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Ion potential in warm dense matter: Wake effects due to streaming degenerate electrons
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The effective dynamically screened potential of a classical ion in a stationary flowing quantum plasma at
finite temperature is investigated. This is a key quantity for thermodynamics and transport of dense plasmas
in the warm-dense-matter regime. This potential has been studied before within hydrodynamic approaches or
based on the zero temperature Lindhard dielectric function. Here we extend the kinetic analysis by including
the effects of finite temperature and of collisions based on the Mermin dielectric function. The resulting ion
potential exhibits an oscillatory structure with attractive minima (wakes) and, thus, strongly deviates from the
static Yukawa potential of equilibrium plasmas. This potential is analyzed in detail for high-density plasmas
with values of the Brueckner parameter in the range 0.1 � rs � 1 for a broad range of plasma temperature and
electron streaming velocity. It is shown that wake effects become weaker with increasing temperature of the
electrons. Finally, we obtain the minimal electron streaming velocity for which attraction between ions occurs.
This velocity turns out to be less than the electron Fermi velocity. Our results allow for reliable predictions of
the strength of wake effects in nonequilibrium quantum plasmas with fast streaming electrons showing that these
effects are crucial for transport under warm-dense-matter conditions, in particular for laser-matter interaction,
electron-ion temperature equilibration, and stopping power.
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I. INTRODUCTION

Dense plasmas have recently gained growing interest due
to their relevance for the interior of giant planets as well
as for laser interaction with matter and inertial confinement
fusion scenarios. Examples of recent experimental studies
include the ultrafast thermalization of laser plasmas [1] or
free electron laser excited plasmas [2], inertial confinement
fusion experiments at the National Ignition Facility [3], and
magnetized Z-pinch experiments at Sandia [4,5]. Questions
of fundamental theoretical importance are the energy loss of
energetic particles (stopping poser) in such a plasma, e.g.,
Ref. [6], or the temperature equilibration of the electronic and
ionic components [2,7].

Despite recent advances in modeling and computer sim-
ulations a fully self-consistent treatment of these highly
nonequilibrium electron-ion plasmas has not been possible
so far due to the requirement of electronic quantum and spin
effects together with the (possibly) strong ionic correlations.
The main problem here are the vastly different time scales
of electrons and ions resulting from their different masses. A
possible solution of this dilemma is a multi-scale approach
that has been proposed by Ludwig et al. in Ref. [8]. It takes
advantage of the weak electron-ion coupling that allows for
a linear response treatment of the electrons. This idea has
been used by Graziani et al. to decouple the electron kinetic
equation using a Singwi-Tosi-Land-Sjölander (STLS) scheme
[9]. Further improvements along this line should be possible
with an extension of STLS recently proposed by Kählert et al.
[10].

The key of this multi-scale approach is to absorb the fast
electron kinetics into an effective screened potential � of the
heavy ions with charge Qi where the screening is provided by
the electrons via a proper dielectric function ε, e.g., Ref. [8],

�(r) =
∫

d3k

2π2

Qi

k2ε(k,0)
eik·r. (1)

The static limit, ω = 0, is justified when the electrons are in
(or close to) thermodynamic equilibrium where the potential
reduces to the familiar statically screened Yukawa or Debye
potential. In a second step of the multi-scale approach, the
dynamics of the ions is computed exactly by using molecular
dynamics simulations involving the screened potential � [8,9].
However, under nonequilibrium conditions of fast directed
motion of electrons with respect to the ions (electron beams,
fast ion stopping in quantum plasmas and metals, laser
acceleration of electrons, etc.) this approximation breaks
down, and generalization of the potential (1) to the case of
a dynamic dielectric function is necessary.

It is the purpose of this paper to present this generalization
for situations relevant to warm dense matter and obtain results
that are quantitatively reliable allowing for predictions that can
be tested in experiments. To this end we will use a dielectric
function of quantum degenerate electrons streaming with a
constant velocity ue relative to the ions that fully includes the
effects of finite temperature T and collisions (correlations).
We will use the Mermin dielectric function [11] and obtain
the generalization of Eq. (1) to a dynamically screened ion
potential,

�(r) =
∫

d3k

2π2

Qi

k2ε(k,k · ue)
eik·r. (2)

This potential may radically differ from a Debye potential
in a finite range of streaming velocities ue and even change
sign (wake effects). This gives rise to an attraction between
two equally charged ions which may significantly influence
the static and dynamic properties of dense plasmas subject to
streaming particles.

Such wake effects that are due to a “focusing” of the light
particles behind the heavy one are well known from classical
dusty (complex) plasmas where ion focusing behind a highly
charged heavy dust particle is well established experimentally,
e.g., Refs. [12–14]. Recently, it has been shown that the
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presence of a strong ion drift leads to the excitation of ion
instabilities and the destabilization and melting of highly
ordered dust grain ensembles such as dust crystals [15], and
generalizations to magnetized plasmas have been performed
[16]. The theoretical concepts to compute the dynamically
screened potential are similar to the ones used in this paper
and are based on a classical dielectric function derived either
from cold fluid theory or from kinetic theory with collisions
[17,18]. An important outcome of these studies is that the
dynamically screened potential derived from linear response
theory agrees very well with full nonlinear kinetic simulations,
e.g., Refs. [14,18].

A second example of wake effects are ion-beam experi-
ments [19] where the dynamics of ions penetrating a plasma
are strongly influenced by wake effects. A third realization
of wake effects is observed in condensed-matter systems.
In fact, the so-called vicinage effect (force) [20,21] reported in
experiments on the energy loss of charged particles in solids
is nothing but a wake effect.

While the dynamically screened potential in a streaming
classical plasma is well studied, the corresponding problem
in a quantum plasma is much poorer understood theoretically.
A numerical approach to the dynamics of an ion penetrating
into a solid is given by quantum-classical Ehrenfest dynamics,
which, however, is very time-consuming, e.g., Refs. [22,23].
On the other hand, the interaction of a fast ion with the
electrons of the solid and the related stopping power were
investigated in detail using a dielectric approach, similarly
to our concept. The dielectric function of the target material
was computed, e.g., in Refs. [24–27]. A similar analysis
involving the zero-temperature dielectric function of streaming
quantum electrons and neglecting electron-electron collisions
was performed in Ref. [28] where the behavior of the Friedel
oscillations was studied.

Further, we mention a classical molecular dynamics ap-
proach to charged-particle stopping in warm dense matter by
Grabowski et al. [6] where the classical wake potential was
computed. Finally, an even simpler approach that is based
on a quantum hydrodynamic model (QHD) has been applied
that predicts an attractive interaction between ions even in the
absence of streaming, ue = 0 [29]. Comparisons with density
functional theory revealed that this is incorrect [30] and points
to limitations of QHD models for dense plasmas [31,32]. A
recent overview and more references can be found in Ref. [33].

While many of the above works indicated the principal
importance of wake effects in dense quantum plasmas with
fast projectiles, particle beams, or streaming electrons, an
analysis that allows for reliable quantitative predictions under
conditions relevant to warm dense matter is still missing. The
present paper aims at filling this gap. To this end we perform
calculations of the dynamically screened potential of an ion in
the presence of streaming quantum electrons fully including
finite temperature effects and electron-electron collisions
thereby scanning a broad range of densities, temperatures, and
streaming velocities. The present quantum kinetic treatment
yields results that substantially differ both from classical wake
potentials [18] and from quantum potentials obtained within
quantum hydrodynamics [34]. This indicates that the QHD
approach should be applied to warm dense matter with great
caution as it may lead to wrong results.

The paper is organized as follows: After discussing the
relevant parameters (Sec. II) we introduce the Mermin di-
electric function in Sec. III and discuss the chosen model
for the electron-electron collision frequency. The dynamically
screened potential is presented in Sec. IV and analyzed for
a broad range of plasma parameters. Finally, in Sec. V, we
present a detailed discussion of our results and of the limita-
tions of our model. The paper concludes with an appendix that
contains details of the evaluation of the quantum dielectric
function as well as additional results for an ultrarelativistic
quantum plasma. These results indicate analogous quantum
plasma behavior in the cases of weak and strong relativistic
effects.

II. CONSIDERED DENSITY AND TEMPERATURE
RANGE: DIMENSIONLESS PARAMETERS

In this paper we study a dense low-temperature plasma
containing classical—possibly strongly correlated—ions em-
bedded into a streaming quantum electron plasma. Such a
two-component plasma (for simplicity, in the simulations
below, we assume equal temperatures of electrons and ions)
is characterized by the following energy scales [35]: thermal
energy (per particle), 3

2kBT , and the electron Fermi energy
EF = mv2

F /(2m) ≡ kBTF , where vF and TF are the Fermi
velocity and Fermi temperature, respectively, and the mean
electron streaming energy will be denoted by EU = mu2

e/2.
Further, the interaction energy of free electrons is characterized
by the plasmon energy, �ωp, with the plasma frequency
ωp = (4πne2/m)1/2, whereas the scale for bound electrons
is the atomic ground-state binding energy, ER = Ze2/2aB .
The relevant length scales are the mean interparticle distance
of the electrons (ions) a (ai) and the Bohr radius aB . In this
paper we will consider a hydrogen plasma (the results are
directly applicable to multiply charged ions by a rescaling
of the potential, see below), where aB is the hydrogen Bohr
radius and the binding energy is related to the familiar Hartree
energy by ER = 13.6 eV = Ha/2. In the following, we will
use atomic units (a.u.), where me = e = � = 1, i.e., lengths
are given in units of the Bohr radius and energies in units of
Hartree.

The plasma state is conveniently characterized by the
following dimensionless parameters:

(i) the electron degeneracy parameter, θ = kBT /EF ,
(ii) the quantum coupling parameter (Brueckner param-

eter), rs = a/aB (an alternative parameter is η = �ωp/4EF

which is related to the Brueckner parameter by η � √
rs/18.1),

(iii) the coupling parameter of the ions, 	i = Q2
i /(aikBT ),

where the ion charge is Qi = Ze, and
(iv) the dimensionless streaming velocity (Mach number)

defined as M = ue/vF .
Relativistic effects are not important for typical warm-

dense-matter conditions and will, therefore, be discarded in the
following (for a discussion of wake effects in ultrarelativistic
plasmas, see Appendix B). This puts a lower bound to
the Brueckner parameter, rs � 0.014, that follows from the
condition vF � c. In the calculations below we will restrict
ourselves to rs � 0.1.

Thus the electron plasma in equilibrium is characterized by
two parameters: θ and rs . The temperature in Kelvin or eV
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TABLE I. Examples of plasma parameters used in this paper (numbers refer to the case θ = 1.0).

rs 0.1 0.2 0.3 0.5 0.8 1 1.5 4.52

n (cm−3) 1.61 × 1027 2.0 × 1026 6.0 × 1025 1.3 × 1025 3.1 × 1024 1.6 × 1024 4.74 × 1023 1.73 × 1022

T (K) 5.8 × 107 1.45 × 107 6.44 × 106 2.32 × 106 9 × 105 5.8 × 105 2.58 × 105 0.28 × 105

kBT (eV) 5 × 103 1.2 × 103 5.57 × 102 2 × 102 78 50 22.27 2.45
kBT (a.u.) 184 46 20.44 7.36 2.87 1.84 0.82 0.09

then follows according to T � θ
r2
s
0.58 × 106 (K) and kBT �

θ
r2
s

· 50.12 (eV). The range of parameters considered in the
present work is set by the applicability limits of the theory,
which assumes weak electron coupling (rs � 1) as well as
weak electron-ion coupling which is the basis for the linear
response ansatz for the screened ion potential. At the same time
the ion coupling can be strong (	i � 1) and can be studied,
e.g., by performing molecular dynamics simulations with the
dynamically screened ion potentials derived in the present
paper [8]. Typical density and temperature parameters used
below are listed in Table I, for the case θ = 1 (i.e., kBT = EF ),
and are trivially rescaled to other values of θ .

In the present nonequilibrium plasma case of streaming
electrons, the plasma is characterized by a third dimensionless
parameter: the Mach number, M .

As mentioned in the Introduction, the largely different
time scales of electrons and ions prevent a self-consistent
time-dependent quantum simulation. Instead, we will apply
our multi-scale approach [8] where the whole information on
the electron component is condensed in a dynamic dielectric
function which determines the effective potential of a single
ion. Thus, the quality of the results depends on the accuracy of
the dielectric function. While there exists an extensive litera-
ture on finite temperature dielectric functions with correlation
effects, e.g., Ref. [36], many results are very complicated
and difficult to implement in plasma simulations. Therefore,
here we will use the particle number conserving relaxation
time approximation due to Mermin [11] with a temperature
and density-dependent collision frequency, which, to our
knowledge, has not been applied before to the effective ion
potential in warm dense matter.

III. MERMIN DIELECTRIC FUNCTION, COLLISION
FREQUENCY, AND PERTURBED ELECTRON DENSITY

The standard mean-field (Hartree or quantum Vlasov) result
for the electron dielectric function is given by the random-
phase approximation (RPA), εRPA(k,ω), where correlation
effects are neglected, and damping of collective oscillations
is entirely due to Landau damping. In the warm-dense-matter
regime we expect the electrons to be weakly to moderately
coupled, therefore, correlation effects are, in general, relevant
and approximations beyond the RPA are often required.

The simplest quantum dielectric function which takes
collisions into account in a conserving fashion [37] was derived
by Mermin [11] in relaxation time approximation and has the

form:

εM (k,ω)=1+ (ω + iν)[εRPA(k,ω + iν) − 1]

ω + iν[εRPA(k,ω + iν) − 1]/[εRPA(k,0) − 1]
,

(3)

where ν is the electron collision frequency.
The dielectric function (3) involves the RPA dielectric

function for a finite temperature, which is summarized in
Appendix A. A derivation of the Mermin dielectric function
from quantum kinetic theory was given in Ref. [8].

The dielectric function (3) contains an energy-independent
electron-electron collision frequency, ν = ν(n,T ). A simple
parametrization valid for arbitrary degeneracy has been given
in Ref. [25] and will be used below,

ν = ν0√
1 + 0.2T/TF

, (4)

where ν0 = ν(kBT � EF ), given by

ν0 = 3(kBT )2

2�mec2

√
αx3

π3(1 + x2)5/2
J (y) , (5)

and x=vF /c, y=√
3�ω̃p/kBT , and ω̃p = [4πe2ne/(me(1 +

x2))]1/2. The function J (y) has the form [38]

J (y) =
{

y3

3(1 + 0.07414y)3
ln

[
2.810

y
− 0.810x2

y(1 + x2)
+ 1

]

+ π5

6

y4

(13.91 + y)4

} (
1 + 6

5x2
+ 2

5x4

)
, (6)

which is applicable for 0.01 � x � 100, corresponding to the
density range 1.4 × 10−4 � rs � 1.46. As mentioned above,
for our analysis of warm-dense-matter situations we restrict
rs to values above 0.1, so relativistic effects are of minor
importance (x � 1). In Fig. 1 the values of the electron-
electron collision frequency in units of the plasma frequency
are shown. With increasing degeneracy, the collision frequency
decreases due to the Pauli principle. Furthermore, the collision
frequency increases with rs due to the increased Coulomb
coupling.

There exists an abundant literature on the computation of
the collision frequency. For example, Ref. [39] contains results
for warm-dense-matter conditions in static Born approxima-
tion (see also the references cited therein). At low densities
(rs ∼ 1.5), the results substantially exceed the predictions of
the analytical parametrization, Eq. (4), so it has to be expected
that the latter does not necessarily account for all collision
effects. Moreover, other collision mechanisms such as in the
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FIG. 1. Contours of constant electron-electron collision fre-
quency, ν, Eq. (4), in units of ω̃p .

presence of other charged or neutral particle species may also
lead to increased collision frequencies.

However, up to now there are no comprehensive data
for the collision frequency in the entire warm-dense-matter
region available. Therefore, in the majority of our numerical
simulations below we will use the analytical expression (4).
Yet, in order to assess the general effect of collisions on the
dynamically screened ion potential, we include a separate
Sec. IV D where we use values of the collision frequency
ν that are deliberately chosen larger than those of Eq. (4).

From the dielectric function all properties of the streaming
electrons that are perturbed by a single ion can be directly com-
puted within linear response. For example, the perturbation
of the electron density follows as (the tilde indicates Fourier
transformed quantities, and the electron charge is −e0) [8]

ñ(1)(k,ω) = �M (k,ω)(−e0)�̃(k,ω), (7)

where �M denotes the longitudinal polarization function with

εM (k,ω) = 1 − 4πe2
0

k2 �M (k,ω). Using the result (2) for the
dynamically screened potential this expression becomes

ñ(1)(k,ω) = Qi

e0

εM (k,ω) − 1

εM (k,ω)
, (8)

and the total electron density follows from the Fourier
transform of (8), together with the unperturbed density,
n(r,t) = n(rs) + n(1)(r,t).

IV. NUMERICAL RESULTS FOR THE DYNAMICALLY
SCREENED ION POTENTIAL

Having obtained the retarded longitudinal dielectric func-
tion we now can compute the dynamically screened ion
potential, Eq. (2). To this end the Fourier transform of the
bare Coulomb potential divided by the Mermin dielectric
function has to be computed. We used a high performance
(memory optimized) computer program previously developed
for classical plasmas [18] and extended it to the quantum case.
This code allows for high accuracy calculations of the wake
potential on large three-dimensional grids with the required
fine discretization in real and Fourier space. Its accuracy
was tested against results obtained with a MATHEMATICA

implementation of the plasma dispersion function [40,41]. A

second thorough test of the code was made for the case of a
classical plasma by comparison with first-principal nonlinear
particle in cell simulations [14,17]. The agreement turned out
to be excellent, except for very slow particles and/or highly
charged heavy particles where linear response theory fails.

Based on this experience we expect that the present linear
response approximation will also be adequate for quantum
plasmas in the warm-dense-matter range. However, for quan-
tum systems no reliable nonlinear kinetic tests are available
yet. Simulations for inhomogeneous quantum plasmas based
on quantum kinetic theory or nonequilibrium Green functions
are presently only emerging, e.g., Refs. [42–45].

A. Limit of static screening

The first test of our potential (2) is the static collisionless
limit (ν = 0) of nonstreaming electrons (ue → 0), where �,
in linear response, reduces to a Yukawa potential (1),

�Y = Qi

r
exp(−kSr), (9)

where k−1
S is the screening length. The screening parameter

for an electron gas at finite temperature in RPA [46] is

k2
S = 1

2
k2

TFθ
1/2I−1/2(βμ), (10)

where kTF = √
3ωp/vF is the Thomas-Fermi wave number,

I−1/2 is the Fermi integral of order −1/2, and β−1 = kBT .
In Fig. 2(a) the value of kS is shown as a function of θ for

different values of rs . With increasing rs (decreasing density),
the number of electrons in the screening cloud decreases.
At the same time, the screening length, 1/kS , increases.
Following a line of given density (rs = const), an increase
of θ is equivalent to an increase of temperature. For θ � 1 the
classical behavior of the Debye screening length is recovered.
In contrast, for θ < 1 quantum effects dominate. In particular,
at low temperatures with θ < 0.1, the screening parameter
stays approximately constant. This can be understood by
noticing that, at low temperatures, the quantum kinetic energy
of the electrons,

〈K〉Q
EF

= 3

2
θ5/2

∫ ∞

0
dy

y3/2

exp(y − βμ) + 1
, (11)

also varies slowly with temperature, approaching 3EF /5,
as can be seen from Fig. 2(b). This figure also provides,
for comparison, typical values of the electron streaming
kinetic energy, 〈K〉S = mu2

e/2 (in units of the Fermi energy),
corresponding to different streaming velocities ue = MvF .

B. Friedel oscillations in a flowing quantum plasma

Strongly degenerate quantum systems exhibit the so-called
Kohn anomaly [47] arising form the step character of the
Fermi function at the Fermi surface in momentum space.
In coordinate space this translates into long-range oscillatory
behavior in the statically screened potential (Friedel oscil-
lations) which is clearly observed, e.g., in scanning tunneling
spectroscopy experiments of metal surfaces [48]. The recovery
of Friedel oscillation is an important consistency check for any
quantum theory of effective potentials. Friedel oscillations
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FIG. 2. (Color online) Temperature dependence of static proper-
ties. (a) Screening parameter kS (in units of a−1

B ) in the potential
(9) for various densities given in the figure. (b) Quantum kinetic
energy 〈K〉Q of electrons in units of the Fermi energy compared to
the streaming kinetic energy 〈K〉S for various streaming velocities.
Note that 〈K〉Q/EF is independent of rs , cf. Eq. (11).

are, for example, not captured by quantum hydrodynamics
[30] or by a Yukawa potential (9). Taking the static limit of
the potential (2) within the RPA (ν → 0), for long distances,
where the Yukawa part of the potential is already damped
out, we recover the known asymptotics ∼ cos(2kF r)/r3 [49].
At finite temperature, Friedel oscillations die away from the
ion as cos(2kF r)/r2 exp(−wr), where w = √

2mπkBT/
√

μ�

[50].
Now it is interesting to analyze Friedel oscillations in

the presence of streaming electrons. This was previously
investigated in Ref. [28] for a quantum plasma at T = 0. While
these shallow oscillations may be of minor practical relevance
for warm-dense-matter conditions, they provide a useful test
of the accuracy of the real-space potential and reflect how
well the Fermi statistics are captured. To visualize the pattern
of Friedel oscillations we multiply the full potential by r3

and present the results in Fig. 3 for the parameters that were
used in Ref. [28]. We observe very good agreement with that
reference, although at the lower density [rs = 4.52, Fig. 3(b)]
the validity of the present dielectric function (and of the one in
Ref. [28]) is questionable. Interestingly, at the higher density,
rs = 1, shown in Fig. 3(a) the Friedel oscillations are more
strongly pronounced (note the different color scale) and the
oscillation period is strongly reduced. This is in agreement

FIG. 3. (Color online) Potential |r|3�(r) illustrating the behavior
of Friedel oscillations in the presence of electrons streaming in
positive z direction with ue = 0.5vF and θ = 0.01. (a) rs = 4.52;
(b) rs = 1. The result agrees well with Fig. 7 of Ref. [28]. Note
the strongly increased amplitude of the potential in the lower figure
(different color scale).

with the above analytical result for T = 0 where this period
scales with k−1

F ∼ r−1
s .

C. Wake effects in a streaming quantum plasma

Let us now turn to the details of the dynamically screened
potential, in particular to its dependence on the streaming
velocity (Mach number, M). In the presence of streaming
electrons, the formerly isotropic screening cloud becomes
deformed. From a microscopic point of view, this can be
understood as the ion “focusing” electrons behind itself,
thereby creating a spatial region with excess local electron
density (probability) which, in turn, may attract other ions.
This region will be called “attractive region” below.

While the effect of attraction due focusing of streaming
charged particles has been well studied in several fields, in
particular in dusty plasmas, e.g., Ref. [15], a priori it is not
known how important such an effect is for ions in warm dense
matter under realistic conditions. The present model allows
us to give a reliable answer. We observe that the magnitude
of the excess electron density depends on a variety of factors,
most importantly (a) the streaming velocity ue, (b) the density,
and (c) temperature (entering via θ ). A first overview on the
influence of M , rs , and θ is presented in Fig. 4. We will now
separately analyze the impact of all three factors.
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FIG. 4. (Color online) Effective dynamically screened ion poten-
tial �(z) and its variation with the streaming velocity M (a), density
parameter rs (b), and temperature θ (c). The potential is shown along
the streaming direction z at the ion position (r = 0).

(a) Influence of the streaming velocity. In a homogeneous
equilibrium plasma, the average number of electrons scattered
from an ion is isotropic. In contrast, with the appearance of
streaming the number of electrons scattered in flow direction
increases, and electrons tend to accumulate behind the ion.
Increasing the streaming velocity ue increases the number of
scattered electrons, thereby enhancing the effect of attraction.
At the same time, it is clear that, beyond a certain value of
ue, a further increase will shift the attractive region away from
the ion [51]. Thus, a weakening of the attraction should be
expected roughly for M ∼ 1. This general picture is confirmed
by our results shown in Fig. 4(a). There we depict the
dynamically screened potential �(r,z) in streaming direction
z for different values of M . Indeed, already for small M a
shallow attractive minimum emerges that becomes deeper with
increasing M and moves towards the ion. This is explored more
in detail below in Fig. 5.

FIG. 5. (Color online) Absolute depth (a) and location (b) of the
first minimum of � behind the ion versus streaming parameter M for
θ = 0.01 and different density parameters rs shown in the figure.

(b) Influence of the electron density. In Fig. 4(b) the ion
potential �(r,z) in streaming direction z is presented for fixed
M and different values of the density parameter rs . At the
highest density, rs = 0.1, a deep attractive minimum exists
close to the ion. A density reduction (increase of rs), reduces
the number of electrons that are being deflected by the ion,
which lowers the excess electron density behind the ion. Also
the average number of electrons scattered with a small impact
parameter (i.e., scattered closer to the ion) decreases. As a
result, the attraction becomes weaker and the distance of the
area of attraction from the ion grows. To make the analysis
more quantitative, we plot the absolute depth of the first
minimum of � behind the ion in Fig. 5(a) as a function of
M for different values of rs . The corresponding location of
this minimum is shown in Fig. 5(b).

(c) Effect of temperature. The random thermal motion of
electrons works against electron focusing and, thus, inhibits the
creation of the wake, as is clearly seen in Fig. 4(c). In the limit
of high temperature (θ � 1) and relatively small streaming
velocity (M ∼ 1), the oscillatory structure is spread out by
the thermal motion, and the fraction of electrons scattered
in the streaming direction is strongly reduced and insufficient
for the creation of a wake. In the opposite limit of low
temperatures (θ < 0.1), the kinetic energy is dominated by the
Fermi energy [see Fig. 2(b)]. Changes in temperature strongly
affect the depth of the first minimum (except at very strong
degeneracy, θ � 0.1). Also, the next extrema that are clearly
expressed at θ = 0 are drastically influenced by temperature
and vanish above θ ≈ 1 [see Figs. 4(c) and 7]. Thus for the
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FIG. 6. (Color online) Absolute value (a) and location (b) of the
first minimum of � behind the ion as a function of temperature for
rs = 0.5 and fixed M values indicated in the figure.

computation of the dynamically screened potential, Eq. (2), a
correct account of finite temperature effects is crucial.

Consider now the higher-order minima of the potential.
Analyzing the results of Fig. 4 and, comparing with Fig. 2(b),
it is seen that the second minimum exists only at fast
streaming, for 〈K〉S > 〈K〉Q. For θ < 0.1 this corresponds
to M > 0.77. Interestingly, the same condition was found
for the ultrarelativistic quark-gluon plasma (QGP) [52] where
M = v/c (c is the speed of light; see also Appendix B).

Let us now come back to the main potential minimum.
Its depth and location are plotted in Figs. 6(a) and 6(b),
respectively. One clearly sees a monotonic reduction (increase)
of the potential depth (distance from the ion) with increasing
temperature, in the range θ � 0.1. For lower temperatures
the depth and minimum position saturate. An unexpected
observation is that the depth may, for certain parameter
combinations, increase with temperature. Figures 6(a) and 7(b)
show, for the representative example, M = 0.6 and rs = 0.5,
that the potential depth grows monotonically with temperature
from θ = 0 to 0.25, after which the depth decreases again. A
simple explanation of this nonmonotonic dependence is that,
with increasing temperature, particles become more classical
(pointlike), which increases the scattering effect of electrons
by the ion [53].

D. Analysis of collision effects on the screened potential

Until now all results for the screened potential were
computed using the finite-temperature Mermin dielectric

FIG. 7. (Color online) Temperature effect on the dynamically
screened ion potential �(z) in streaming direction at the ion position
(r = 0). (a) At M = 1.0; (b) at M = 0.6. Temperatures are indicated
in the figure.

function with collisions included self-consistently via formula
(5). As we discussed in Sec. III this formula most likely
underestimates the electron collision frequency ν in warm
dense matter. We, therefore, separately analyze the effect of
the collision frequency on our results, allowing for a broader
range of values for ν.

In Fig. 8 the effective dynamically screened ion potential
is shown for different collision frequencies at M = 0.4,
M = 0.6, and M = 1.0. Obviously, inclusion of collisions
changes the shape of the potential dramatically. Depending on
the streaming parameter, collisions may reduce the depth of
the first minimum (M < 0.65) or even enhance the minimum
(M > 0.65). The biggest effect of collisions is observed for
slowly streaming particles (small M values) since there the
kinetic energy of the directed motion is low and the particle
trajectories are more strongly affected by collisions.

The influence of collisions on the depth of the first minimum
of the dynamically screened potential is summarized in Fig. 9.
In contrast to the depth, the position of the first minimum does
practically not change with the collision frequency.

Finally, in Fig. 10 we summarize the influence of collisions
and finite temperature on the dynamically screened potential.
For comparison we also include the zero-temperature RPA
dielectric function which has been used in most earlier
works devoted to wake effects in quantum degenerate sys-
tems. Obviously the latter result is very inaccurate, largely
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FIG. 8. (Color online) Effect of collisions on the dynamically
screened ion potential �(z) for rs = 0.5, θ = 0.01 and (a) M = 0.4,
(b) M = 0.6, and (c) M = 1.0. The potential is shown in streaming
direction at the ion position (r = 0).

overestimating the effective ion-ion attraction. Both finite
temperature and collisions lead, in general, to a reduction of the
wake effects, although the trend may be nonmonotonic. This
clearly confirms the importance of using the correct dielectric
functions for streaming plasmas in the warm-dense-matter
regime.

E. Screened potential away from the symmetry axis

After analyzing the ion potential in streaming direction
at the ion location let us now also consider its shape in
perpendicular direction. This is shown in Figs. 11, 12, and
13. The anisotropy of this potential is striking, in marked
difference to the static Yukawa potential (1).

We first consider the transition from the classical limit,
kBT � EF , to the quantum limit, EF � kBT , at constant
density (rs = 0.5) and streaming velocity (M = 1). The result

FIG. 9. (Color online) Effect of collisions on the depth of the
first minimum of � behind the ion as a function of M for rs = 0.5
and θ = 0.01. Note the nonmonotonic effect of collisions leading
either to a reduction (M > 0.65) or an enhancement (M < 0.65) of
the potential minimum compared to the collisionless case (full black
curve).

is shown in Fig. 11. At high temperature, θ = 10 [Fig. 11(a)],
the potential has no attractive part and only a small anisotropy
indicates the existence of streaming electrons. When the
temperature is reduced by a factor 10 [θ = 1; Fig. 11(b)],
the potential becomes strongly anisotropic and develops an
attractive region behind the ion, as discussed before. The most
striking observation is that the attractive area exists not only
behind the ion on the z axis but also in a broad region in the
perpendicular direction, away from the axis. Such a structure
is found to be stable in a plasma with degenerate electrons
(rs < 1, θ � 0.1). Upon further reduction of temperature to
θ = 0.1 [Fig. 11(c)] the angular spread of the attractive
minimum increases further and persists also for the second
(repulsive) and third (attractive) extremum.

One particularly interesting observation in Fig. 11 is the
striking difference of the shape of the wake pattern, as

FIG. 10. (Color online) Combined effect of finite temperature
and collisions on the dynamically screened ion potential �(z). The
result of the Mermin dielectric function for a plasma at θ = 1 and
rs = 0.5 is shown for the example M = 1 and compared to the result
using the RPA dielectric function in the zero-temperature limit (full
black line).
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FIG. 11. (Color online) Dynamically screened ion potential �(r,z) for rs = 0.5 and M = 1 and three different temperatures: (a) T =
2.32 × 107K(θ = 10), (b) T = 2.32 × 106K(θ = 1), and (c) T = 2.32 × 105K(θ = 0.1). The ion is located at {r,z} = {0,0}. The electrons
stream in z direction from left to right.

FIG. 12. (Color online) Dynamically screened ion potential �(r,z) for θ = 0.1 and M = 1 and three different densities: (a) rs = 0.1,
(b) rs = 0.3, and (c) rs = 1.0. The ion is located at {r,z} = {0,0}. The electrons stream in the z-direction from left to right.

FIG. 13. (Color online) Dynamically screened ion potential �(r,z) for θ = 0.1 and rs = 0.3 for three different streaming velocities:
(a) M = 0.4, (b) M = 0.6, and (c) M = 1.0. The ion is located at {r,z} = {0,0}. The electrons stream in the z direction from left to right.
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compared to the one known from classical plasmas as well
as to the wake behind an object in a streaming fluid. While the
latter cases exhibit a characteristic V-shape potential pattern
that opens in flow direction, in the present case of a dense
quantum plasma the wake has a qualitatively different shape:
The wake is bend towards the ion [54]. This appears to be a
pure quantum effect that is related to the finite extension of
the electron wave function combined with its anisotropy in
the case of streaming. This explanation is supported by very
similar behavior of the ultrarelativistic quark gluon plasma
reported by Thoma et al. in Refs. [52,55]. The main results are
discussed in Appendix B; for a discussion of the underlying
physics of the QGP, see Refs. [56,57].

We now study the evolution of the potential shape in
the strongly degenerate case (θ = 0.1) upon variation of the
density. In Fig. 12 we show, for fixed streaming velocity
M = 1, three cases corresponding to rs = 0.1 [Fig. 12(a)],
rs = 0.3 [Fig. 12(b)], and rs = 1 [Fig. 12(c)], spanning three
orders of magnitude in density. Interestingly, in all three cases
the potential pattern looks very similar, the main difference
being a scaling of the absolute length scales: With increasing
density the pattern is compressed in all directions thereby
retaining the characteristic bend toward the ion.

The formation of this quantum wake pattern is particularly
obvious when, in the quantum high-density regime, the stream-
ing velocity is increased. In Fig. 13 we show calculation results

for fixed values of density and temperature, rs = 0.3, θ = 0.1
and three streaming velocities: M = 0.4 [Fig. 13(a)], M = 0.6
[Fig. 13(b)], and M = 1 [Fig. 13(c)]. With increasing flow
velocity the perpendicular spread of the attractive region grows
continuously and increases its curvature towards the ion.
Interestingly, the bending towards the ion is already visible
for M = 0.4 just when the attractive minimum on the z axis
emerges, indicating that this is a generic property of quantum
plasmas.

F. Perturbed electron density

In the same fashion as we have computed the dynamically
screened ion potential we can now directly obtain the local
electron density, as explained in Sec. III. We expect that
the dynamically screened ion potential will self-consistently
perturb the electron density, according to Eq. (8). In particular,
regions of an attractive potential should are associated with
a local enhancement of the electron density. The results of
evaluation of Eq. (8) and a subsequent three-dimensional
Fourier transformation are shown in Figs. 14 and 15. In
Fig. 14 we show results for the high-density quantum case
with θ = 0.1 and rs = 0.3 and three velocities: M = 0.4
[Fig. 14(a)], M = 0.6 [Fig. 14(b)], and M = 1 [Fig. 14(c)]. At
zero streaming velocity the electron distribution is, of course,
isotropic around the ion. For M = 0.4, remnants of an isotropic

FIG. 14. (Color online) Electron density perturbation (in units of the unperturbed density n0) produced by the focusing effect of the ion for
θ = 0.1 and rs = 0.3 for three different streaming velocities: (a) M = 0.4, (b) M = 0.6, and (c) M = 1.0. Same parameters as in Fig. 13.

FIG. 15. (Color online) Electron density perturbation (in units of the unperturbed density n0) produced by the focusing effect of the ion for
θ = 0.1 and M = 1 for three different electron densities: (a) rs = 0.1, (b) rs = 0.3, and (c) rs = 1.0. For better comparison, in (c) the density
is reduced by a factor 10. Same parameters as in Fig. 12.
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distribution are still visible upstream (to the left) of the ion and
in perpendicular direction, but behind the ion already a small
density enhancement is visible. This pattern is consistent with
the one of the attractive region of the potential, cf. Fig. 13(a),
and is also bent towards the ion. This trend continues for
M = 0.6 where an area of excess density is formed. Finally,
for M = 1 a very strong and broad density peak is formed
that resembles the potential but is more elongated in flow
direction. Also, a second spot of reduced electron density has
formed, consistent with the second repulsive maximum of the
ion potential in Fig. 13(c).

Next, in Fig. 15, we consider the density perturbation at
fixed temperature (θ = 0.1) and streaming velocity (M = 1)
for three values of the electron density. The behavior is again
similar to the effective potential that was shown for the same
parameters in Fig. 12. With a reduction of the density the
length scales of the electron density pattern increase. Thus, our
simulations clearly confirm our previous discussion about the
focusing effect experienced by the electrons from the ion. The
magnitude of the effect is substantial at high flow velocities.
According to the color scale in Fig. 15(c), at M = 1, the peak
height of the density perturbation is |δn|/n0 � 0.05 and even
smaller in all other cases. This again confirms that the linear
response condition is well fulfilled.

V. SUMMARY AND OUTLOOK

This paper is devoted to dense electron-ion plasmas in
the warm-dense-matter regime where electrons (ions) are
weakly (strongly) correlated and electronic quantum effects
are relevant. We concentrated on stationary nonequilibrium
states where electrons move relative to the ions—a situation
that is ubiquitous in dense plasmas including electron or ion
beams, laser accelerated electrons, or ions penetrating a dense
quantum plasma or a metal (ion stopping).

Using a multi-scale approach [8] the problem was reduced
to the computation of a dynamically screened ion poten-
tial that, in a next step, can be used directly in classical
molecular dynamics simulations of the ions. This scheme
was successfully applied to classical dusty plasmas before
[15,17] and is here extended to dense quantum plasmas. In
this paper we concentrated on the first step of the approach,
presenting the dynamically screened ion potential and the
electron density perturbation in a dense quantum plasma in
the presence of streaming degenerate electrons. We used the
Mermin dielectric function, achieving a two-fold improvement
of similar previous studies: we included both finite temperature
and collision effects.

We demonstrated that the zero-temperature approximation
is not adequate for situations where the temperature exceeds
about 20% of the Fermi energy, cf. Figs. 6 and 7. Equally
important is the correct account of collisions: the collisionless
approximation (RPA) drastically overestimates wake effects,
and collisions are particularly important at moderate streaming
velocities, M � 0.7, cf. Figs. 8 and 9. The precise value of
the collision frequency ν depends on the type of quantum
plasma, excitation conditions, and relevant collision processes.
Thus the results obtained in this paper depend not only on the
dimensionless parameters rs,θ,M but also on ν.

The presented ion potential exhibits wake effects that may
give rise to an effective ion-ion attraction at short distances.
This effect is similar to wakes behind an object in a moving
fluid, wakes in laser plasmas or in dusty plasmas which all
are able to accelerate particles, in this case, a second ion.
The physical mechanisms are similar in all cases: It is the
attraction between a heavy test particle and the streaming light
particles giving rise to a deflection of the latter and, eventually,
to an excess density behind the test particle. This interpretation
was directly confirmed by computing the electron density
perturbation which reveals a clear enhancement behind the
ion.

Our results revealed a substantial strength of the attractive
potential. The depth of the first (main) potential minimum
reaches values of more than one Hartree, cf. Fig. 5(a), which
may have a profound effect on the structure of strongly
correlated ions in dense low-temperature plasmas. At the same
time the minimum is separated from the ion significantly more
than the mean interparticle distance, cf. Fig. 5(b). Only at small
length scales and/or during nonequilibrium processes where
charge neutrality is violated and the electron density exceeds
the ion density this attraction may, eventually, play a role in
the plasma dynamics. But this remains a subject of further
investigation.

Aside from the similarities of the wakes in quantum
plasmas to those in classical systems, there are also qualitative
differences. The most striking one is the different shape of the
wake pattern behind the ion which does not have a V-shape but
is bent upstream. This is a pure quantum diffraction effect that
is related to the finite extension of the electron wave function
which is of the order of the thermal de Broglie wavelength.

As a side remark we note that wake effects in streaming
quantum plasmas have also been found in QHD. However,
there the wake pattern has a characteristic V-shape, in striking
contrast to our results. This indicates that kinetic effects are
crucial for a reliable description of streaming quantum plas-
mas. Furthermore, recent QHD results predicted an effective
attractive ion potential, even for the case ue = 0 [29]. This is
again in contrast to our kinetic approach where, in the limit
ue → 0, the wake effects vanish and an isotropic Yukawa-type
potential is recovered. Thus our results clearly confirm the
recent explanations given in Refs. [30,31] of the invalidity of
linearized QHD for the problem of ions in streaming quantum
plasmas.

Another interesting and counterintuitive result that was not
reported before is that, in the range of low temperatures,
the main attractive minimum of the dynamically screened
potential may become deeper with increasing temperature.
Also, we observed that the account of collisions does not
always simply cause damping of the potential oscillations
but may, in some cases, even increase the potential depth.
Both effects are due to the finite extension of the electron
wave function that reduces with temperature or thermal
fluctuations.

Let us now discuss the validity of our results. Our approach
is based on a consistent and conserving dielectric function,
so it is expected to be reliable within the validity limits of
linear response theory (see below). Even though our approach
includes some correlation effects, its validity in the range
of strong correlations, rs > 1, is questionable. We, therefore,
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concentrated on the high-density case of nonrelativistic elec-
trons with 0.1 � rs � 1. An important consistency check is
provided by comparison of the depth of the first minimum of
the potential with the kinetic energy of the electrons. In fact
the potential energy related to the first minimum in �(r) is
always smaller than the quantum kinetic energy of the electrons
for rs < 1. This means that the use of the linear response
approximation for the present dense plasma parameters is
justified.

Furthermore, we note that the importance of wake effects in
streaming quantum plasmas is expected to persist also at lower
density, rs > 1. However, here the theoretical description
is essentially more complicated. Lower density reduces the
quantum kinetic energy of the electron and thus increases
the probability of electron capture by the ion. In Ref. [58]
bound states near a moving ion in a fully degenerate electron
plasma were considered, and it was shown that, in order to
create at least one static bound state, the density parameter rs

should exceed 4.5. In fact, the problem of bound states in a
plasma and their breakup due to quantum effects and screening
(Mott effect) has been discussed in many textbooks, see,
e.g., Ref. [59] and references therein. Recent first-principles
path-integral Monte Carlo simulations [60] indicate that bound
states vanish in the density range around rs = 1.5 . . . 2.

While in our paper the dynamically screened potential has
been considered for the case of protons, it is trivial to apply
these results directly to highly charged ions with Qi = Ze0.
In this case the shape of the ion potential will remain the same
[61]; only its magnitude increases by a factor Z compared to
the present results. The same scaling applies to the perturbation
of the electron density.

Finally, the dynamically screened effective potential ap-
proach can be directly used for molecular dynamics sim-
ulations of classical ions on the background of streaming
quantum electrons as discussed in Ref. [8]. This allows us
to obtain first-principles static and dynamic results for the
ion component, including the range of strong ion coupling.
At very high densities, when the ion de Broglie wavelength
approaches the mean distance between ions, ionic quantum
effects have to be taken into account. At moderate ion
degeneracy, this can be done approximately by replacing the
interaction between ions by a quasiclassical potential using an
idea due to Kelbg [62]. In the meantime, improved quantum
potentials have become available, e.g., Refs. [63–66]. Using
this idea it will be an interesting task to derive an effective
quantum potential that combines dynamical screening (at
large distances) and quantum effects (at short distances), as
suggested in Refs. [8,67] and to extend this idea to potentials
including long-range wake effects.
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APPENDIX A: FINITE TEMPERATURE RPA
DIELECTRIC FUNCTION

Here we give a brief summary of the main formulas and
the numerical implementation of the RPA dielectric function
εRPA for electrons in thermodynamic equilibrium at a finite
temperature T , which is required to compute the dynamically
screened potential of the ions, Eq. (2). The retarded RPA
dielectric function is given by

εRPA(k,ω) = 1 − e2

π2k2

∫
dk′ f (k + k′) − f (k′)

E(k + k′) − E(k′) − �ω̂
,

(A1)

where ω̂ = ω + iδ (δ → +0), the electron single-particle
energy is E(k) = �

2k2/2m, and f (k) is the Fermi-Dirac
distribution. Using the standard normalization to the density,
2
∫

d3k f (k; T ,μ) = n, for the spin-unpolarized case

2

3
θ−3/2 =

∫ ∞

0

√
x

1 + exp(x − βμ)
dx,

allows for an inversion to yield the chemical potential as a
function of density and temperature, βμ(θ ).

Separating the real and imaginary part of the dielectric
function (A1),

εRPA(k,ω) = ε1(k,ω) + iε2(k,ω), (A2)

one obtains, e.g., Ref. [46],

ε1(k,ω) = 1 + χ2

4z3
[g(u + z) − g(u − z)], (A3)

ε2(k,ω) = πχ2

8z3
θ ln

[
1 + exp(βμ − (u − z)2/θ )

1 + exp(βμ − (u + z)2/θ )

]
, (A4)

where u = ω/kvF , z = k/2kF , χ2 = 1/πkF aB , and kF is the
Fermi momentum. The function g(x) depends parametrically
on the degeneracy parameter θ [this dependence is suppressed
in Eq. (A3)],

g(x) =
∫ ∞

0

ydy

exp{y2/θ − βμ} + 1
ln

∣∣∣∣x + y

x − y

∣∣∣∣ . (A5)

FIG. 16. (Color online) Function g(x) defined by Eq. (A5) for
different values of θ . Comparison of results of numerical integration
and the implementation in MATHEMATICA (symbols).
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FIG. 17. (Color online) Dynamically screened potential �(z) of
an ultrarelativistic plasma in streaming direction. (a) Potential for
different values M = v/c. (b) Absolute depth and location of the first
minimum versus streaming parameter M = v/c.

The integral in Eq. (A5) can be simplified in the limits of
high and low degeneracy [46]. However, a direct numerical
integration poses no problem. As a convenient and sufficiently
accurate reference implementation we used MATHEMATICA

[40]. Both results are shown in Fig. 16.

APPENDIX B: DYNAMICALLY SCREENED
POTENTIAL OF AN ULTRARELATIVISTIC

QUANTUM PLASMA

The goal of this Appendix is to compare the results for
the dynamically screened potential produced by degenerate
nonrelativistic electrons to the regime of an ultrarelativistic
plasma. The first example of an ultrarelativistic plasma is the
QGP that is expected to have existed immediately after the
big bang and has been produced in heavy-ion collisions at
the Relativistic Heavy Ion Collider and CERN. The second
example is the ultrarelativistic electron-positron plasma (EPP)
that is expected to be produced in supernova explosions or in
magnetars and should become experimentally accessible with
next generation high-intensity lasers. Without going into detail
(for a recent review and further references, see Ref. [68]), we
note that the common condition for these systems is that the
temperature exceeds the rest mass of the particles, T � mc2.
Furthermore, for the dielectric analysis below it is assumed
that the system is close to equlibrium and nearly ideal.

Since the dielectric functions of the QGP and EPP are,
to lowest order, identical (except for simple factors related
to the number of quark flavors), we will concentrate in the
following on the EPP case, using the natural units, � = c =
kB = 1, common in quantum field theory. The relativistic
quantum dielectric function was derived by Silin [69], and
simplified dispersions were obtained by many authors, see,
e.g., Ref. [70] and references therein. An analytical formula for
the ultrarelativistic longitudinal dielectric function that takes
into account collisions which is analogous to the Mermin
approximation of the present paper was derived by Thoma
et al. [71] and has the form:

ε(k,ω) = 1 + 3m2
γ

k2

(
1 − ω + iν

2k
ln

ω + iν + k

ω + iν − k

)

×
(

1 − iν

2k
ln

ω + iν + k

ω + iν − k

)−1

, (B1)

where mγ = eT /3 is the effective photon mass.
Using this result we now compute the real-space dy-

namically screened potential according to Eq. (2), using the
computer code of the main part of the paper. For the electron-

FIG. 18. (Color online) Dynamically screened potential �(r,z)/(e/λD) of an ultrarelativistic plasma for three different streaming velocities
M = v/c: (a) M = 0, (b) M = 0.55, and (c) M = 0.99.
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positron collision frequency we use ν/ωp = 5.4 × 10−4 [68].
In the figures below we show the effective potential in units
of e/λD , where λD = 1/

√
3mγ is the Debye screening length,

whereas the dimensionless streaming velocity (Mach number)
is defined as M = u/c.

In Fig. 17(a) the dynamically screened potential in stream-
ing direction is shown for different streaming velocities. As
in the nonrelativistic case there exists an attractive minimum,
the depth and position of which are plotted in Fig. 17(b). One

clearly sees that the minimum becomes deeper and its location
closer to the projectile when its velocity increases, as in the
nonrelativistic quantum case [54]. The shape of the potential
away from the symmetry axis is shown in Fig. 18. As in the
nonrelativistic case [cf. Figs. 11–13], the potential is “bent”
forward towards the projectile which confirms our discussion
of the main text and the explanation in terms of quantum
effects. A more detailed comparison of the nonrelativistic and
ultrarelativistic cases is given in Ref. [54].
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