-
sion leads to an approximate bright soliton solution of Eq. (17),
which is written in terms of coordinates χ and τ as follows:

P ≈ 2η√
q

sech

[
εη√|k′′| (τ + k′χ )

]

× cos

[
ωτ −

(
k − ε2η2

2

)
χ

]
. (40)

In terms of the original space and time coordinates, the
approximate envelope soliton solution for the pressure p is
the following:

p(x,t)

p0
≈ 2εη√

q
sech

[
εη√|k′′|

(
t + k′

c0
√

α
χ

)]

× cos

[
ω̃0t −

(
k − (ε2η2)/2

c0
√

α

)
x

]
, (41)

where parameters q, k′, and k′′, for a given frequency ω̃0,
are found by using the dispersion relation in the original
coordinates.

Next we consider the high-frequency regime of
Fig. 8, where the NLS Eq. (37) is defocusing and
admits a dark soliton solution of the form � =√

�0 tanh[
√

�0/|k′′|τ̃1) exp(−i�0χ2). In this case, the corre-
sponding approximate solution of Eq. (17) reads:

P ≈ 2

√
�0

q
tanh

[√
�0

|k′′|ε(τ + k′χ )

]

× cos[ωτ − (k + ε2�0)χ ]. (42)

Accordingly, the approximate dark envelope soliton solution
for the pressure p in the original coordinates is given by:

p(x,t)

p0
≈ 2ε

√
�0

q
tanh

[√
�0

|k′′|εω̃0

(
t + k′

c0
√

α
x

)]

× cos

[
ω̃0t −

(
k + ε2�0

c0
√

α

)
x

]
. (43)

023204-8



ACOUSTIC SOLITONS IN WAVEGUIDES WITH . . . PHYSICAL REVIEW E 91, 023204 (2015)

0 50 100 1500
10

20
30

−10
0

10  

 

P
 (

kP
a)

x (m)

0 20 40 60 80 100
−10

0
10

am
p.

 (
kP

a)

t (ms)

 

 

−10

0

10

x 
(m

)

 

 

t (ms)20 40 60 80 100

10

20

30

−10

0

10

20 40 60 80 100
−20

0

20

am
p.

 (
kP

a)

t (ms)

FIG. 9. (Color online) Top panels (bottom panels): Same as in
Fig. 6 but for an initial condition corresponding to a bright (dark)
NLS soliton of the form of Eq. (41) [Eq. (43)]. In the second (fourth)
panel, the dashed (red) line depicts the analytical result for the sech-
(tanh-) shaped envelope of Eq. (41) [Eq. (43)]. Parameter values
correspond to the experimental ones for a Helmholtz resonator with
cavity length h = 0.07 m.

Note that both the bright and the dark solitons travel with the
group velocity 1/k′ (evaluated at the frequency ω̃0).

Our analytical predictions for the existence of bright and
dark solitons in the acoustic waveguide structure at hand were
also compared to direct numerical simulations. As in the case
of the previous soliton types, we numerically integrated the
nonlinear lattice model of Eq. (13) using as initial conditions
(at the first lattice site, n = 0) the functional forms of the
envelope solitons (41) and (43) at x = 0. The results are shown
in Fig. 9, where the two top (bottom) panels correspond to the
bright (dark) soliton, respectively. We have used the following
parameter values: ω̃0 = 0.2ω0 and amplitude εη = 0.2 for
the bright soliton and ω̃0 = 0.55ω0 and ε

√
�0 = 0.2 for the

dark soliton. In the first and third panels, we show a 3D and
a contour plot showing the evolution of these two envelope
soliton types, while in the second and fourth panels we show
the temporal profiles of the bright and dark solitons at the site
n = 200 (or x = 20 m in physical units). It is observed that
the agreement between the numerical results [solid (black)
line] obtained in the framework of Eq. (13) and the analytical
results [dashed (red) lines depicting the envelopes of the two
solitons] is excellent.

IV. CONCLUSIONS AND DISCUSSION

In conclusion, we presented experimental results showing
the formation of acoustic pulselike solitons in an air-filled
quasi-1D tube with Helmholtz resonators. Additionally, we
proposed a transmission line (TL) approach to theoretically
study our observations. Our model, which relied on the
electroacoustic analogy, was a nonlinear dynamical lattice;

the latter was analyzed by use of both numerical and analytical
techniques.

Our numerical simulations produced results that were in
qualitative agreement with the experimental findings. On the
analytical side, we considered the continuum limit of the
lattice model, and showed—by means of dynamical systems
and multiscale expansion methods—that it can be reduced to
celebrated soliton equations, namely a Boussinesq-type model,
a KdV equation, and a NLS equation. Such reductions allowed
us to (i) identify parameter regimes and appropriate spatial
and temporal scales where different types of solitons can be
formed and (ii) derive various soliton solutions in an analytical
form. In all cases, the analytical predictions were in excellent
agreement with direct simulations and in qualitative agreement
with the experimental observations.

In this study, our analytical approximation was simplified,
due to the fact that our model did not take into account
inherent losses in the system. This simplification, however,
allowed us to (a) provide analytical forms of acoustic solitons
in the Helmholtz resonator lattice that were not available
before (recall that soliton solutions of Refs. [11–13] were
presented in an implicit form and in an explicit form only
in some asymptotic limits for the lossless case) and (b) predict
envelope solitons in the setting under consideration (only
dark envelope solitons were previously predicted to occur in
cylindrical acoustic waveguide structures [17]). Furthermore,
our analytical approximation provides a clear physical picture
for the properties of solitons in various parameter regimes
and can, in principle, be used for other studies (thanks to
the flexibility of our experimental setting)—such as soliton
collisions, soliton-defect interactions, soliton propagation in
disordered lattices, and so on.

There are many future research directions that may follow
this work. The versatility of the experimental setting of the
Helmholtz-resonators lattice, followed by the simplicity of the
proposed nonlinear TL model, offer an attractive combination
for a variety of future research investigations. First, the experi-
mental realization of envelope solitons and a systematic study
of their properties is a particularly interesting theme. Also, one
could incorporate nonlinear elements in the parallel branch
(related to the resonators), as well as losses in the model, and
then use asymptotic and perturbative techniques to capture
the propagation properties of solitons, also quantitatively.
Another interesting direction is the study of soliton formation
and propagation in other waveguide structures, proposed or
used in the context of acoustic metamaterials, with the use
of the nonlinear TL approach. In the same spirit, it would
also be particularly challenging to extend our methodology to
higher-dimensional settings. Pertinent studies are currently in
progress and results will be reported in future publications.
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APPENDIX: PERTURBATION EQUATIONS

Here we present the hierarchy of equations in ε, resulting from the substitution of Eq. (33) into Eq. (17). More specifically, at
the orders O(1), O(ε), and O(ε2), we respectively obtain the following equations:

L̃0P0 = 0, (A1)

L̃0P1 + L̃1P0 = Ñ0
[
P 2

0

]
, (A2)

L̃0P2 + L̃1P1 + L̃2P0 = Ñ0[2P0P1] + Ñ1
[
P 2

0

]
. (A3)

The linear operators L̃0, L̃1, and L̃2, as well as the nonlinear operators Ñ0[P ], Ñ1[P ], are given by:

L̃0 = ∂2

∂τ 2
0

− ∂2

∂χ2
0

− �2

(
∂4

∂τ 2
0 ∂χ2

0

− α
∂4

∂τ 4
0

)
, (A4)

L̃1 = 2
∂2

∂τ0∂τ1
− 2

∂2

∂χ0∂χ1
− �2

(
2

∂4

∂τ 2
0 ∂χ0∂χ1

+ 2
∂4

∂χ2
0 ∂τ0∂τ1

− 4α
∂4

∂τ 3
0 ∂τ1

)
, (A5)

L̃2 = ∂2

∂τ 2
1

− ∂2

∂χ2
1

+ 2
∂2

∂τ0∂τ2
− 2

∂2

∂χ0∂χ2
− �2

[
∂4

∂τ 2
0 ∂χ2

1

+ ∂4

∂τ 2
1 ∂χ2

0

+ 4
∂4

∂τ0∂χ0∂τ1∂χ1
+ 2∂4

∂τ 2
0 ∂χ0∂χ2

+ 2
∂4

∂χ2
0 ∂τ0∂τ2

− α

(
6

∂4

∂τ 2
0 ∂τ 2

1

+ 4
∂4

∂τ 3
0 ∂τ2

)]
, (A6)

Ñ0[P ] = α

[
∂2(P )

∂τ 2
0

+ �2 ∂4(P )

∂τ 4
0

]
, (A7)

Ñ1[P ] = α

[
2

∂2(P )

∂τ0∂τ1
+ 4

∂4(P )

∂τ 3
0 ∂τ1

]
. (A8)
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