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Ab initio calculation of shocked xenon reflectivity
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Reflectivity of shocked compressed xenon plasma is calculated within the framework of the density functional
theory approach. Dependencies on the frequency of incident radiation and on the plasma density are analyzed.
The Fresnel formula for the reflectivity is used. The longitudinal expression in the long-wavelength limit is
applied for the calculation of the imaginary part of the dielectric function. The real part of the dielectric function
is calculated by means of the Kramers-Kronig transformation. The results are compared with experimental data.
The approach for the calculation of plasma frequency is developed.

DOI: 10.1103/PhysRevE.91.023105 PACS number(s): 52.25.−b, 52.25.Mq, 31.15.−p, 71.15.Mb

I. INTRODUCTION

Measurements and theoretical analysis of reflectivity are
conventional methods of phase diagram investigations for
various substances [1–10], particularly in shock-wave ex-
periments, where the number of the parameters measured is
restricted. For instance, the jump of the reflectance in shock
compressed liquid deuterium is observed in Ref. [1]. Such
an abrupt change of the reflectance from 3.5% to 65% in the
pressure range from 0.22 to 0.55 Mbar reveals the onset of
the conducting fluid state. The Drude theory [11,12] is used in
Ref. [2] for the description of conductivity. By means of this
theory, it is shown that the jump of the reflectance is directly
related to the increase of the free-charge-carrier density by 7–8
orders of magnitude.

The combination of static and dynamic methods for the
generation of high degrees of hydrogen compression allows
us to reach pressures which are close to the conditions in
giant planets [3]. In this experiment, results of reflectivity
measurements show that molecular hydrogen as well as
deuterium becomes conductive. On the basis of the simple
estimates, like those used in Ref. [2], it is concluded that the
increase of reflectance up to 10% corresponds to the ionization
degree of 1% and to the boundary between insulating and
conductive fluid hydrogen.

Much attention is also paid to the study of dense helium [4]
due to the research of the atmosphere of white dwarfs. The
quantum-mechanical approach with the linear response theory
and the Kubo-Greenwood formalism [13,14] are used for
calculation of reflectivity and conductivity [4]. The calculated
dependence of the reflectance on temperature [4] is in a good
agreement with experimental data [5]. However, the calculated
dependence of the conductivity on the density [5] in fluid
helium differs from the experimental one by 1–3 orders of
magnitude. A sharp increase of the reflectance [5] indicates the
onset of the conductive fluid helium. The estimated value of the
density is 1.5 g/cm3 at temperature about 3 eV. However, this
value of the density is an ambiguous one. Another expression
in Ref. [6] for the dependence of the band gap on the density
gives value 10 g/cm3, which is much higher than that obtained
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in Ref. [5]. The Drude model is used in Refs. [5,6] for the
description of the optical properties of fluid helium.

The modeling of the helium and hydrogen demixing under
the conditions encountered in giant planets is performed
within the framework of the quantum molecular dynamics
approach [7]. The jump is considered in the dependence of
reflectivity on the demixing time as a distinctive signature
of the liquid-liquid phase transition. The Kubo-Greenwood
formula is used for the reflectivity calculation.

The nuclei are considered as classical particles in all the
above-mentioned quantum-mechanical calculations. However,
the quantum nature of nuclei makes significant impact on the
properties of light elements, such as hydrogen and helium. As
it is shown [8], taking into account this effect dramatically
shifts the boundary between dielectric and conductive fluid
hydrogen. Optical properties are also calculated in Ref. [8]
within the Kubo-Greenwood formalism.

The dependence of reflectivity on density in Ge-doped
plastics observed in the experiment [9] shows that the samples
can be described as poor metals. The Drude-Sommerfeld
pure metallic model of electrons does not give an adequate
explanation of the results obtained. However, the Drude model
gives a pretty good agreement with the experiment if the
semiconductor description of the electrons [10,15,16] is used.

Shocked xenon plasma is considered in the present work.
The reflectance of the shock-compressed xenon is measured in
the unique experiments of Mintsev and Zaporoghets [17–20]
for three values of the wavelength λ = 1064, 694, and 532 nm.
The main goal of these experiments is an attempt to estimate
both the free-charge-carrier concentration and the plasma
frequency from the measured dependence of reflectivity on the
plasma density. It is suggested in Ref. [17] that the profile of
the dependence is similar to the case of collisionless plasmas.
In this case, the dependence of the dielectric function (DF) on
frequency is given by the formula ε(ω) = 1 − ω2

p/ω2. And
if ωp > ω, it leads to the total internal reflection and the
reflectivity is R = 1.

The dependencies of shocked xenon reflectivity on charge
density ne are given in Fig. 1 at the wavelength λ = 694 nm.
The solid black line corresponds to the case of the collisionless
plasma with the cutoff at the plasma frequency. The experi-
mental data [18] are depicted by red stars at the values of ne

estimated in Ref. [18] using the chemical model [21]. However,

1539-3755/2015/91(2)/023105(10) 023105-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.023105


G. NORMAN, I. SAITOV, V. STEGAILOV, AND P. ZHILYAEV PHYSICAL REVIEW E 91, 023105 (2015)

FIG. 1. (Color online) Dependence of reflectivity R on the elec-
tron concentration ne at λ = 694 nm. The solid line corresponds to
the case of collisionless plasma, where there is a cutoff of reflectivity
at the plasma frequency. The red stars are the experimental data [18].
The dashed black line corresponds to the reflectivities calculated by
the Drude formula with the static collisional frequency [22].

the measured dependence of the reflectance on the plasma
density does not show a cutoff at the plasma frequency. The
reflectance increases slowly with the increase of the plasma
density.

The attempt to take into account the static collisional
frequency within the framework of the Drude model [22]
(the dashed line in Fig. 1) does not also give a satisfac-
tory explanation of the results obtained. The more accurate
expressions for the dynamic collisional frequency in the
Born approximation [22] do not improve agreement with the
experiment. If a pseudopotential is used for the electron-
ion interaction, which takes into account a structure factor
and local field corrections [23], the discrepancy becomes
larger [22].

Other attempts to explain experimental results within the
framework of the Drude model are associated with an artificial
broadening of the wavefront [22,24–26]. Despite a certain
improvement of the agreement with the experiment, this
approach does not allow us to establish one-to-one corre-
spondence between the reflectance values and the free-charge
concentration. Moreover, there is no independent experimental
confirmation of the essential wavefront broadening needed.

The shocked xenon plasma is an example of a warm dense
matter (WDM). Theoretical description of the WDM is a
challenging one and requires an application of unconventional
methods [27–30]. The density functional theory (DFT) ap-
proach [31] is one of the most effective ab initio methods for
the WDM properties description. The fundamental nature of
this approach allows us to apply it for the description of a
wide range of phenomena. Calculations of the DF for various
substances are performed in Refs. [4,6–8,32–38].

The method of quantum molecular dynamics is used
by Desjarlais [34] within the framework of the finite tem-
perature DFT [39]. Only λ = 1064 nm is considered. The
Kubo-Greenwood formula [13,14] and the Kramers-Kronig
transformation are used for the calculation of the DF. The
artificial wavefront broadening is not applied. The results [34]

are in a better agreement with the experimental data [17]
in comparison with the reflectivities obtained via the Drude
formula [22]. However, the results [34] are still significantly
higher than the measured ones [17] at low densities. The band-
gap corrections improve the agreement with the experiment
at lower densities but underestimate reflectivities at high
densities.

The DFT approach is used in this work as in Ref. [34].
However, a more accurate longitudinal expression is applied
for the calculation of the imaginary part of the DF in contrast
with Ref. [34]. The advantage of using the longitudinal
expression instead of the Kubo-Greenwood formula is shown
for the calculation of the imaginary part of the DF in Ref. [35]
for various substances, such as Si, SiC, AlP, GaAs, and
diamond. We do not introduce the wavefront broadening.

The basic expressions used for the calculation of the DF
and reflectance are presented in the second section. The
expressions for different components of the dielectric tensor
are compared with each other. The calculation method is
considered in the third section. The method is based on
the DFT with the expressions for the DF from Sec. II. The
method of calculation of the plasma frequency is developed
in Sec. IV within the framework of the DFT; results of the
calculation of the dependence of the plasma frequency on
density are presented. The applicability of the “free electrons”
concept is discussed in Sec. V; the dependence of the effective
concentration of “free electrons” on the plasma density is
calculated. In Sec. VI, the dependencies of reflectivity on
density are calculated for all three wavelengths λ = 1064, 694,
and 532 nm using the longitudinal expression for the DF within
the framework of the DFT. The convergence and accuracy of
the results obtained are analyzed as well. In Sec. VII, the
results obtained are discussed and compared with [34]. The
dependence of the reflectivity on density is calculated using
the Kubo-Greenwood formula for the imaginary part of the DF
for validation of the calculation method. Section VIII contains
our conclusions.

II. BASIC EXPRESSIONS

The DFT is used for the calculation of the DF and
reflectivity of shocked the xenon plasma. Forty-six core
electrons of xenon atom are considered by means of the
projector augmented wave (PAW) method potential [40],
which is nonlocal. The Kohn-Sham set of equations with
the PAW potential, which effectively takes into account core
electrons, is solved for eight valent electrons.

There are two types of the electron-ion pseudopotentials
and PAW potentials: local and nonlocal. Local potentials are
diagonal in the coordinate representation and their matrix
elements can be represented by the following expression:

〈r|V|r′〉 = V(r)δ(r − r′). (1)

Nonlocal potentials V (r,r′) are not diagonal and their effect
on a wave function ψ(r′) can not be represented just as a
product of V (r,r′) and ψ(r′). Therefore, we are to calculate
the following integral:

〈r|V|ψ〉 =
∫

V(r,r′)ψ(r′)d3r′. (2)
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Since a nonlocal potential is an integral operator, it does
not commute with the coordinate operator r. This property
imposes restrictions on the expressions for the DF calculation.

The DF is a complex function and can be expressed as
ε = ε(1) + i · ε(2). Depending on the character of the external
field, there are two expressions for the components of the
DF tensor: a longitudinal expression [41–43] and a transverse
one [13,14].

We consider the interaction of the electromagnetic (trans-
verse) radiation with matter and therefore the response
function is the transverse DF. The dependence on frequency
ω of the imaginary part of the transverse DF is defined by the
following expression in the long-wavelength limit:

ε
(2)
T (ω,RI) = (4π2e2/3ω2�) lim

|q|→0

∑
n,n′,α,k

2wk

× [f (En′,k+q) − f (En,k)] · |〈ψn′k|v̂α|ψnk〉|2
× δ(En′,k+q − Enk − �ω) (3)

at a given ion configuration RI and temperature T , where e

is the elementary charge, � is a system volume, q is a wave
vector of the incident radiation, and � is the Plank constant.

The summation is carried out over all electron states n,
n′. The contribution of the sum terms with n = n′ (intraband
transitions) are taken into account as well as the contribution
of the terms with n �= n′ (interband transitions).

The summation over index α multiplied by 1/3 stands for the
averaging over three spatial coordinates. This assumes isotropy
of the considered system, which is justified for the case of a
plasma. The summation is also carried out over all k points in
the Brillouin zone, taking into account the weights wk of the k
points. The factor 2 before the weights allows for the electron
spin degeneracy. f (T ,En,k) is the Fermi-Dirac distribution
function at temperature T , which defines an occupation of a
state n. En,k is an eigenvalue (an energy level) corresponding
to the wave function ψn,k. ψn,k is a solution of the Kohn-Sham
equation. We find this solution as a sum of plane waves
and therefore it can be represented by means of the Bloch
function ψn,k = eikr · un,k, where un,k is a cell periodic part.
v̂ is the velocity operator, which can be expressed by the
commutator

v̂ = dr/dt = (i/�)[H,r]. (4)

If the potential in the Hamiltonian H is local, the expression (4)
gives v̂ = p/m, where p is the momentum operator and m is
the electron mass. Substituting this results in Eq. (3), we obtain
the Kubo-Greenwood formula [13,14]

ε
(2)
T (ω,RI) = (4π2e2

�
2/3m2ω2�) lim

|q|→0

∑
n,n′,α,k

2wk

× [f (T ,En′,k+q) − f (T ,En,k)]|〈un′,k|∇α

− ikα|un,k〉|2δ(En′,k+q − En,k − �ω). (5)

However, this substitution is incorrect for the nonlocal
potentials. Since the potential does not commute with the
coordinate operator, the additional term arises in the com-
mutator (4) [44]:

v̂ = p/m + (i/�)[V (r,r′),r]. (6)

Consequently, the Kubo-Greenwood formula is incorrect
for the nonlocal potentials.

Despite the isotropy of the system considered, its responses
depend on the nature of the perturbation (longitudinal or
transverse) and, generally, do not coincide with each other.
The simplest example of this statement is the conductivity
tensor obtained within the framework of the hydrodynamic
model of plasmas. However, the longitudinal and transverse
DF are equal to each other in the long-wavelength limit. In this
limit the velocity operator can be expressed as [45]

v̂ = lim
|q|→0

[H, exp(iqr)]/�|q|. (7)

The substitution of (7) in Eq. (3) gives the expression for the
imaginary part of the longitudinal DF,

ε
(2)
L (ω,RI) = (4π2e2/3�) lim

|q|→0

1

|q|2
∑

n,n′,α,k

2wk[f (T ,En′,k+q)

− f (T ,En,k)]|〈un′,k+eαq | un,k〉|2
× δ(En′,k+q − En,k − �ω), (8)

where the unit vector eα determines the direction of the Carte-
sian axis corresponding to the coordinate α. The expression (8)
is obtained in Refs. [41–43] within the framework of the
first-order perturbation theory approach and the random-phase
approximation (RPA). Since we use the conversion of the
velocity operator for the derivation of (8), the longitudinal
expression has no disadvantages, which the Kubo-Greenwood
formula (5) has. The formula (8) can be used for any electron-
ion potentials. The Kubo-Greenwood formula can be used only
with corrections, which take into account nonlocality of a PAW
potential [46].

The expression (5) can be derived for the local potentials
from (8) by applying the substitution

lim
|q|→0

〈unk|un′k+q〉
|q| = −�

2

m
lim

|q|→0

〈un′k|(∇ − ik)|unk〉
En′k+q − Enk

. (9)

The real part of the DF is obtained by the Kramers-Kronig
transformation

ε(1)(ω,RI) = 1 + 2

π
P

∫ ∞

0
dω′ ω′ε(2)(ω′,RI)

(ω′)2 − (ω − iη)2 , (10)

where P denotes the principle value (in the limit η → 0).
The response function of the system with respect to an

external perturbation is not the DF but the inverse DF in the
general case. Due to the casuality principle, the Kramers-
Kronig transformations are always true for the inverse DF.
Therefore, the expression (10) is valid for the DF only in the
long-wavelength limit [47].

The expressions (3), (5), and (7)–(9) for the imaginary
part of the DF are also derived in the long-wavelength limit.
This limit holds in the context of this study both from the
experimental point of view and from the point of view of the
ab initio calculation method.

Considering the experimental conditions, we should com-
pare the field penetration depth d = λ/(4πn2) [48,49] with
the wavelength of the incident radiation in the medium
λ′ = λ/n1, where n1 and n2 are real and imaginary parts of the
refraction coefficient. d/λ′ 	 1 for the xenon plasma densities
considered in this work.
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The characteristic size of the system is the length of the
computational cell L in the DFT model (see Sec. III). The
ratio L/λ′ 	 1 is valid for our case as well.

The values of the DF are calculated for the fixed ionic
configurations. The resulting value of the DF is calculated for
the given temperature and density by averaging over the entire
ensemble of M ionic configurations,

ε
1, 2
L, T (ω) = 1

M

M∑
I=1

ε
1, 2
L, T (ω, RI). (11)

The averaged DF is substituted in the Fresnel formula for
the calculation of the reflectivity

R =
∣∣∣∣ (

√
ε − 1)

(
√

ε + 1)

∣∣∣∣
2

. (12)

III. CALCULATION METHOD

The Vienna Ab initio Simulation Package (VASP) [50–53]
plane-wave code is used for the DFT modeling in this work.
The longitudinal expression (8) is applied. The generalized
gradient approximation (GGA) for the exchange and corre-
lation part of the density functional is used. The type of
the functional is Perdew-Burke-Ernzerhof (PBE) [54]. The
solution of the Kohn-Sham equations for the wave functions
and corresponding energy levels is used for the calculation of
the DF components in Eq. (8). The energy cutoff of the plane
waves basis set is 180 eV.

The finite simulation volume leads to a discrete spectrum
of the eigenvalues. The Gaussian function is used as an
approximation of the δ function in the expressions (8) and (5).
The Gaussian width coincides with the electron temperature
(the parameter of the Fermi-Dirac distribution function) in the
current version of VASP. However, this approximation for the
width is valid only for the case of low temperatures and it
underestimates the values of the DF and reflectivity in the
case of plasmas, where electron temperatures are several eV. It
means that if the Gaussian is too broadened, the approximation
of the δ function becomes worse.

The Gaussian width is chosen to be equal to 0.03 eV in this
work. The DF is also calculated for the Gaussian widths from
0.01 to 0.1 eV and the results are not changed in this range. If
the Gaussian width is too small, it leads to nonphysical peaks
in ε(2)(ω).

Calculations are performed in the canonical ensemble. The
ion temperature is controlled by the Nosé-Hoover thermo-
stat [55,56]. The electron temperature coincides with the ion
temperature and is established by the Fermi-Dirac distribution
for occupancies f (T ,E). The temperature of the system
considered is T ∼ 30 000 K. The values of temperature and
plasma density, which correspond to the experiments [17–20],
are given in Table I.

The DF values are averaged over the set of ion config-
urations (11). These configurations are obtained within the
framework of the quantum molecular dynamics [57]. The
forces acting on ions are evaluated via the Hellmann-Feynman
theorem. Then the classical Newtonian equations of motion
are integrated to obtain trajectories of particles. Depending on
the particle density in the computational cell, the trajectories

TABLE I. Densities ρ and temperatures T [17–20].

λ = 1064 nm λ = 694 nm, 532 nm

ρ, g/cm3 T , K ρ, g/cm3 T , K

0.51 30050 0.53 32900
0.97 29570 1.1 33100
1.46 30260 1.6 33120
1.98 29810 2.2 32090
2.7 29250 2.8 32020
3.84 28810 3.4 31040

have 4000–10 000 steps with the time step 2 fs. From 5 to
10 statistically independent [58] configurations are chosen for
averaging.

The range of plasma densities studied is ρ = 0.51–
3.84 g/cm3. The number of particles in the computational
cell varies from 16 at the lowest densities up to 128 at
the highest density. The periodic boundary conditions are
used. The increase of the density leads to the decrease of
the calculation time at the fixed number of particles in the
computational cell.

IV. PLASMA FREQUENCY

Two methods of the plasma frequency evaluation are
suggested in the present paper. The first one is based on the
calculation of the real part of the dynamic conductivity σ (ω). It
is associated with the imaginary part of the DF by the relation
σ (ω) = ε0ωε(2)(ω), where ε0 is the dielectric constant. The
obtained dependence σ (ω) can be fitted at low frequencies by
the Drude formula [11,12],

σ (ω) = (
ε0ω

2
pτ

)
/(1 + ω2τ 2). (13)

The parameters of the approximation are the relaxation time τ

and the plasma frequency ωp, which we are looking for. This
method is also used in Refs. [46,59].

The second method is based on the sum rule [60]:∫ ∞

0
ωε(2)(ω)dω = π

2
ω2

p, (14)

where all the electrons are considered as free in the definition
of ωp. The DFT approach does not separate valent electrons
into bound and free ones. Due to the necessity to calculate
integral (14) numerically, we consider the following function,
which depends on the upper limit ωmax:

S(ωmax) = 2mε0

πnNve2

∫ ωmax

0
ε(2)(ω)ωdω, (15)

where we substitute nNve
2/mε0 into (14) instead of ω2

p. The
number of valent electrons is Nv = 8 for xenon in the DFT
framework, and n is the total concentration of ions and atoms.

The functions S(ωmax) are shown in Fig. 2 for the range
of xenon densities from ρ = 0.53 g/cm3 to 3.4 g/cm3. As
one can see, the function S(ωmax) has two limiting values with
nearly zero slopes. We denote them as S1 and S2. The value
S2 = 1 corresponds to eight electrons. This fact indicates to
the correctness of the results obtained.
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ρ

ω

FIG. 2. (Color online) Dependencies of function S on the upper
limit ωmax at various densities ρ.

The value S1 at ωmax about 10 eV can be related to the
plasma frequency. In fact, all the possible transitions between
the electron states are taken into account within the DFT
framework in the expression (8) for the imaginary part of the
DF included in Eq. (15). These transitions can be divided into
interband and intraband transitions. The interband transitions
correspond in plasma to the transitions between bound states
with different principle quantum numbers (spectral lines) and
to the transitions between bound and free states (photoioniza-
tion). The intraband transitions correspond in plasma to the
transitions in the continuous spectrum (free-free transitions)
and to the transitions between bound states with equal
principle quantum numbers but with different orbital quantum
numbers.

The plasma frequency is defined by the intraband transitions
in the continuous spectrum. The first limiting value S1 of the
function S(ωmax) is a contribution of low-frequency transitions
or intraband transitions. Thus, the limiting value S1 can be
applied for the calculation of ωp,

ω2
p = (nNve

2/mε0)S1. (16)

It should be noted that the values of the plasma frequency
ωp obtained in this way may be slightly overestimated due to
inclusion of the intraband transitions in the discrete spectrum.
However, analysis of the electron density of states reveals that
the possible contribution of these transitions is vanishingly
small in the given range of the shocked xenon plasma
parameters.

The dependencies of ωp on density calculated by each of
two methods are shown in Fig. 3. The dependencies obtained
by the Drude formula (13) within the framework of the free
electron model and those calculated with the formula (16)
almost coincide with each other. This fact can be considered
as a confirmation that the first limiting value of S(ωmax)
is responsible for the contribution of the transitions in the
continuous spectrum.

The values of plasma frequency obtained in this work are
close to the estimations [18,22] only at low densities. There
is an increasing discrepancy of ωp values with the increase of
density.

The imaginary part of the DF is included in the expressions
for both the reflectivity (12) and the plasma frequency (16).
One and the same sum over states defines explicitly both

ρ

ω
 (

FIG. 3. (Color online) Dependencies of plasma frequency on
density of xenon plasma. Pentagons correspond to values of ωp calcu-
lated by using Drude formula (13). Squares are results calculated with
formula (16). Circles are estimates of plasma frequencies obtained in
Refs. [18,22]. Arrows indicate the values of the frequencies, which
correspond to the wavelengths 1064, 694, and 532 nm.

values. Therefore, the values of the plasma frequency calcu-
lated within the framework of the approach used in this work
are directly associated with the dependencies of the reflectivity
on the plasma density.

V. FREE ELECTRONS

Low-temperature plasma is considered at low densities as
consisting of electrons, ions, and atoms. Atoms are distributed
over ground and excited states. Electrons are divided into
bound and free. Bound electrons form a discrete spectrum
of the atomic energy levels. Free electrons have a continuous
spectrum. This conventional picture fails with increase of the
plasma density.

Excited levels broaden due to the Stark effect and upper
levels merge, forming a quasicontinuous spectrum. Its lower
border is defined by the formulas of the Inglis-Teller type.

Another restriction of the pair excited states occurs, since
their lifetime decreases with the increase of the principal
quantum number due to Coulomb collisions. The lifetime
becomes zero at energies below ionization limit by a certain
amount �E. Electron and ion states in the range of �E can
be attributed to quasicontinuous collective many-body states
of a fluctuation nature [61–63].

The Inglis-Teller lowering as well as �E increase with
the increase of the concentration of charges. Therefore, the
selection of the free states in the spectrum of electron states
becomes more and more arbitrary and approximate with the
increase of the plasma density.

Moreover, the free electron number density is not an
observable value in quantum mechanics. However, one can
introduce an effective concentration of free-charge carriers ne,
using the values of the plasma frequency from Sec. IV and the
formula which is valid for ideal plasmas,

ω2
p = nee

2/ε0me. (17)
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FIG. 4. (Color online) An example of the electron density of
states at ρ = 1.6 g/cm3.

In particular, it follows from (16)

ne = S1nNv. (18)

In addition to two methods mentioned in Sec. IV, one
can estimate ne considering the states with energies greater
than the Fermi energy Ef as free electron states. Thus, the
concentration of free-charge carriers ne can be calculated with
the formula

ne/n = 2
∫ ∞

Ef

f (T ,E)g(E)dE, (19)

where g(E) is the electron density of states that depends mostly
on the plasma density according to Refs. [6,61]. An example
of the characteristic shape of g(E) for ρ = 1.6 g/cm3 is shown
in Fig. 4.

The values of ne at different densities ρ are given for the four
approaches in Table II. The values of ne calculated with the
formulas (13) and (17) are given in the second column. The
third column comprises the most reliable calculation results
using the formulas (16) and (17). The values of the effective
free-electron concentrations calculated with the formula (19)
are given in the fourth column. The values in all three columns
are in a satisfactory agreement with each other.

The estimates of ne obtained in Refs. [18,22] are given in
the fifth column. The concentrations of free electrons and the
corresponding values of the plasma frequency in Refs. [18,22]
are obtained within the chemical plasma model [21]. The Saha

TABLE II. Effective concentrations of free electrons ne at various
plasma densities ρ.

ne × 10−21, cm−3

ρ, g/cm3 (13) and (17) (16) and (17) (19) [18,22]
0.53 2.7 2.5 4 2.1
1.1 7.3 6.8 8.2 4
1.6 11.6 11 12 5.2
2.2 17.4 13 16.4 6.6
2.8 23 20 20 7.8
3.4 31.6 26.7 25.4 8.8

equation is used. The effects of the Coulomb attraction and
short-range repulsion are taken into account in the form of the
Debye correction and the approximation of hard spheres [64],
respectively. The discrepancy between the results [18,22] and
the figures in the second, third, and fourth columns indicates
the uncertainty of the chemical model for dense plasmas.
The discrepancy increases with the increase of the plasma
density.

It should be emphasized that the estimates [18,22] of ne

and ωp are connected by the formula (17) and are related
only to the parameters of the plasma produced by shock
compression of xenon. The estimates [18,22] of ne and ωp

are not connected with the dependence of the reflectivity on
the plasma density, which is also measured in Refs. [17–20].
Contrary to Refs. [18,22], the approach developed in this
paper gives the self-consistent determination of both ωp and
ne and reflectivity.

Note that these methods of the estimation of the effective
free electron concentration can be used not only for monatomic
substances like xenon but also for mixtures [32,33]. Two other
approaches for the estimation of the effective free-electron
density have been proposed recently for WDM. One is
based on the accurate analysis of the electron density of
states [65] and the other is based on the free-electron pressure
analysis [66].

VI. REFLECTIVITY

A. Calculations results

The measured and calculated values of the reflectivity
dependence on density are shown in Fig. 5 for the wavelengths
of laser radiation 1064, 694, and 532 nm. The experimental
data [17–20] are depicted by stars. The squares correspond to
calculation results obtained in this work.

As one can see, the calculated reflectivities for the wave-
lengths 1064 and 694 nm are in a good agreement with
the experimental data both in the absolute values and in
the density dependence in the range of ρ � 1 g/cm3. The
only point drops out at the low density ρ = 0.5 g/cm3. This
divergence at low density can be associated in particular with
the fact that the ratio of the penetration depth and the wave-
length in the medium becomes d/λ′ ∼ 0.3 at ρ = 0.5 g/cm3.
Therefore, our DFT approach has a limited applicability at
low densities. The parameter d/λ′ < 0.1 at high densities.
It ensures the applicability of this approach in the range
ρ > 1 g/cm3. In addition, the computational applicability
of the DFT becomes less reliable with the decrease of the
density.

The ratio is d/λ′ = 0.16 for the wavelength 532 nm at
ρ = 1 g/cm3. Thus, unlike the case of the wavelengths of
1064 and 694 nm, the applicability of the long-wavelength
approximation for 532 nm is also restricted for a given density.
The ratio d/λ′ < 0.1 for larger ρ as well as for 1064 and
694 nm. Theoretical values of the reflectivity at 532 nm
are overestimated in comparison with the experimental ones.
However, the relative dependence of the reflection coefficient
on the density is reproduced.

The arrows indicate in Fig. 5 the densities where the
frequency of the incident radiation coincides with the plasma
frequency calculated in Sec. IV. Thus, the calculation shows
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ρ
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ρ

λ 

FIG. 5. (Color online) Dependencies of the shocked xenon
plasma reflectivity on the plasma density at various values of
wavelengths. The experimental data [17–20] are depicted by stars.
The squares correspond to the calculation data. The arrows indicate
the values of the plasma density where the frequency of incident
radiation and the plasma frequency coincide with each other.

that there is no cutoff at the plasma frequency. It solves the
problem which is shown in the Introduction.

B. Accuracy of the results

The convergence of the results obtained are analyzed
over four parameters of the calculation: the upper limit

of integration in Eq. (10), the number of particles in the
computational cell, the number of k points in the Brillouin
zone, and the number of configurations of the ions used
for averaging. The analysis of the dependence of reflectivity
on the upper limit of the integral (10) shows that the value
ωmax = 40 eV is sufficient for the convergence.

The analysis of the dependence of the reflectivity on the
number of particles N shows that the results depend weakly
on N at the low plasma density and the number of particles
N = 16 is sufficient. The increase of N leads to a considerable
increase in the calculation time. Therefore, it is important
to determine the minimum amount of particles in the unit
cell where the convergence is achieved, especially for the low
plasma densities. It means that it is necessary to increase the
computational cell with the increase of the plasma density. For
the high plasma densities, the calculations are performed for
64 particles. Calculations for 128 particles are also performed
to check the convergence of the results.

The calculated reflectivity values (Fig. 5) are obtained for
one � point in the Brillouin zone. The values of reflectivity
are calculated for different numbers of k points from 1 to 64
to check the convergence of the results. The analysis of the
results shows that an increase of k points does not affect the
value of the reflection coefficient at temperatures about 3 eV
considered.

The DF values for a given density are averaged over the
number of the statistically independent configurations [58].
The averaging determines the value of the relative error of the
DF. The number of configurations is not less than 5. The error
of reflectivity is determined by the standard relation

�R =
√(

∂R

∂ε(1)
�ε(1)

)2

+
(

∂R

∂ε(2)
�ε(2)

)2

. (20)

The error �ε(2) of the imaginary part of the DF is the standard
deviation of ε(2) for the case of the averaging over statistically
independent configurations. The increase of the number of the
configurations leads to the decrease of �ε(2). It is assumed that
the relative error �ε(2)/ε(2) does not depend on frequency.

The errors of the the real �ε(1) and imaginary �ε(2) parts
of the DF are connected by the following expression

�ε(1)(ω) = 2

π
P

∫ ∞

0

�ε(2)(ω′)ω′

ω′2 − ω2
dω′. (21)

At the lowest plasma density, the relative error of the
imaginary part of the DF is the largest but it does not exceed
15%. The relative error �ε(1)/ε(1) is about 1,5% and the ratio
of derivatives is (∂R/∂ε(1))/(∂R/∂ε(2)) 	 1 at the least value
of ρ. Thus, at the lowest plasma density the imaginary part of
the DF makes a decisive contribution to the reflectivity error,
which equals 30% in this case.

While increasing the plasma density up to ρ = 3.84 g/cm3,
the derivatives of the reflectance with respect to the compo-
nents of the DF become equal to each other as well as the
relative errors ε(1) and ε(2). Thus, the real and imaginary parts
of the DF contribute equally to �R. The absolute value of
�R increases, but the relative error decreases significantly to
less than 5%. Therefore, it is not necessary to increase the
accuracy of the imaginary part of the DF for the large values
of the plasma density.
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ρ

FIG. 6. (Color online) Dependencies of the reflectivity on the
plasma density at the wavelength 1064 nm. The solid line is
the case of collisionless plasma. The dashed line corresponds to
the reflectivities calculated by the Drude formula with the static
collisional frequency [22]. The dash-dot line is the Drude model with
a wide wave front as a fitting parameter [22,24–26]. The stars are the
experimental data [17]. The pentagons connected by the dashed line
are results or Ref. [34]; the circles connected by the dashed line are
results of Ref. [34] with band-gap corrections; the squares connected
by the solid line are the results of this work. The arrows indicate the
plasma density where the frequency of the incident radiation equals
to the plasma frequency.

VII. DISCUSSION

The dependence on the plasma density of the reflectivity
for the laser radiation at the wavelength 1064 nm is shown
in Fig. 6. Different theoretical approximations are grouped
together with the experimental data [17] presented by stars.
The solid line corresponds to the case of a collisionless
plasma with a cutoff at the plasma frequency. The dashed line
corresponds to reflectivities calculated by the Drude formula
with the static collisional frequency [22]. These lines and
points are similar to those shown in Fig. 1. According to
the experimental data, one can see that there is no cutoff at
the plasma frequency. Also, using the Drude formula with a
nonzero collision frequency can not explain the experimental
data.

In the papers [22,24–26], it is assumed that the density in
the shock-compressed xenon increases not abruptly but there
is a region of finite width, in which the density increases
smoothly to a final value. Thus, the wavefront has a finite
width and the laser light is reflected not directly from the
xenon plasma, but from the extended front. The assumption,
that the wavefront width is about 1 μm, improves significantly
the agreement with the experiment in comparison with the
assumption of a sharp front, when the Drude formula is used.
However, the effect of the front broadening has no independent
experimental support. In this paper, we do not consider the
effect of the wavefront broadening, which can still make a
contribution to the reflectivity of the shock-compressed xenon
plasma, although in a much lesser degree than expected in
Refs. [22,24–26].

As mentioned in the Introduction, the DFT approach for
the calculation of the shocked xenon plasma reflectivity is
introduced in Ref. [34] without using the hypothesis of the
front broadening. The pentagons connected by the dashed line
in Fig. 6 correspond to the calculation results [34]. As one can
see, the results [34] are in a much better agreement with the
experiment in comparison with the Drude formula. However,
there is also a noticeable discrepancy with the experiment at
the low plasma densities.

An assumption about an increase of the energy gap between
free and bound states is introduced in Ref. [34] to improve
the agreement with the experiment [17]. The assumption is
analogous to that used to correct the underestimation of the
band gap in the semiconductor spectra. The effect is observed
in the calculation of the electron density of states within the
framework of the DFT. As shown in Ref. [45], these corrections
are introduced in the expression for the imaginary part of
the DF,

ε(2)
gap(ω) =

[
�ω

�ω − �

]2

ε(2)(ω), (22)

where � is the magnitude of the correction, which increases
the gap between the bound and free electron states. The
correction (22) allows for the contributions in the DF and
reflectivity, which are not included within the RPA.

The gap is increased by the value � = 2.5 eV in Ref. [34].
The results of the calculation of the reflectivity with the
band-gap corrections are shown in Fig. 6 by the circles
connected by the dashed line. It improves the agreement of the
calculation results with the experiment at the low densities, but
it leads to the underestimation of the reflection coefficient at
the high densities. The dependencies of the reflectivity on the
plasma density [34] with and without corrections are almost
parallel. Thus, the introduction of these amendments affects
only the absolute values and does not affect the character of
the dependence of the reflectivity on the plasma density.

ρ

FIG. 7. (Color online) Reflectivities calculated in the DFT frame-
work with the Kubo-Greenwood formula at various densities: The
pentagons connected by the dashed line are the results of Ref. [34],
and the diamond are results of this work.
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The discussion performed reveals the importance of the
density of states for the reflectivity determination. Therefore,
we can return to the discussion of Fig. 4, where there is a gap
between continuous states (E − Ef > 0) and the discrete level
at E ≈ −10 eV. However, the idea of the electron spectrum in
dense plasmas as a combination of the continuous spectrum
of free states and the discrete spectrum of bound electrons
separated by an energy gap is not quite correct [62] as discussed
in Sec. V. Thus, the validity of the amendments introduced in
Ref. [34] requires further analysis and elaboration in the case
of calculations of the WDM properties.

The calculation results obtained in this paper are in a better
agreement with the experiment in comparison with Ref. [34]
both in the absolute values and in the density dependence
without the introduction of any amendments to either the
shockwave front width or the band gap. The rate of the
reflectivity increase with the plasma density increase obtained
in this study is considerably higher compared to Ref. [34].

As previously mentioned, the main difference of
the approach developed in the present work from Ref. [34]
is the application of the longitudinal expression (8) instead of
the transverse Kubo-Greenwood expression (5). We reproduce
the calculations of Ref. [34] in order to check this conclusion.
As one can see in Fig. 7, our values are in a good agreement
with the data [34], despite the fact that the earlier version of
the PBE exchange and correlational functional [67] is used in
Ref. [34]. We calculate also the reflectivity with different PAW
models included in VASP, and no effect is found. Therefore,
the use of the longitudinal expression (8) instead of the

Kubo-Greenwood formula (5) is the main reason of the better
agreement of our DFT results with the experimental data.

VIII. CONCLUSIONS

The dependence of the shock-compressed xenon plasma
reflectivity on the plasma density is calculated for different
wavelengths within the framework of the DFT.

The expression for the longitudinal component of the
dielectric function gives a significantly better agreement with
the experiment in comparison with the Drude model with the
collision frequency in the Born approximation as well as with
the DFT approach using the Kubo-Greenwood formula. The
long-wavelength limit is considered.

The method of the plasma frequency calculation is de-
veloped based on the sum rule within the DFT approach.
The approach gives the self-consistent determination of both
plasma frequency and the reflectivity dependence on density.
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[35] M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F.

Bechstedt, Phys. Rev. B 73, 045112 (2006).
[36] M. French and R. Redmer, Phys. Plasmas 18, 043301 (2011).
[37] M. E. Povarnitsyn, D. V. Knyazev, and P. R. Levashov, Contrib.

Plasma Phys. 52, 145 (2012).
[38] Y. Ping, D. Rocca, and G. Galli, Phys. Rev. B 87, 165203 (2013).
[39] N. D. Mermin, Phys. Rev. 137, A1441 (1965).
[40] T. R. Mattsson and R. J. Magyar, AIP Conf. Proc. 1195, 797

(2009).
[41] H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).
[42] S. L. Adler, Phys. Rev. 126, 413 (1962).
[43] N. Wiser, Phys. Rev. 129, 62 (1963).
[44] A. Starace, Phys. Rev. A 3, 1242 (1971).
[45] R. Del Sole and R. Girlanda, Phys. Rev. B 48, 11789 (1993).
[46] V. Recoules, P. Renaudin, J. Clérouin, P. Noiret, and G. Zérah,
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