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Symmetric solitonic excitations of the (1 + 1)-dimensional Abelian-Higgs classical vacuum
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We study the classical dynamics of the Abelian-Higgs model in (1 + 1) space-time dimensions for the case
of strongly broken gauge symmetry. In this limit the wells of the potential are almost harmonic and sufficiently
deep, presenting a scenario far from the associated critical point. Using a multiscale perturbation expansion,
the equations of motion for the fields are reduced to a system of coupled nonlinear Schrödinger equations.
Exact solutions of the latter are used to obtain approximate analytical solutions for the full dynamics of both
the gauge and Higgs field in the form of oscillons and oscillating kinks. Numerical simulations of the exact
dynamics verify the validity of these solutions. We explore their persistence for a wide range of the model’s
single parameter, which is the ratio of the Higgs mass (mH ) to the gauge-field mass (mA). We show that only
oscillons oscillating symmetrically with respect to the “classical vacuum,” for both the gauge and the Higgs field,
are long lived. Furthermore, plane waves and oscillating kinks are shown to decay into oscillon-like patterns, due
to the modulation instability mechanism.
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I. INTRODUCTION

The study of solitons in nonlinear field theories continues
to attract considerable attention. This is due to the fact that
such field configurations are relevant for the phenomenological
description of a wide class of physical systems ranging from
elementary particles to superconductors and Bose-Einstein
condensates. Being localized structures characterized by a
coherent time evolution, solitons can be related to particle-like
structures, such as magnetic monopoles, sphalerons, extended
structures in the form of domain walls and cosmic strings, and
nontopological localized structures, namely oscillons, having
implications for the cosmology of the early universe [1–9].

Usually localized solitonic states emerge as solutions in
field theories characterized by a scale that may originate from
the spontaneous breaking of an underlying symmetry. The
simplest models in which such a scenario can be realized are
scalar theories [10–23], admitting a variety of such solutions
like the exact kink solution [11] or the breather [24] of the
φ4 theory. Furthermore, models with scalars coupled to gauge
fields also admit various types of soliton solutions that can be
obtained both analytically and numerically [25–30].

Among the models involving a gauge field coupled with a
scalar, the Abelian-Higgs model in (1 + 1) dimensions shares
distinguished ground. First, it may reveal important features
of superconductivity [31,32], allowing at the same time for
analytical treatment. In fact, the search for one-dimensional
solutions of the effective theory of superconductivity [33],
namely the Gorkov-Eliashberg-Landau-Ginzburg approach,
can be directly associated with the investigation of classical
solutions of the (1 + 1)-dimensional Abelian-Higgs model
[26]. Additionally, in most recent studies this model plays
an important role in one-dimensional holographic supercon-
ductors [34]. Finally, the Abelian-Higgs model in (1 + 1)
dimensions has been used as a toy model for the description
of topological charge fluctuations of the vacuum at zero
temperature via instantons or the study of sphalerons at finite
temperature. Both of these field configurations (instantons,
sphalerons), have been associated in previous studies with the
baryon number violation in the universe [35,36].

Here we are interested in studying soliton solutions of
the (1 + 1)-dimensional Abelian- Higgs model, focusing on
oscillons and oscillating kinks. In particular, oscillons, also
known as breathers, are of special interest since they can
be linked to the dynamics of the early universe [2] and to
the Meissner effect of superconductivity [26]. In most cases
oscillons are found numerically; however, approximate analyt-
ical solutions describing oscillons were rigorously derived in
Ref. [26] by introducing multiple-scale perturbation expansion
[37] in gauge theories [38] and assuming a sufficiently small
amplitude for the Higgs field. In this limit the dynamics sim-
plify considerably, and it is found that the scalar field performs
asymmetric oscillations around the “classical vacuum.” Such
a scenario occurs naturally considering the model just after
the symmetry breaking, i.e., close to the critical point. Then
the minimum of the scalar field potential is very flat and the
asymmetric cubic term is strong, leading to an asymmetric
shape of the potential around it.

In the present work we investigate the (1 + 1)-dimensional
Abelian-Higgs model in a different limit, where the gauge and
the scalar field amplitudes are of the same order. This scenario
corresponds to a strong breaking of the underlying gauge
symmetry, far beyond the related critical point. In this case
the minimum of the potential occurs at the bottom of a deep
well, while the potential shape is almost symmetric around it
since the quadratic term dominates. The resulting dynamics,
derived within the framework of multiple-scale perturbation
theory, are significantly more complex, leading to a system of
coupled nonlinear Schrödinger equations (CNLS) equations
describing the field envelopes. Solving analytically the coupled
system we obtain bright-bright, dark-bright, and dark-dark
soliton solutions. Our analysis shows that only bright-bright
solitons may describe long-lived oscillons of the original
equations of motion, with both fields performing symmetric
oscillations around the “classical vacuum.” Additionally, it is
shown that any dark component is subject to the modulation
instability (MI) mechanism [39]. Subsequently, we integrate
numerically the exact equations of motion and we verify that
the analytically obtained solutions describe the long-lived
oscillons sufficiently well. Surprisingly enough, even when
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the perturbation expansion is not valid, using initial conditions
corresponding to bright-bright solitons, we numerically obtain
long-lived oscillons. Furthermore, we use the MI mechanism
in order to illustrate that oscillons may be formed for all values
of the parameter mH/mA.

The paper is organized as follows: in Sec. II, we present the
equations of motion for the Abelian-Higgs model, reducing
them to a CNLS system with the method of multiple scales
and provide the corresponding analytical solutions. In Sec. III
we present results of direct numerical integration of the
original equations of motion to check the validity of our
approximations and study the stability of the analytically
found solutions. Finally, in Sec. IV we present our concluding
remarks.

II. GENERAL FORMALISM AND SETUP

A. Deriving the NLS equations

The Lagrangian density of the model has the form

L = − 1
4FμνF

μν + (Dμ�)∗(Dμ�) − V (�∗�), (1)

where � is a complex scalar field, Dμ = ∂μ + ieAμ is the
covariant derivative with e the coupling constant, and Fμν is
the electromagnetic tensor. The potential V (�∗�) has the form

V (�∗�) = μ2�∗� + λ(�∗�)2, (2)

with μ2 < 0 and λ > 0 being undefined constants. For the
spontaneously broken symmetry case, we choose as vacuum
the minimum υ =

√
−μ2/2λ of the potential given by Eq. (2).

We expand the � field around this vacuum expectation value
(vev) as � = υ + H/

√
2, gauging away the Goldstone mode.

H is a real scalar field, the Higgs field, with mass mH =√
2λυ2. Due to the symmetry breaking the gauge field Aμ

acquires mass mA = eυ.
We reduce the theory to a (1 + 1)-dimensional model by

considering the ansatz: A0 = A1 = A3 = 0 and A2 = A(x,t),
which is compatible with the Lorentz condition and simplifies
significantly the equations of motion. Defining dimensionless
variables: x̃μ = mAxμ, Ã = (e/mA)A, H̃ = (e/mA)H [vev
is also scaled as υ̃ = (e/mA)υ], and dropping the tildes
after this substitution, the corresponding equations of motion
become

(� + 1)A + 2HA + H 2A = 0, (3)

(� + q2)H + 3

2
q2H 2 + q2

2
H 3 + A2(1 + H ) = 0, (4)

where A,H are functions of (x,t), while q ≡ mH/mA is the
single dimensionless parameter that designates the dynamics.
The energy density corresponding to the above equations of
motion is

E(x,t) = 1
2 [(∂tA)2 + (∂xA)2 + (∂tH )2 + (∂xH )2] + V, (5)

with V = q2H 2(H + 2)2/8 + A2(H + 1)2/2 being the poten-
tial energy. We are interested in finding localized solutions
to the above system of equations, i.e., Eqs. (3) and (4). For
this purpose we employ multiple scale perturbation theory
[37] expanding space-time coordinates and their derivatives
as follows: x0 = x, x1 = εx, x2 = ε2x, . . ., t0 = t , t1 = εt ,

t2 = ε2t, . . ., ∂x = ∂x0 + ε∂x1 + . . ., ∂t = ∂t0 + ε∂t1 + . . .. Ac-
cordingly, we write the gauge and the scalar field as

A = εA(1) + ε2A(2) + . . . , (6)

H = εH (1) + ε2H (2) + . . . , (7)

where ε is a formal small parameter: 0 < ε � 1, related to the
amplitude of the Higgs and the gauge field excitations around
the physical vacuum. Inserting Eqs. (6) and (7) into Eqs. (3)
and (4), and expressing the operators in terms of the slow
scales mentioned above, we proceed in our analysis solving
the equations of motion order by order. To first order in ε we
have the following decoupled equations for the gauge (A) and
the Higgs (H ) field, respectively:

O(ε): (�0 + 1) A(1) = 0, (8)

(�0 + q2) H (1) = 0. (9)

Equations (8) and (9) acquire plane wave solutions of the form

A(1) = f eiθ1 + f ∗e−iθ1 , (10)

H (1) = leiθ2 + l∗e−iθ2 , (11)

where “*” denotes complex conjugate, while f = f (xi,ti) and
l = l(xi,ti) are functions of the slow variables that have to be
determined (the index i = 1,2, . . . refers to the slow scales).
The phase θj is defined as θj ≡ kjx − ωj t , where the index
j = 1,2 refers to the gauge and the scalar field, respectively.
Substituting Eqs. (10) and (11) into Eqs. (8) and (9) we get
the dispersion relations for the two fields, i.e., ω2

1 = k2
1 + 1

and ω2
2 = k2

2 + q2. Thus, to first order in ε the linear limit of
the theory is recovered. Proceeding to the next order of the
perturbation scheme, namely O(ε2), we obtain the following
system of equations:

(�0 + 1)A(2) = −2∂μ0∂
μ1A(1) − 2H (1)A(1), (12)

(�0 + q2)H (2) = −2∂μ0∂
μ1H (1) −

(
3q2

2
H (1)2 + A(1)2

)
.

(13)

Notice that the first terms on the right-hand side of the above
equations are “secular ,” that is in resonance with the operators
on the left side. These terms imply a linear growing of A(2),
H (2) with time and therefore lead to the blow-up of the
solutions. Consequently, in order for the perturbation scheme
to be valid, these terms have to vanish independently, leading
to the following equations for f = f (xi,ti) and l = l(xi,ti):

L̂1f = 0, (14)

L̂2l = 0. (15)

The operator L̂j is defined as L̂j ≡ −i(∂t1 + υ
(j )
g ∂x1 ), with

υ
(j )
g ≡ ∂ωj (k)/∂kj = kj/ωj being the group velocities for

the gauge (j = 1) and the Higgs (j = 2) field, respectively.
Eqs. (14) and (15) are automatically satisfied if f = f (X1,t2)
and l = l(X2,t2), where Xj ≡ x1 − υ

(j )
g t1.

Furthermore, Eqs. (12) and (13) can be solved analytically
and the solutions for the fields A(2) and H (2) as functions of f
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and l have the following form:

A(2) = f l

a
ei�+ + f l∗

b
ei�− + c.c., (16)

H (2) = l2

2
e2iθ2 + f 2

4 − q2
e2iθ1 − 3q2|l|2 + 2|f |2

q2
+ c.c.,

(17)

where “c.c.”, stands for the complex conjugate, while a =
ω1ω2 − k1k2 + q2/2, b = k1k2 − ω1ω2 + q2/2, and �± ≡
θ1 ± θ2. Note, that the coefficients in Eqs. (16) and (17), e.g.,
1/b, define regions for the parameter q for which the fields
A(2) and H (2) could become infinitely large [in the perturbation
are assumed to be of O(1)]. Such regions are for consistency
excluded in our analysis. Also notice that once the functions
f and l are determined, the solutions for A(2) and H (2) are also
fixed. Continuing our analysis we get to O(ε3) the following
equations:

(�0 + 1)A(3) = −2∂μ0∂
μ1A(2) − (

�1 + 2∂μ0∂
μ2

)
A(1)

− 2(H (2)A(1) + A(2)H (1)) − H (1)2A(1), (18)

(�0 + q2)H (3) = −2∂μ0∂
μ1H (2) − (

�1 + 2∂μ0∂
μ2

)
H (1)

− 3q2H (1)H (2) − q2

2
H (1)3 − 2A(1)A(2)

−A(1)2H (1). (19)

The first terms on the right-hand side of Eqs. (18) and (19)
can be eliminated through the aforementioned choice for the
variables Xi along with the condition υ(1)

g = υ(2)
g . Furthermore,

to simplify the calculations remaining consistent, we choose
k1 = k2 = 0, i.e., υ(1)

g = υ(2)
g = 0, so that X1 = X2 = x1.

Additionally, at the same order, the solvability condition
requires the secular parts of Eqs. (18) and (19) to vanish,
leading to the following equations:(

�1 + 2∂μ0∂
μ2 + 2H (2) + H (1)2

)
A(1) = −2A(2)H (1), (20)

(
�1 + 2∂μ0∂

μ2 + 3q2H (2) + q2

2
H (1)2 + A(1)2

)
H (1)

= −2A(1)A(2). (21)

With the above assumptions we derive a system of CNLS
equations for the functions f (x1,t2) and l(x1,t2):

i∂t2f = − 1
2∂2

x1
f + g11|f |2f + g12|l|2f, (22)

iq∂t2 l = − 1
2∂2

x1
l + g21|f |2l + g22|l|2l, (23)

where gij ≡ gij (q) are the following functions of q:

g11 = −
(

2

q2
+ 1

q2 − 4

)
, g12 = −

(
2 − 4

q2 − 4

)

g21 = g12, g22 = −3q2. (24)

FIG. 1. (Color online) Sketch showing the regions of existence of
each type of solution, depending on different values of the parameter
q. Dashed-dotted (blue) lines correspond to g11(q), solid (red) line
to g22(q), and dashed (green) lines to g12(q) = g21(q). Moreover,
vertical dashed (black) lines at q = 0.88, q = 1.75, q = 1.95, q =
2.5, and q = 3.5, respectively, correspond to the parameters used for
the simulations given below.

B. Soliton solutions of the NLS equations and approximate
oscillons and oscillating kinks

The system of Eqs. (22) and (23), in the limit gij = 1, is
reduced to the integrable Manakov model [40], which admits
exact analytical solutions. For gij �= 1, analytical soliton
solutions of the CNLS system can also be obtained, as it
was shown in a recent work [41]. In our case the coupling
constants gij depend on the parameter q (cf. Fig. 1) and in
general gij �= 1. Adopting the method of Ref. [41] we show
below that solitons can be obtained in different q regions. First
we look for solutions in the form of bright-bright (bb) solitons
using the following ansatz:

fbb = a1sech(βbbx1)e−iν1t2 , (25)

lbb = a2sech(βbbx1)e−iν2t2 , (26)

where a1,2 denote the amplitudes, ν1,2 the frequencies of
the solitons, and βbb is the inverse width of the solitons.
The condition that the squared amplitudes and widths of
the solutions are positive defines three regions of the single
parameter q where bb solitons can be found, i.e., 0.76 < q <

1.06, 1.88 < q < 2, and 2.13 < q < 2.63. Another type of
solution, in the form of dark-dark (dd) solitons, can also be
obtained using the ansatz

fdd = a1 tanh(βddx1)e−iν1t2 , (27)

ldd = a2 tanh(βddx1)e−iν2t2 . (28)

The aforementioned condition for the amplitudes and widths
implies that solutions of this type are allowed in the region 2 <

q < 2.13. Finally, bright-dark (bd) vector soliton solutions
(f , l) of the form

fbd = a1sech(βbdx1)e−iν1t2 , (29)

lbd = a2 tanh(βbdx1)e−iν2t2 , (30)

as well as dark-bright (db) solutions (by interchanging fbd ↔
lbd ) can also be found. Solitons of the bd (db) type are possible
in the regions 0 < q < 0.76, q > 2.63(1.06 < q < 1.88). In
all cases the soliton widths, amplitudes, and frequencies are
connected through the equations shown in Table I. Figure 1
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TABLE I. Normalized amplitudes widths and frequencies.

R (a2/a1)2 ≡ ā (β/a1)2 ≡ β̄ (ν1/a
2
1 ) (ν1/ν2)

bb (g11 − g21)/(g22 − g12) (g2
12 − g11g22)/(g22 − g11) −β̄/2 q

dd (g11 − g21)/(g22 − g12) (g11g22 − g2
12)/(g22 − g12) β̄ q

db (g11 − g21)/(g12 − g22) (g2
12 − g11g22)/ (g12 − g22) β̄ + g12ā

2qg11(g12−g22)

(g2
12−2g12g22+g11g22)

bd (g11 − g21) / (g12 − g22)
(
g11g22 − g2

12

)
/ (g12 − g22) −β̄/2 + g12ā

−2qg11(g12−g22)

(g2
12−2g12g22+g11g22)

shows the coupling constants gij as functions of q, and
the region of existence for each different vector soliton is
highlighted. Using Eqs. (10) and (11) and the aforementioned
soliton solutions of Eqs. (22) and (23) we can obtain localized
approximate solutions (to order ε) for the fields A and H :

A(x,t) ≈ 2εf (εβx) cos[(1 + ε2ν1)t], (31)

H (x,t) ≈ 2εl(εβx) cos[(q + ε2ν2)t]. (32)

Inserting the profiles of f , l in Eqs. (31) and (32), we
obtain different classes of approximate solutions. Those
corresponding to bb solitons, as in Eqs. (25) and (26), will
have the form of oscillons for both fields. On the other hand,
dd solitons correspond to solutions where both fields have the
form of oscillating kinks. Finally, bd (db) solitons will result
in an oscillon for the field A (H ) and an oscillating kink for
H (A).

C. Modulation instability

In this section we will explore the impact of the modulation
instability mechanism to the solution space of the Abelian-
Higgs model. To this end, we examine the stability of
plane-wave solutions of the CNLS Eqs. (22) and (23). The
mechanism of modulation instability (MI) [39] is an important
property of the NLS equation, revealing localized structures
that a system supports, e.g., sech-shaped solutions of the form
of Eqs. (25) and (26). This mechanism also gives information
about the tanh -shaped solutions, e.g., Eqs. (27) and (28),
since instability of plane waves leads to unstable background
for this type of solutions. We consider the following ansatz:

f (x1,t2) = (f0 + δf )e−i�1t2 , (33)

l(x1,t2) = (l0 + δl)e−i�2t2 , (34)

where f0 and l0 are the amplitudes of the plane wave
solutions of the CNLS equations, and �1,2 are their frequencies
satisfying the dispersion relations

ω1�1 = g11|f0|2 + g12|l0|2, (35)

ω2�2 = g21|f0|2 + g22|l0|2. (36)

The small amplitude perturbations, i.e., δf/f,δl/ l � 1, are
complex functions of the form δf = u1 + iw1, δl = u2 + iw2.
The real functions uj ,wj are considered to be of the general
form

uj = u0j exp[i(Kx1 − �t2)] + c.c., (37)

wj = w0j exp[i(Kx1 − �t2)] + c.c., (38)

where the amplitudes u0j , w0j are constants while K is
the wavenumber and � the frequency of the perturbation.
Substituting Eqs. (37) and (38) into the CNLS Eqs. (22) and
(23) leads to an algebraic system of equations, the determinant
of which has to be zero. This compatibility condition leads to
the following equation:

A�4 − (
ω2

1B2 + ω2
2B1

)
�2 + (B1B2 − �) = 0, (39)

where A = (ω1ω2)2, Bj = K2/2(K2/2 + 2gjjf
2
0 ) with j =

1,2 and � = K4g12g21(f0l0)2. Requiring real roots of Eq. (39)
we are led to the following stability conditions:

g11g22 − g12g21 > 0, g11 � 0, g22 � 0. (40)

As seen from Eq. (24), there are no real values of the
parameter q satisfying the last inequality of Eq. (40). Thus,
plane-wave solutions are unstable under small perturbations.
The aforementioned result implies that solutions including d

components, although they are allowed by the CNLS system
in Eqs. (22) and (23), are expected to be unstable due to the
modulation instability. This can be seen from the following
fact: the dark-component in the solitons of Eqs. (27)–(30),
takes asymptotically the form ∼ ±ai exp[−iνi t] at x → ±∞.
Hence, away from its core, the solution is a plane wave and
any perturbation will lead to the appearance of MI and the
generation of oscillons. Thus, we argue that localized solutions
in the form of kinks, are not supported in the setting where A

and H are of the same order.
According to the above analysis, the relevant solutions for

the functions f (x1,t2) and l(x1,t2) are the bb solitons, which
are found in the three regions defined in the previous paragraph
by Eqs. (25) and (26) (see also shaded areas of Fig. 1). The
profile of a Higgs field oscillon with q = 2.5 is shown in
the top panel of Fig. 2 with a solid (blue) line, for a half
and a total period of oscillation. Notice that in contrast to
previous findings [26], the Higgs field performs symmetric
oscillations around the “classical vacuum” (i.e., H = 0). For
comparison a typical solution of an asymmetric oscillon of
Ref. [26] is also shown in Fig. 2 [dotted (green) lines] for
the same value of q. As already discussed, the two types of
oscillons (asymmetric, symmetric) describe different scenarios
for the underlying physics: the asymmetric solutions are valid
in the case of weakly broken symmetry, i.e., just beyond the
associated critical point, while the symmetric solutions occur
when the gauge symmetry is strongly broken, i.e., far beyond
the critical point.

It is also important to note that in the region 1.88 < q < 2,
the amplitudes of the second-order expansions of the fields
[cf. Eqs. (16) and (17)] become larger than O(1) and the
perturbation scheme collapses. Thus, in this case oscillon
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FIG. 2. (Color online) Top panel shows a plot of the Higgs field
for t = TH , t = TH /2, and q = 2.5. Solid (blue) lines refer to the
symmetric oscillations of the field H (x). For comparison, in the
same figure dotted (green) lines depict the oscillon in the asymmetric
case. Middle and bottom: left panels depict the profiles of the two
fields A [solid (blue) lines], and H [dotted (green) line], for t = 0,
corresponding to oscillon solutions of Eqs. (31) and (32) for different
values of q. Right panels: contour plots showing the evolution of the
energy density E(x,t) for initial conditions corresponding to the left
panel. The total time of integration is t = 5 × 104 and the different
values of q are depicted in the upper-right corner of each contour.

solutions are not expected to exist for the exact system.
However, our numerical results show that an initial condition
corresponding to bb solitons in this region also leads to robust
oscillon solutions.

III. NUMERICAL RESULTS: OSCILLON’S LONGEVITY

According to the analysis of the previous section, robust
localized solutions of the original system of Eqs. (3) and (4)
in the form of NLS bright-bright solitons, are expected to be
found in the two parameter regions 0.76 < q < 1.06 (RI) and
2.13 < q < 2.63 (RII) [cf. Fig. 1]. To clarify this issue we
perform numerical integration of the exact system Eqs. (3)
and (4) for a wide range of q values, using as initial conditions
the approximate solutions Eqs. (31) and (32) for the case of
bb solitons. Our main interest is to confirm the existence of
these structures and explore their long-time dynamics. We use
a fourth-order Runge-Kutta integrator for the time propagation
with a lattice of length L = 400, lattice spacing dx = 0.1, time
step dt = 10−2, and ε = 0.1. With this choice of parameters
the numerical integration conserves the energy for the total
time interval of our simulations up to the order of 10−3.

In the middle panel of Fig. 2 we show an example
of the evolution of an oscillon in RI for q = 0.88. The

middle-left panel depicts the oscillon profile at t = 0, were
solid (blue) line and dotted (green) line present A and H ,
respectively. The evolution of the energy density E(x,t) of
Eq. (5), is shown in the middle-right panel for a time interval
of t = 5 × 104, corresponding to ∼104 oscillations for both
fields. The energy density remains localized throughout the
simulation, indicating the robustness of the oscillons in RI.
We have confirmed (results not shown here) the existence and
longevity of oscillons in this region for different values of q.

Next, an example of an oscillon in RII and for q = 2.5 is
shown in the bottom panels of Fig. 2. The evolution of the
energy density in the right panel again confirms the existence
of the respective oscillon solution and illustrates its longevity,
since it turns out to be robust after performing at least ∼104

oscillations. Note that for this example and for q ∈ [2.3,2.63]
(RII), the amplitude of H gets suppressed so that the ratio
of the amplitudes of the fields H/A is close to the value of
the perturbation parameter ε. In this sense for this region of
parameter values one recovers the scenario of small Higgs
amplitude, explored in our previous work [26]. However, the
solutions presented here have a different profile than those in
Ref. [26]. In particular, the Higgs field in Ref. [26] exhibits
asymmetric oscillations with respect to the origin (i.e., H = 0),
while the oscillon of Eq. (32) is symmetric [see also top panel
of Fig. 2]. Formally, this is due to the fact that the Higgs
field in Ref. [26] obeys a linear equation with an external
source generated by the gauge field, while here the Higgs
field obeys an NLS equation coupled with the gauge field. As
previously explained, these two types of oscillons correspond
to different scenarios for the underlying physics. We have
performed simulations and confirmed the existence of robust
oscillons described by Eqs. (25) and (26) in both RI and RII
for various values of q.

Additionally, our numerical findings support the existence
of oscillons in the region where the perturbation scheme is not
valid, i.e., for 1.88 < q < 2. Using the same initial condition
as above, we have integrated Eqs. (3) and (4) for q = 1.95 and
the results are shown in the middle and bottom panels of Fig. 3.
Since the system does not appear to support oscillons of the

FIG. 3. (Color online) Top and middle panels: Contour plots
showing the evolution of the gauge field A(x,t) for different values
of q, as indicated in the upper-right corner of each. Bottom: Contour
of the energy density E(x,t) for a time interval t = 5 × 104.
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FIG. 4. (Color online) Top left panel: profile snapshots of the
field H at two different instants, t1 = 3042 dashed (blue) line and
t2 = 3043 solid (green) line. Solid (black) box focuses on a single
oscillon showing its oscillation in half period. Top-right panel:
Contour plot showing the evolution of the energy density E(x,t)
for a bd initial condition. The black box indicates the time of the
snapshot. Bottom panels are the same as the top panels for plane
wave initial conditions. In both contours the values of q are indicated
in the upper-left corner, and the time interval is t = 7 × 103.

form of Eqs. (25) and (26), it is natural to expect a distortion
of these types of solutions. Indeed, a large amount of radiation
is emitted from the vicinity of the initially localized structure,
as shown in the middle panel of Fig. 3. This panel depicts
the short time evolution of A, and it is clearly seen that the
distortion of the core starts very early. However, after sufficient
time, a localized oscillating structure, different from the initial
one, is formed and remains undistorted through the time of
the evolution. The energy density of this oscillon is shown in
the bottom panel of Fig. 3. The same qualitative result was
observed for different values of q in this region (results not
shown here), suggesting that oscillons do exist but they are
not described by Eqs. (25) and (26). For completeness, the
short-time evolution of an oscillon in RI is plotted in the top
panel of Fig. 3, to highlight the fact that the radiation of the true
oscillon solution (see Ref. [24]) has much smaller amplitude
than the oscillon.

Next, we perform numerical integration of the exact system
of equations in the regions of q where solutions in the form
of Eqs. (29) and (30) are expected to be subject to the MI
mechanism. The evolution of the energy density for such a bd

soliton is shown in the top-right panel of Fig. 4 for q = 3.5.
We observe that at t ∼ 2 × 103 the initially localized solution
deforms and the instability settles in. Through the instability,
localized structures occur on top of the initial solution (see,
e.g., the black box around t = 3042) having the form of
oscillons. As an example, the profile of the Higgs field for
t1 = 3042 [dashed (blue) line] and t2 = 3043 [solid (green)
line] is shown in the top-left panel of Fig. 4. The solid (black)
box indicates an oscillon performing a half oscillation period.
The above result is in agreement with our analytical findings
regarding the instability of the oscillating kinks.

We complete our numerical analysis by showing in the
bottom panels of Fig. 4 the generation of oscillons at q = 1.75,
that is in the db region. We have used initial conditions of
the form: A = H = C0[1 + δ cos(Kx)], where C0 = 0.05 and

δ = 10−2 are the plane wave and the perturbation amplitude,
respectively, and K = 0.025 is a wavenumber inside the
instability band given by Eq. (39). The initial, almost flat
profile of the energy density deforms into a periodic pattern
at t ≈ 2 × 103, due to the modulational-instability-induced
exponential growth of the wavenumber K . At later times
moving oscillons are formed, which are subject to collisions
and eventually some survive and some annihilate. The time
interval indicated by the solid (black) box in the bottom-right
panel of Fig. 4 contains two time instants for which we show
the Higgs field profile in the respective left panel. The solid
(black) box in the left panel, focuses on a single oscillon
at x ≈ 100 performing a half oscillation period. Dashed
(blue) line corresponds to t1 = 6530 and solid (green) line
to t2 = 6531. The oscillon performs oscillations with period
Tosc = 2π/q in agreement with the analytical predictions.

IV. CONCLUSIONS AND DISCUSSION

In conclusion, we have presented approximate analytical
solutions of the (1 + 1)-dimensional Abelian-Higgs model,
when the amplitudes of the gauge and the Higgs field are
of the same order. Employing a multiple-scale perturbation
theory we reduced the original set of equations into a system
of CNLS equations, which admits different types of exact
analytical solutions, depending on the parameter q (i.e., the
ratio of two field masses).

Our analysis reveals that bright-bright solitons of the
CNLS equations lead to robust long-lived oscillon solutions
of the original system. These oscillons are characterized by
symmetric oscillations around the “classical vacuum,” for both
the gauge and the Higgs field, describing excitations that may
occur when the gauge symmetry is strongly broken (in contrast
to the previous results of Ref. [26]).

Direct numerical simulations of the original system of
equations of motion confirm the robustness of the obtained
solutions for times up to 5 × 104 oscillation periods. These
solutions are shown to exist in two different regions: 0.76 <

q < 1.06 (RI) and 2.13 < q < 2.63 (RII). In the context of
superconductor phenomenology a possible interpretation of
our solutions is that oscillons with mass ratio less than unity
(RI) correspond to type-I superconductors, while oscillons of
RII, to type-II superconductors. This analogy is compatible
with the statements reported in Ref. [27], for the Abelian-Higgs
in (3 + 1) dimensions.

Using the derived CNLS system we have also shown that
for any value of the parameter q, plane waves are subject to the
modulation instability mechanism. Dark-bright (bright-dark)
solitons and the corresponding oscillating kinks were found
to be unstable, and their instability was shown to lead into
oscillon-like patterns.

The methodology used in the present work may be applied
in order to obtain novel localized structures in different
settings, either with different potentials for the scalar field
or in the presence of non-Abelian gauge fields [28] and/or
even in higher dimensional settings. Finally, based on the
obtained solutions it would be interesting to further explore
oscillon-oscillon interactions and understand their impact on
the long-time field dynamics.
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