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A consistent theoretical model that can be applied in a wide range of densities and temperatures is necessary
for understanding the variation of a material’s properties during compression and heating. Taking argon as an
example, we show that the combination of self-consistent fluid variational theory and linear response theory
is a promising route for studying warm dense matter. Following this route, the compositions, equations of
state, and transport properties of argon plasma are calculated in a wide range of densities (0.001−20 g/cm3)
and temperatures (5−100 kK). The obtained equations of state and electrical conductivities are found in good
agreement with available experimental data. The plasma phase transition of argon is observed at temperatures
below 30 kK and density about 2−6 g/cm3. The minimum density for the metallization of argon is found to be
about 5.8 g/cm3, occurring at 30−40 kK. The effects of many-particle correlations and dynamic screening on the
electrical conductivity are also discussed through the effective potentials.

DOI: 10.1103/PhysRevE.91.023106 PACS number(s): 52.25.Jm, 52.25.Fi, 52.27.Gr

I. INTRODUCTION

Under compression, matter will go into the so-called warm
dense matter (WDM) state characterized by strong coupling,
partial degeneration, and partial ionization. Generally, the
density of WDM is 0.01–10 times the solid density and
the temperature varies in a range of 0.1−100 eV [1]. The
knowledge of WDM is of fundamental importance—not only
because of its appearance in inertial confined fusion [2] and
in many celestial bodies such as Jupiter [3] and Neptune [4],
which is relevant to the understanding of thermonuclear, laser,
and other pulsed devices that require considerable energy
density—but also because it reaches the boundary of our
theories of matter: it is too dense for traditional plasma physics
and too hot for traditional condensed matter physics [1].

Various methods of many-body theory have been developed
to calculate the thermodynamics and transport properties of
WDM. For examples, path integral Monte Carlo (PIMC)
simulations were carried out for warm dense hydrogen [5]
helium [6], a mixture of hydrogen and helium [7], water, and
carbon [8]. Quantum molecular dynamics (QMD) simulations
based on finite-temperature density functional theory (FTDFT)
were also performed for warm dense hydrogen [9], helium
[10], beryllium [11], aluminum [12], water [13], and iron [14],
etc. Besides these ab initio calculations, several methods, such
as the self-consistent averaged-atom model [15,16], classical
and quantum hypernetted chain [17,18], activity expansion
[19], and a self-consistent fluid variational theory [10,20–32],
have also been widely used to study the warm dense matter.
Even so, the understanding of this exotic state is still poor
because of its inherent complexity. Up to now, the PIMC
simulations, the strictest among these methods, have only
been carried out for few-electron systems such as hydrogen
and helium; it is still formidable for a substance like argon
that has many electrons, while the results of QMD based on
FTDFT are also not so satisfied at high temperature due to the
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approximations that have to be used in FTDFT. For example,
hydrogen and deuterium have been simulated with QMD by
many groups, but the predicted Hugoniots are inconsistent with
each other, especially at high temperature and density; see Fig.
5 in Ref. [33].

In our previous works [29–32], a self-consistent fluid
variational theory (SFVT) was developed to calculate the
equations of state (EOS) of hydrogen, deuterium, nitrogen,
oxygen, and noble gases. In this paper, the SFVT is extended to
be applicable in a wide range of density and temperature. The
compositions and the EOSs of argon plasma are calculated for
temperature up to 100 kK and density up to 20 g/cm3. Based
on the compositions given by SFVT, the transport properties,
including electrical conductivity, thermal conductivity, and
thermopower, are further calculated with linear response
theory (LRT) [34–40]. The aim of this paper is to illustrate
the powerful predictive capability of the combination of SFVT
and LRT in WDM research.

We select argon as representative since (1) argon plasma, as
one of noble gases, is relatively simple because of the absence
of molecule and the spherical symmetry of its atom. (2)
The ideal potential energy for ionizing an isolate argon atom
(Ar → Ar+ + e) is 15.76 eV, which is moderate, and thus a
continuous transition is expected from a state with a small
degree of ionization to a fully ionized state as the temperature
and density increase. (3) Many theoretical methods used for
hydrogen and helium have not been extended to argon. For
example, the QMD simulation of warm dense argon has not
been reported so far.

We organize this paper as follows. The self-consistent fluid
variational theory to derive the compositions and the EOSs
of argon plasma is presented in Sec. II. The linear response
theory for transport properties is briefly outlined in Sec. III.
The obtained results, including compositions, equations of
state, transport properties, and the influence of many-particle
correlations and dynamic screening are discussed in Sec. IV
compared with experiments and other calculations, followed
by a conclusion in Sec. V.
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II. SELF-CONSISTENT FLUID VARIATIONAL THEORY

At sufficient high temperature and density, argon atom
could be ionized into ion and electrons. Within the chemical
picture, we suppose the system consisting Ar, Ar+, . . . , Ark+
and electrons. k denotes the highest charge state achieved in
the system. The compositions of such multicomponent plasma
are governed by the reactions

Ari ↔ Ari+1 + e, i = 0,1, . . . ,k − 1. (1)

When the local equilibrium of reaction is reached, the
following condition should be satisfied:

μi + I eff
i = μi+1 + μe, i = 0,1, . . . ,k − 1, (2)

where I eff
i denotes the effective ionization potential. μi and μe

are the chemical potential of Ari+ and electron, defined by

μi =
[
∂F tot(T ,V,N0,N1, . . . ,Nk,Ne)

∂Ni

]
T ,V,Nj �=i

,

(3)
i = 0,1, . . . ,k,e,

where F tot, depending on {T ,V,N0,N1, . . . ,Nk,Ne}, is the
total Helmholtz free energy of the system. T and V are the
temperature and specific volume. Ni and Ne are the number of
Ari+ and electrons in this specific volume.

For ideal plasma where the interactions between particles
are completely neglected, the effective ionization potential is
just the ideal one, i.e., the energy necessary for ionizing an
isolate atom (or ionizing an isolate ion further). However, as
density increases, the interactions between particles become
important and result in the lowering of ionization potential
(LIP), reflecting the pressure induced ionization. To evaluate
the effective ionization potential or the LIP arising from the
interactions, the total Helmholtz free energy is divided into an
ideal part and a correction part:

F tot = F id + F cor. (4)

Correspondingly, the definition of chemical potential,
Eq. (3), is extended as

μid
i =

(
∂F id

∂Ni

)
T ,V,Nj �=i

, �μi =
(

∂F cor

∂Ni

)
T ,V,Nj �=i

,

(5)
i = 0,1, . . . ,k,e,

and the condition for the chemical equilibrium, Eq. (2), is
rewritten as

μid
i + �μi + I id

i + �Ii = μid
i+1 + �μi+1 + μid

e + �μe,
(6)

i = 0,1, . . . ,k − 1.

That is, the effective ionization energy is defined as

I eff
i = I id

i − �Ii, i = 0,1, . . . ,k − 1, (7)

with

I id
i = μid

i+1+μid
e − μid

i , �Ii = �μi − �μi+1 − �μe,

i = 0,1, . . . ,k − 1. (8)

Clearly, I id
i and μid

i are the ideal ionization potential and
chemical potential of Ar+i . �Ii and �μi are the lowering

of ionization potential and the change of chemical potential
arising from the interactions. On the other hand, the following
Saha equation can be derived from the mass action laws:

ni+1

ni

= Ui+1

Ui

exp
(−ξ − βI eff

i

)
, i = 0,1, . . . ,k − 1, (9)

where β = 1/(kBT ) is the inverse temperature, Ui is the
internal partition function of Ari+, and ni = Ni/V and ne =
Ne/V are the number density of Ari+ and the electron. ξ = μid

e

kBT

is related to the electron density by

Fn(ξ ) = 1
2ne�

3
e, (10)

where �e = (2π�
2/mekBT )1/2 is the thermal de Broglie

wavelength of the electron, and

Fn(ξ ) = 1

�(n + 1)

∫ ∞

0

xndx

exp(x − ξ ) + 1
(11)

is the Fermi integral. � (n) is the Gamma function with
� (n + 1) = n� (n) and � (1/2) = √

π .
Equation (9), together with the conversation of mass

k∑
i=0

ni = nH , (12)

and the conversation of charge,

ne =
k∑

i=0

ini, (13)

form a set of close equations, from which the compositions of
plasma can be determined if the LIPs are known. nH = ρ

A
NA

denotes the number density of heavy particles, ρ is the mass
density, A the atomic weight, and NA the Avogadro constant.

In fact, the LIPs are not independent of the compositions of
the system. It means that the Helmholtz free energy, the LIPs,
and the compositions must be self-consistently calculated
with appropriate iterative technique. In our SFVT, such a
self-consistent calculation is achieved as

Step 1: Guess a value for ξ and set �Ii = 0;
Step 2: Calculate {n0,n1, . . . ,nk,ne} by solving Eq. (9)

under constraints of Eqs. (12) and (13);
Step 3: Calculate a new ξ using Eq. (10) from the obtained

compositions;
Step 4: Recalculate {n1,n2, . . . ,nk,ne} with the new ξ until

the relative error between the new ξ and the old one is less
than 10−5;

Step 5: Calculate the Helmholtz free energy with appropri-
ate model. Then calculate the chemical potentials with Eq. (5),
the LIPs with (8), and the effective ionization potentials with
(7);

Step 6: Recalculate the compositions with new effective
ionization potentials by repeating steps 2–4;

Step 7: Repeat steps 5 and 6, until the difference between
new LIPs and the old ones is less than 10−3 eV.

Now, let us focus on the free energy model used in
our SFVT. The ideal part of free energy is given by the
Maxwell-Boltzmann statistics for heavy particles and by the
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Fermi integral for electrons,

F id =
k∑

i=0

F id
i + F id

e = kBT

k∑
i=0

Ni

[
ln

(
ni�

3
i

) − 1
]

− kBT

k∑
i=0

Ni ln U int
i + NekBT

×
[
ξ − 2

3
F3/2(ξ )

/
F1/2(ξ )

]
. (14)

The first and the second term are the transitional free energy
and the internal free energy of heavy particles, with

U int
i = Ui exp(−εi0/kBT ), (15)

where Ui = ∑
j gij exp(−εij /kBT ) is the internal partition

functions of Ari+, gij , and εij are the multiplicity and energy
of the excited state j of Ari+. The last term in Eq. (14) is the
ideal free energy of electrons and the Fermi integral has been
defined by Eq. (11).

It should be mentioned that the influence of interactions
on the internal partition functions of atoms and ions has
been neglected in Eq. (15). In principle, the exact internal
partition functions of atoms and ions in dense plasma should
be calculated from the energies of bound electronic states
that can be derived by solving the corresponding Schrödinger
equations. However, such a calculation is formidable and thus
some approximations have to be adopted. A simple treatment
of this issue is to use the Planck-Larkin formalism, which was
derived from the high-temperature expansion of the Coulomb
interactions [41]. The Planck-Larkin formalism has a nice
convergence for internal partition function calculation, but the
level occupations from it fail to reproduce the experimental
data of emissivity [42]. This flaw was also noted by Saumon
et al. [20]. In our calculations, the internal partition functions
of the argon atom and ions, as given by Eq. (15), are simply
calculated by weighted summing of the lowest 45 energy levels
of them, which are available on the NIST website [43].

The second term of Eq. (4) represents the correction part
of the Helmholtz free energy emerged from the interactions
among particles, which can be further divided into three
parts,

F cor = F conf + F coul + F pol, (16)

where F conf is the configuration free energy arising from the
interactions between neutral atoms, F coul comes from the
interactions between charged particles (including ions and
electrons), and F pol stands for the polarization of neutral atoms
by ions and electrons.

We treat the interaction among neutral atoms using the
fluid perturbation theory and short range repulsion among
atoms using a mixture of hard spheres as reference system, that
is

F conf = F hs + F pert, (17)

where F hs is the so-called excess free energy of the mixture of
hard spheres. Following the work of Mansoori et al. [44], it

is calculated as

F hs = NH kBT

[
3

2
(1 + y1 − y2 − y3) + 3y2 + 2y3

1 − η

+ 3

2

1 − y1 − y2 − y3/3

(1 − η)2 + (y3 − 1) ln(1 − η)

]
, (18)

with

y1 =
k∑

j>i=0

�ij

(di + dj )

(didj )1/2 ,

y2 =
k∑

j>i=0

[
�ij

k∑
m=0

(
ηi

η

)√
didj

dm

]
,

y3 =
[

k∑
i

(
ηi

η

)2/3

α
1/3
i

]3

,

�ij =
[

(ηiηj )1/2

η

][
(di − dj )2

didj

]
(αiαj )1/2,

η =
k∑

i=0

ηi, αi = ni

nH

, ηi = 1

6
πnid

3
i , i = 0,1, . . . ,k,

where di is the diameter of Ari+ determined by minimization
of F conf . The second term in Eq. (17) is a perturbation on
the hard sphere system caused by the long range interaction
among atoms. It is calculated as

F pert = 2πN0n0

∫ ∞

d0

φ(r)ghs(r)r2dr, (19)

where φ(r) is the interaction potential between argon atoms.
The required radial distribution function ghs(r) is approxi-
mated by that of a reference hard sphere system, as given by
Throop et al. [45]. The ab initio potential function suggested by
Nasarbad et al. [46] is used to describe the Ar-Ar interaction.
The famous exponential-6 (EXP-6) potential function [47] is
also used, in order to examine the influence of the potential
function on the EOSs.

The contribution of the Coulomb interaction among charged
particles, the second term of Eq. (16), is calculated following
the work of Stolzmann et al. [24],

F coul = Fx
ee + Fc

ee + Fc
ii + Fc

ie, (20)

where the first two terms are the contributions from the
exchange and correlation of electrons, the third one comes
from the correlation of ions, and the last one stands for the
coupling between electrons and ions. Detailed calculations of
these terms can be found in Ref. [24].

The polarization part of free energy, the third term of
Eq. (16), is calculated by the second virial coefficients,

F pol = 2kBT n0

∑
i

(NiB0,i), (21)

where

B0,i = 2π

∫ ∞

d0

r2
(
1 − e−βφi

pol(r))dr (22)
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are the second virial coefficients, and the polarization potential
energy is given by

φi
pol(r) = − e2

8πε0

Ziαp(
r2 + d2

0

)2

(
1 + r

rD

)2

e−2r/rD ,

(23)
i = 1, . . . ,k,e,

where αp is the dipole polarizability of the argon atom. d0 is the
diameter of the argon atom determined by the minimization of
the configuration free energy. rD denotes the Debye screening
length, defined as

rD =
√

kBT ε0

e2
∑

i Z
2
i ni

. (24)

Thus the compositions and the Helmholtz free energies can
be self-consistently calculated for the system at a given density
and temperature. Based on the obtained compositions and the
free energies, the EOSs, and transport properties including
electrical conductivity, thermal conductivity, and thermopower
can be further calculated. The EOSs are calculated from the
total free energy using the following standard thermodynamics
relations:

P = −
(

∂F tot

∂V

)
T ,{Ni }

, E = −T 2

[
∂(F tot/T )

∂T

]
V,{Ni }

,

(25)

S = −
(

∂F tot

∂T

)
V,{Ni }

,

where P is the pressure, E the total internal energy, and
S the entropy at a given density and temperature. The
Hugoniot is determined by fulfilling the Rankine-Hugoniot
relation

EH = E0 + 1
2 (PH + P0)(V0 − VH ), (26)

where P0,E0,V0 are the pressure, internal energy, and the
volume of initial state, while PH ,EH ,VH are those of the final
state. Transport properties of such multicomponents plasma
are further calculated within the frame of linear response
theory.

III. LINEAR RESPONSE THEORY

The linear response theory used here was developed by
Röpke, Höhne, Reinholz, Redmer and their colleagues [34–
40]. It is an extended version originally derived by
Zubarev [48] and can be taken as a general approach to
transport properties. Many calculations have manifested that
the LRT can be used in a wide range of density and temperature,
from the weakly coupled plasma to the strongly coupled one.
At the low-density limit, LRT reaches the famous Spitzer
formula [49] while for strongly coupled and degenerate
systems it accords well with the Ziman theory [50]. Details of
LRT can be found in Refs [37,38,40]. Here we only give a brief
outline.

In linear response theory, the electrical conductivity σ , the
thermopower κ , and the thermal conductivity χ are connected

to the Onsager coefficients by

σ = e2L11, κ = 1

eT

L12

L11
, χ = 1

T

(
L22 − L12L21

L11

)
. (27)

The Onsager coefficients are given in the determinant
representation (two momentum approximation) as

Lij = − (−h)i+j−2

V |D|

∣∣∣∣∣ 0 j−1
βh

N̄1 − N̄0
i−1
βh

N1 − N0 D

∣∣∣∣∣ , (28)

with

Ni =
⎛
⎝Ni0

Ni1

Ni2

⎞
⎠ , N̄i = (

N0i N1i N2i

)
,

(29)

D =
⎛
⎝d00 d01 d02

d10 d11 d12

d20 d21 d22

⎞
⎠ ,

where h = 5kBT /2 is the enthalpy per particle and V is the
normalization volume of system. The elements of the vector
Ni and N̄i represent the generalized particle numbers, i.e., the
Kubo products; they are calculated as

Nnm = Ne

�(n + m + 5/2)

�(5/2)

Fn+m+1/2
(
βμid

e

)
F1/2

(
βμid

e

) . (30)

The elements in the D determinant are the equilibrium
force-force correlation functions; they are written as a sum of
three parts:

dij = dea
ij + dei

ij + dee
ij , (31)

and

dea
nm = 4V nena

3β

√
2me

πβ

∫ ∞

0
xn+m+2e−xQea

T (x)dx, (32)

dei
nm = 4V ne

3β

√
2me

πβ

∫ ∞

0
xn+m+2e−x

⎡
⎣∑

j

√
njQ

ej

T (x)

⎤
⎦

2

dx,

(33)

dee
nm = 4

3

√
2me

πβ
neNe

∫ ∞

0
x3Rnm(x)Qee

T (x)e−xdx, (34)

where Rn0(x) = R0n(x) = 0; R11(x) = 1; R21(x) = R12(x) =
7/2 + x2; R22(x) = 77/4 + 7x2 + x4; x = βEk . Ek is the
collision energy. Qea

T , Qei
T , and Qee

T are the momentum transfer
cross sections of electron scattering by atoms, ions, and other
electrons. Following the work of Adams et al. [40], we use
the first-order Born approximation to calculate Qea

T , and the
T matrix (phase shift) for Qei

T and Qee
T . The electron-atom

interaction is described by Eq. (23). The electron-ion and
electron-electron interactions are described by the Debye-
Hückel potential:

V e−j (r) = − e2Zj

4πε0r
e−r/rD , j = 1, . . . ,k,e. (35)

It should be mentioned that the contributions arising from
the flow of atoms and ions have been neglected since they are
much heavier than electrons.
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IV. RESULTS AND DISCUSSION

Using the above method, we calculate the compositions,
the equations of state, and the transport properties including
electron conductivity, thermopower, and thermal conductivity
for argon plasma in a wide range of temperature (5−100 kK)
and density (10−3−20 g/cm3). We firstly focus on the equation
of state since it can be directly compared with experimental
data, which is necessary to validate our calculations.

A. Equation of state

Figure 1 shows the predicted Hugoniots of liquid argon
together with available experimental data for comparison. The
Hugoniots calculated using both the ab initio [46] and EXP-6
potential [47] are in excellent agreement with shock exper-
iments [51–53] at density below 2.5 g/cm3. The interaction
between argon atoms is very weak in this region, which makes
argon behave like ideal plasma. When the density increases,
the interactions become important and a visible dependence
of EOS on the potential function is expected. The pressures
calculated with the EXP-6 potential are slightly lower than
that with ab initio potential at density above 2.5 g/cm3. Both
of them are in good agreement with experimental data.

Figure 2 shows the shock temperature along the Hugoniot
together with the degree of ionization. The degree of ionization
Zav = ne/nH is defined as the radio of number density of
electrons to that of heavy particles. It can be seen that
the ionization of argon starts at about 3 g/cm3 under shock
compression. The ionization adsorbs the energy produced by
compression and holds down the increase of temperature in
the density range of 3−4.5 g/cm3. The shock temperature
calculated with the ab initio potential is higher than that
with the EXP-6 potential at density above 2.5 g/cm3. It is
reasonable since the pressure derived from the former is
higher than the latter. The difference of temperature caused
by potential function is relatively small in the density range
that can be reached in experiments (<4 g/cm3 for shock liquid
argon). It is, however, very large at higher density. For example,
above 5.5 g/cm3, the temperatures calculated with the ab initio

FIG. 1. (Color online) Hugoniots of liquid argon as predicted by
SFVT using ab initio and EXP-6 potential. The experimental data are
taken from Refs. [51–53].

FIG. 2. (Color online) Shock temperature and degree of ioniza-
tion of liquid argon along the Hugoniots from the same initial state
as in Fig. 1.

potential are higher than those with the EXP-6 potential about
10 kK. The pressure given by the EXP-6 potential is closer
to experimental data than the ab initio potential, but this does
not mean that the EXP-6 potential is more appropriate than
the ab initio potential at higher density which may be out
of the range that the EXP-6 potential can describe. More
ingenious experiments should be performed to probe the
exact EOS at higher density and to test the accuracy of the
potentials. We expect that SFVT, as a theoretical model, has
a capability of predicting the properties of matter. So, in all
the following calculations we select the ab initio potential to
describe the Ar-Ar interaction because the EXP-6 potential is
experiment dependent. In fact, the Hugoniot predicted with this
ab initio potential is also in good agreement with experimental
measurements.

Figure 3 shows the pressure isotherms over a wide range of
density and temperature. At density below 1 g/cm3, the system

FIG. 3. (Color online) Isotherms of pressure for argon plasma
at different temperatures. Solid lines: considering the lowering of
ionization potential. Dashed lines: without the lowering of ionization
potential for 5, 20, 30, and 100 kK, as representatives. Please note
that the pressure scale for the lowest four temperatures (right scale)
is different from that for higher temperatures (left scale) for clarity.
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FIG. 4. (Color online) Derivatives of pressure with respect to
density are shown as a function of density at different temperatures. It
drops at about 5 g/cm3 as an indication of the plasma phase transition.

behaves like ideal plasma and the pressures with and without
considering the LIPs are almost identical. As density increases
above 1 g/cm3, the pressure considering the LIPs begins to be
lower than that without the LIPs, and the higher the density
the bigger the difference is.

Figure 3 also shows that when the LIPs are considered, a
phase transition occurs at high density and low temperature. To
locate the temperature and the density of this phase transition
we differentiate the pressure with respect to density ∂P/∂ρ,
and the results are shown in Fig. 4. At 5 kK, ∂P/∂ρ abruptly

drops in 4.5−5.5 g/cm3. The drop extends to lower density
as temperature increases and finally wears off at 30 kK. It
indicates that this phase transition occurs at a temperature
below 30 kK and in a density range of 2−6 g/cm3 for
argon plasma. A similar phase transition, i.e., the so-called
plasma phase transition (PPT), was also observed for dense
hydrogen [54]. This PPT, however, does not occur in the case
of calculation without considering the LIPs which arise from
the interactions between particles. That is to say, the PPT is
essentially related to the nonideal effects of the system.

B. Compositions

Figure 5 shows the variation of fraction of the electron,
Ar, Ar+1, and Ar+2 with temperature and density. For a given
density, the degree of ionization [Fig. 5(a)] always increases
with temperature. For a given temperature, it decreases firstly
and then increases with the density, accompanied by the
corresponding variation of argon atom fraction [Fig. 5(b)].
This trend indicates that there is a minimum of the degree
of ionization along each isotherm. These minima can be
regarded as the onset of pressure induced ionization. Its
dependence on the temperature is shown in Fig. 5(a) by the
thick black line, and the corresponding densities of these
minima are also summarized in Table. I. Below 30 kK, the
onset density of pressure induced ionization depends weakly
on the temperature, but for the higher temperature it increases
quickly from 0.53 g/cm3 at 30 kK to 5.7 g/cm3 at 100 kK.

The argon plasma mainly consists of Ar and Ar+ at temper-
atures below 40 kK. The fraction of Ar+ increases with tem-
perature while that of Ar decreases [Fig. 5(c)]. At temperatures

FIG. 5. (Color online) Compositions of argon plasma versus density at different temperatures. (a) Fraction of electron, (b) fraction of Ar,
(c) fraction of Ar+1, and (d) fraction of Ar+2. The thick black line in panel (a) is a link of all the minima of degree of ionization, indicating the
onset of pressure ionization.
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TABLE I. The onset density of pressure induced ionization
and the corresponding degree of ionization (ne/nH ) at varying
temperatures.

T (104 K) ρ(g/cm3) Degree of ionization

0.5 0.53 1.76 × 10−8

1.0 0.53 2.79 × 10−4

1.5 0.53 0.012 20
2.0 0.53 0.091 18
2.5 0.53 0.243 51
3.0 0.53 0.371 41
4.0 0.93 0.515 87
5.0 1.33 0.624 79
6.0 1.73 0.729 21
7.0 2.53 0.825 67
8.0 3.33 0.911 39
9.0 4.33 0.986 40
10.0 5.73 1.051 36

above 40 kK, the fraction of Ar+ decreases with temperature
due to the second ionization; Ar+2 appears in the system at
high temperature and its fraction increases with temperature
and decreases with density [Fig. 5(d)]. The fractions of ions at
higher charge state are not presented because in the range of
density and temperature considered here they are only impor-
tant at very low density where the system behaves like ideal
plasma.

It should be noted that the neutral Ar atom never disappears
in the whole range of density and temperature considered. It
means that the argon plasma is always at partial ionization
state; the full ionization state is not reached in this density
and temperature region. This observation is different from the
results given by COMPTRA04 which has been widely used to
derive the transport properties of warm dense matter including
hydrogen [54], noble gases [40], and metal plasma [39].

In Fig. 6, the obtained compositions are compared with
those by COMPTRA04. It can be seen that the compo-
sitions derived with SFVT are in good agreement with
COMPTRA04 [55,56] when density is lower than 1 g/cm3, but
they are very different at high density. At 10 kK and when
density is higher than 3 g/cm3, the degree of ionization given
by SFVT is higher than that by COMPTRA04, and both are
partially ionized. However, at 15, 20, and 25 kK, COMPTRA04

gives a fully ionized state as the density is higher than a
certain value, about 5 − 7 g/cm3. Comparatively, only a partial
ionized state is obtained from SFVT.

These divergences between SFVT and COMPTRA04 are
rooted in the differences in their free energy model. First, the
interaction between neutral atoms is taken into consideration
in our SFVT, while in COMPTRA04 it is not. Second, the
effect of exciting states on the internal partition functions
of atom and ion is included in our SFVT model, while in
COMPTRA04 only the ground state is used. Third, the free energy
model for charged subsystem used in COMPTRA04 is simpler
than that in our SFVT. Additionally, the Hugoniots predicted
by SFVT are in good agreement with the experimental

FIG. 6. (Color online) Compositions of argon plasma given by SFVT are compared with those given by COMPTRA04 at four different
temperatures. The data of COMPTRA04 are taken from the website [56].
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results, while the EOS of argon has not been reported by
COMPTRA04.

C. Transport properties

Based on the obtained compositions, the transport proper-
ties of argon plasma are then calculated with linear response
theory. Figure 7 shows the electrical conductivities as a
function of density for typical temperatures. At temperatures
below 30 kK, the electrical conductivity decreases at densities
below 2 g/cm3, since in this region the degree of ionization
decreases with density as a result of the mass action laws. At
densities above 3 g/cm3, the electrical conductivity quickly
increases with density due to the pressure induced ionization.
At temperatures above 40 kK, the electrical conductivity
always rises along the density but the dependence on the
density becomes weak as temperature increases.

The measured electrical conductivities in shock experi-
ments [57–59] and those calculated by COMPTRA04 [55] are
also presented in Fig. 7 for comparison. At densities below
0.3 g/cm3, the electrical conductivities given by COMPTRA04

are in good agreement with ours. From 0.3 g/cm3 to 3 g/cm3,
the electrical conductivities given by COMPTRA04 are some-
what higher. For higher density they are lower than ours. These
divergences arise from the differences in compositions. As has
been discussed, the compositions given by COMPTRA04 are
very different from those by SFVT because the interaction
among neutral argon atoms and the effect of exciting states
were neglected in the free energy model of COMPTRA04. In
fact, the electrical conductivities given by both COMPTRA04

and SFVT are in good agreement with experimental results,
and SFVT seems to be closer to the values of experiments than
COMPTRA04.

Another interesting observation is that the calculated
electrical conductivity isotherms intercross with each other
at density about 6 g/cm3. That is, as the density increases, the
dependence of the electrical conductivity on the temperature
is inversed at a certain density, which can be taken as an
indication of the nonmetal-metal transition (NMMT) [60,61].
At densities below the transition the electrical conductivity
increases with temperature due to thermal ionization. At
densities above the transition the electrical conductivity

FIG. 7. (Color online) Isotherms of electrical conductivity at dif-
ferent temperatures. Solid lines: SFVT+LRT. Dashed lines: Results
of COMPTRA04 [56] at three temperatures. Symbols: data of gas gun
and explosive experiments [57–59].

FIG. 8. (Color online) Electrical conductivity versus temperature
at different densities for argon plasma.

decreases with temperature, which is a typical characteristic
of metal. This behavior is also illustrated in Fig. 8, which
shows the electrical conductivity as a function of temperature
for different densities near the NMMT. When density is
lower than 5 g/cm3, the conductivity rises along the whole
temperature range considered due to thermal ionization. When
the density is higher than 5.9 g/cm3, the conductivity decreases
with temperatures below 40 kK, and then slightly increases
with temperature for higher temperatures. The decrease of
conductivity with temperature is a characteristic of the metallic
phase. It can be found that the minimum density of the
metallization of argon plasma is about 5.8 g/cm3, presenting
at about 30−40 kK.

Figure 9 shows the calculated thermal conductivities
together with those given by COMPTRA04 [56]. The thermal
conductivity is very small at low density and low temperature;
it increases with temperature and decreases with density in
this region. At high density, the thermal conductivity quickly
increases with density and decreases with temperature. These
trends are similar to electrical conductivity due to the fact that
the thermal conductivity presented here arises from the flow
of electrons; the contributions of ions and atoms have been
neglected in our calculations.

The variations of thermopower with density and temper-
ature are shown in Fig. 10(a) and are compared with the

FIG. 9. (Color online) Thermal conductivity versus density at
different temperatures for argon plasma together with those given
by COMPTRA04 [56].
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FIG. 10. (Color online) Thermopower versus density at different temperatures for argon plasma. (a) Results of this work (SFVT+LRT);
(b) comparison with COMPTRA04 [56].

results of COMPTRA04 [56] in Fig. 10(b). At density below
2 g/cm3, the thermopower of argon decreases with density
and increases with temperature, but the dependence on the
density and temperature is very weak, while at density above
2 g/cm3, the thermopower increases quickly with density
and decreases with temperature. The influence of density on
thermopower is weakened as temperature increases. At high
density, thermopower predicted by COMPTRA04 decreases with
density and even becomes positive at some density, while the
thermopower predicted by our SFVT is always negative and
its variation with density is more regular.

D. Effects of many-particle correlations and dynamic screening

It should be noticed that the Debye-Hückel potential,
Eq. (35), from which the required momentum transfer cross
sections are derived, is only accurate for low-density plasma
where the pair-particle correlations are dominant. As the
density increases, the effects of higher-order many-particle
correlations should be considered. In Ref. [62], an integrod-
ifferential equation for the effective interaction considering
the many-particle correlations was obtained based on the
solution of the Bogolyubov equations for the nonideal plasma,
and an analytic effective pair potential that accounts for the
three-particle correlation effects was also given with the spline
approximation,

V e−j (r) = − Zje
2

4πε0r
exp(−r/rD)

1 + γf (r)/2

1 + c(γ )
,

(36)
j = 1, . . . ,k,e,

where γ = e2/rDkBT is a nonideal parameter of
plasma, f (r) = (e−√

γ r/rD − 1)(1 − e−2r/rD )/5, and c(γ ) ∼=
−0.008 617+0.455 861γ−0.108 389γ 2 + 0.009 377γ 3. This
effective potential has been used to study the Coulomb
Bremsstrahlung process [63] and the electron captures [64].
Here it is used to illustrate the influence of higher-order
many-particle correlations on the transport properties.

The calculated electrical conductivities using the momen-
tum transfer cross sections derived with Eq. (36) are compared
with those using Eq. (35) in Fig. 11. At low density and
low temperature, the effect of many-particle correlations on
the electrical conductivity is very slight. However, as the
temperature increases, especially at high density, the effect
of many-particle correlations becomes obvious. At relatively

low density, it leads to the increase of electrical conductivity,
while at very high density it results in the decrease of electrical
conductivity.

Another shortcoming of Eqs. (23) and (35) is that the dy-
namic screening is not taken into consideration. For a particle
moving at a speed less than the average thermal velocity,
the static screening approximation is still acceptable. In the
opposite case of high-speed collisions, the dynamic screening
effects are expected to be significant. The dynamic screening
can be introduced with the following velocity-dependent
screening potential [65]:

V e−j (r) = − Zje
2

4πε0r
exp [−r/r0(v)] , (37)

where r0(v) = rD(1 + v/vth)1/2, vth = √
kBT /me is the av-

eraged thermal velocity of electrons, and v the relative
velocity of collision pairs. Clearly, the static Debye-Hückel
potential is reached as the collision velocity v → 0. This is a
phenomenological and simple approach to trace the dynamic
screening, but it grasps the essential of dynamic screening
and has been used to study the elastic collisions [64]. Similar
treatment is also applied to the polarization potential, Eq. (23).

The electrical conductivities calculated based on dynamic
screening potentials are compared with those based on static
screening potentials in Fig. 12. It can be seen that the
dynamic screening results in remarkable decrease of the
electrical conductivity because the shielding of the interactions

FIG. 11. (Color online) Effects of many-particle correlations on
the electrical conductivity of argon.
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FIG. 12. (Color online) Effects of dynamic screening on the
electrical conductivity of argon.

is weakened for the case of high-velocity collisions. The
influence of dynamic screening on the transport properties
is enhanced as the temperature and density increase.

V. CONCLUSION

Self-consistent fluid variational theory (SFVT) is ex-
tended to study argon plasma in a wide range of den-
sity (0.001−20 g/cm3) and temperature (5−100 kK). The
equations of state predicted by SFVT are found in good
agreement with experimental results. The so-called plasma
phase transition was observed at low temperature (<30 kK)
and at density about 2−6 g/cm3 for argon. Based on the

compositions given by SFVT, the electrical conductivity,
thermal conductivity, and thermopower are calculated for
argon with linear response theory. The obtained electrical
conductivities are also found in good agreement with available
experimental measurements. The nonmetal-metal transition is
recognized by the temperature dependence of the electrical
conductivity. The minimum density for metalizing argon is
found at about 5.8 g/cm3, occurring at 30−40 kK. The effects
of the many-particle correlations and dynamic screening are
studied based on effective potentials. The dynamic screening
leads to the decrease of electrical conductivity, while the
many-particle correlations increase the electrical conductivity
at low density and decrease it at high density. Our calculations
illustrate that of the combination of SFVT and LRT is a
promising route to understanding the properties of warm dense
matter.
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[24] W. Stolzmann and T. Blöcker, Astron. Astrophys. 314, 1024

(1996).

023106-10

http://dx.doi.org/10.1088/0741-3335/47/12B/S31
http://dx.doi.org/10.1088/0741-3335/47/12B/S31
http://dx.doi.org/10.1088/0741-3335/47/12B/S31
http://dx.doi.org/10.1088/0741-3335/47/12B/S31
http://dx.doi.org/10.1103/PhysRevLett.104.235003
http://dx.doi.org/10.1103/PhysRevLett.104.235003
http://dx.doi.org/10.1103/PhysRevLett.104.235003
http://dx.doi.org/10.1103/PhysRevLett.104.235003
http://dx.doi.org/10.1086/589806
http://dx.doi.org/10.1086/589806
http://dx.doi.org/10.1086/589806
http://dx.doi.org/10.1086/589806
http://dx.doi.org/10.1103/PhysRevLett.108.091102
http://dx.doi.org/10.1103/PhysRevLett.108.091102
http://dx.doi.org/10.1103/PhysRevLett.108.091102
http://dx.doi.org/10.1103/PhysRevLett.108.091102
http://dx.doi.org/10.1103/PhysRevE.81.021202
http://dx.doi.org/10.1103/PhysRevE.81.021202
http://dx.doi.org/10.1103/PhysRevE.81.021202
http://dx.doi.org/10.1103/PhysRevE.81.021202
http://dx.doi.org/10.1103/PhysRevB.79.155105
http://dx.doi.org/10.1103/PhysRevB.79.155105
http://dx.doi.org/10.1103/PhysRevB.79.155105
http://dx.doi.org/10.1103/PhysRevB.79.155105
http://dx.doi.org/10.1088/0305-4470/39/17/S20
http://dx.doi.org/10.1088/0305-4470/39/17/S20
http://dx.doi.org/10.1088/0305-4470/39/17/S20
http://dx.doi.org/10.1088/0305-4470/39/17/S20
http://dx.doi.org/10.1103/PhysRevLett.108.115502
http://dx.doi.org/10.1103/PhysRevLett.108.115502
http://dx.doi.org/10.1103/PhysRevLett.108.115502
http://dx.doi.org/10.1103/PhysRevLett.108.115502
http://dx.doi.org/10.1103/PhysRevE.54.2844
http://dx.doi.org/10.1103/PhysRevE.54.2844
http://dx.doi.org/10.1103/PhysRevE.54.2844
http://dx.doi.org/10.1103/PhysRevE.54.2844
http://dx.doi.org/10.1103/PhysRevB.76.075112
http://dx.doi.org/10.1103/PhysRevB.76.075112
http://dx.doi.org/10.1103/PhysRevB.76.075112
http://dx.doi.org/10.1103/PhysRevB.76.075112
http://dx.doi.org/10.1088/1367-2630/14/5/055020
http://dx.doi.org/10.1088/1367-2630/14/5/055020
http://dx.doi.org/10.1088/1367-2630/14/5/055020
http://dx.doi.org/10.1088/1367-2630/14/5/055020
http://dx.doi.org/10.1103/PhysRevLett.101.155001
http://dx.doi.org/10.1103/PhysRevLett.101.155001
http://dx.doi.org/10.1103/PhysRevLett.101.155001
http://dx.doi.org/10.1103/PhysRevLett.101.155001
http://dx.doi.org/10.1103/PhysRevLett.97.017801
http://dx.doi.org/10.1103/PhysRevLett.97.017801
http://dx.doi.org/10.1103/PhysRevLett.97.017801
http://dx.doi.org/10.1103/PhysRevLett.97.017801
http://dx.doi.org/10.1103/PhysRevLett.99.165505
http://dx.doi.org/10.1103/PhysRevLett.99.165505
http://dx.doi.org/10.1103/PhysRevLett.99.165505
http://dx.doi.org/10.1103/PhysRevLett.99.165505
http://dx.doi.org/10.1016/j.hedp.2011.06.006
http://dx.doi.org/10.1016/j.hedp.2011.06.006
http://dx.doi.org/10.1016/j.hedp.2011.06.006
http://dx.doi.org/10.1016/j.hedp.2011.06.006
http://dx.doi.org/10.1063/1.3420276
http://dx.doi.org/10.1063/1.3420276
http://dx.doi.org/10.1063/1.3420276
http://dx.doi.org/10.1063/1.3420276
http://dx.doi.org/10.1002/qua.23170
http://dx.doi.org/10.1002/qua.23170
http://dx.doi.org/10.1002/qua.23170
http://dx.doi.org/10.1002/qua.23170
http://dx.doi.org/10.1016/j.hedp.2011.11.002
http://dx.doi.org/10.1016/j.hedp.2011.11.002
http://dx.doi.org/10.1016/j.hedp.2011.11.002
http://dx.doi.org/10.1016/j.hedp.2011.11.002
http://dx.doi.org/10.1103/PhysRevB.76.020502
http://dx.doi.org/10.1103/PhysRevB.76.020502
http://dx.doi.org/10.1103/PhysRevB.76.020502
http://dx.doi.org/10.1103/PhysRevB.76.020502
http://dx.doi.org/10.1103/PhysRevA.44.5122
http://dx.doi.org/10.1103/PhysRevA.44.5122
http://dx.doi.org/10.1103/PhysRevA.44.5122
http://dx.doi.org/10.1103/PhysRevA.44.5122
http://dx.doi.org/10.1103/PhysRevA.46.2084
http://dx.doi.org/10.1103/PhysRevA.46.2084
http://dx.doi.org/10.1103/PhysRevA.46.2084
http://dx.doi.org/10.1103/PhysRevA.46.2084
http://dx.doi.org/10.1103/PhysRev.186.210
http://dx.doi.org/10.1103/PhysRev.186.210
http://dx.doi.org/10.1103/PhysRev.186.210
http://dx.doi.org/10.1103/PhysRev.186.210


EQUATIONS OF STATE, TRANSPORT PROPERTIES, AND . . . PHYSICAL REVIEW E 91, 023106 (2015)

[25] C. Winisdoerffer and G. Chabrier, Phys. Rev. E 71, 026402
(2005).

[26] V. K. Gryaznov, S. V. Ayukov, V. A. Baturin, I. L. Iosilevskiy,
A. N. Starostin, and V. E. Fortov, J. Phys. A: Math. Gen. 39,
4459 (2006).

[27] V. Gryaznov and I. Iosilevskiy, J. Phys. A: Math. Gen. 42,
214007 (2009).

[28] V. Schwarz, H. Juranek, and R. Redmer, Phys. Chem. Chem.
Phys. 7, 1990 (2005).

[29] Q. F. Chen, L. C. Cai, Y. J. Gu, and Y. Gu, Phys. Rev. E 79,
016409 (2009).

[30] Q. F. Chen, Y. Zhang, L. C. Cai, Y. J. Gu, and F. Q. Jing, Phys.
Plasmas 14, 012703 (2007).

[31] Q. F. Chen, L. C. Cai, Y. Zhang, and Y. J. Gu, J. Chem. Phys.
128, 104512 (2008).

[32] Q. F. Chen, J. Zheng, Y. J. Gu, Y. L. Chen, and L. C. Cai, Phys.
Plasmas 18, 112704 (2011).

[33] Q. F. Chen, L. C. Cai, Y. J. Gu, J. Zheng, and G. F. Ji, Phys. Lett.
A 374, 3875 (2010).
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