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Bidirectional energy cascade in surface capillary waves
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Based on an experiment and simulations, we report that an energy cascade in surface capillary waves can
be bidirectional, that is, can simultaneously flow towards large and small wavelength scales from the pumping
scales. The bidirectional energy cascade provides an effective global coupling mechanism between the scales.
We show that formation of the bidirectional cascade leads to creation of large-scale, large-amplitude waves on

the fluid surface.
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I. INTRODUCTION

Turbulence in a system of nonlinearly interacting waves
is referred to as wave turbulence [1,2]. It is manifested in
various physical systems including atmospheric waves [3],
Earth’s magnetosphere and its coupling with the solar wind
[4], interstellar plasmas [5], and ocean wind-driven waves [6].
Surface capillary waves are short waves on a fluid surface,
for which surface tension is the primary restoring force.
Turbulence of capillary waves is important for the energy and
momentum transfer on a fluid surface [1] and for the transfer
of gas into solution through a gas-liquid interface [7].

It has been known since the seminal work by Kolmogorov
[8] that turbulent dynamics is controlled by a directional energy
flux through the wavelength scales. Wave turbulence theory
[1,2] based on a kinetic equation for a wave ensemble,
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predicts a steady-state, scale-invariant solution that describes
a constant flux of energy towards smaller scales. Here N (k) is
the ensemble-averaged pair correlation function for the wave
amplitudes in K representation, k is the wave vector, and
St[N (k)] is the statistical “collision” integral, which accounts
for the nonlinear wave interactions. The kinetic equation
Eq. (1) for waves is similar to the Boltzmann equation for
ararefied gas of particles or quasiparticles [9].

The nonlinear wave system dynamics can be dominated
by local or nonlocal interactions between the waves in the
frequency scales [1,2]. In the case of local interactions, only
waves with comparable wavelength scales interact with each
other, whereas for nonlocal interactions the waves split or
combine with other waves, which can result in wavelengths
significantly different from the initial ones. The locality of
the nonlinear interactions is equivalent to the convergence
of the collision integral St[N (k)] in the kinetic equation (1)
[1,2]. Internal gravity waves in the ocean present an example
of a system with nonlocal wave interactions, for which the
collision integral diverges in the steady state [10]. For capillary
waves, the collision integral converges for a thermodynamic-
equilibrium distribution as well as for a steady-state turbulent
wave distribution that carries the energy flux through the scales
[11]. Thus, capillary wave turbulence is dominated by local
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interactions and only waves with similar length scales interact
with each other. Therefore, the wave energy transfers in a
form of a cascade through the scales [11]. For the energy
flux directed towards the high-frequency spectral domain,
this cascade is referred to as a direct energy cascade. The
respective wave spectrum can be viewed as the wave analog of
the Kolmogorov spectrum of hydrodynamic turbulence [8,12]
and is referred to as the Kolmogorov-Zakharov (KZ) spectrum
of wave turbulence [1]. The direct cascade of wave turbulence
has been extensively studied in experimental and theoretical
works [11,13-19].

In this paper, based on the results of experimental and
numerical studies, we report that, in sharp contrast to existing
theory and experiments, the energy flux of nonlinear capillary
waves can also propagate towards the large-scale, low-
frequency spectral region simultaneously with a conventional
direct cascade. The formation of this bidirectional turbulent
cascade results in significant changes in the energy budget
of the system. Specifically, small-scale turbulent oscillations
are suppressed, whereas sustained high-amplitude large-scale
oscillations are formed. A bidirectional cascade of energy was
recently predicted for the two-component hydrodynamics in
the solar wind [20]. However, such a cascade has never been
observed or predicted for capillary waves. Moreover, it has
never been observed for systems in which resonant three-wave
interactions dominate and no additional integrals of motion are
present. We demonstrate that it is the finite viscous damping
in the low-frequency domain that results in the bidirectional
cascade formation.

Based on our experiment and simulations, the mechanism
responsible for formation of the bidirectional energy cas-
cade can be understood as follows. A system of nonlinear
waves with no damping at low frequencies establishes a
thermodynamical equilibrium spectrum in the low-frequency
domain, which carries no energy flux and which temperature is
proportional to the pumping rate [21]. However, in experiments
with fluids of final depth, low-frequency wave damping occurs
due to the viscous drag at the container’s walls [22]. The latter
results in the decrease of the low-frequency wave amplitudes.
The system tends to restore the thermodynamical equilibrium
spectrum and, in effect, a steady energy flux towards the
low-frequency domain is formed.
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We study capillary waves on the surface of superfluid
helium (He-II). He-II demonstrates many quantum features,
among which are the famous fountain effect in response to
heating, extremely high heat conductivity, and quantization
of vorticity in the fluid bulk [23]. Nevertheless, oscillations
of a free He-II surface behave much like surface oscillations
of a classical fluid with very low viscosity [17,23,24]. He-
IT provides an ideal test bed for studying nonlinear wave
dynamics due to the possibility of driving the weakly charged
He-1II surface directly by an oscillating electric field, virtually
excluding the excitation of bulk modes [25]. This method is
similar to the oceanographic case where waves are generated
due to wind drag applied directly to the fluid surface. Previous
experiments with waves on quantum fluids (liquid helium
and hydrogen) allowed detailed study of the direct cascade
of capillary turbulence [17], including modification of the
turbulent spectrum by applied low-frequency driving [26],
and the turbulent bottleneck phenomena in the high-frequency
spectral domain [24] (see also a comprehensive review in
Ref. [27]). In a fluid layer of final depth, vortices can also
contribute to the energy transfer to large length scales [28].
In quantum fluids, quantized vortices penetrate to the fluid
bulk from the oscillating surface if the amplitude of surface
waves is large enough [29]. However, the latter process is only
efficient for large dimensionless nonlinearities (i.e., the wave
height-to-length ratios) >0.7 [29]. In our experiments with
waves on the surface of a quantum fluid, the dimensionless
nonlinearity is <0.05 [25] and, thus, in our analysis we
disregard the quantized vortex creation.

(b)
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II. EXPERIMENTAL OBSERVATIONS

A. Steady-state turbulent spectrum

In our experiments helium was condensed into a cylindrical
cup formed by a bottom capacitor plate and a guard ring and
was positioned in a helium cryostat. The cup has an inner
radius of 30 mm and a depth of 4 mm. The experiments were
conducted at temperature 7 = 1.7 K of the superfluid liquid.
The capillary-to-gravity wave transition on the surface of su-
perfluid helium occurs at a frequency of ~25 Hz; the respective
wavelength is A = 27 (a/pg)'/?> = 0.17 cm at T = 4.2 K and
increases to 0.3 cm for T = 1.7 K [27], where « is the surface
tension, p is the fluid density, and g is the acceleration due to
gravity. The finite depth of the waves only influences the linear
dispersion relation w = w(k) at frequencies w/2w < 10 Hz.

The free surface of the liquid was positively charged as a
result of B-particle emission from a radioactive plate located
in the bulk liquid. Oscillations of the liquid surface were
excited by application of an ac voltage U(t) = Uy sin(wgt)
to the upper capacitor plate. Oscillations of the fluid surface
elevation ¢ (r,t) were detected through variations of the power
P(t) of a laser beam reflected from the surface [Fig. 1(a)].
(Here 1 is time and r is the two-dimensional coordinate in the
surface plane.) The capillary wave power spectrum ¢ ()
P(w) was calculated via the Fourier time transform of the
signal P(t) [25]. Figure 1(b) shows a snapshot made through
the cryostat glass of turbulent waves on the helium surface.
The measurements of wave damping in the cell showed that
the quality factor at low frequencies w < wy is Q ~ 103.
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FIG. 1. (Color online) (a) Schematic of the experimental setup. An optical cryostat containing the cell is not shown. (b) Snapshot of the
turbulent surface of superfluid helium. The driving frequency is w, /27 = 113 Hz. (¢),(d) Formation of large-amplitude waves on the surface at
® < wy by increasing the ac driving voltage from U; =4 V (¢) to U; = 14 V (d). The driving frequency (arrow) is w, /27 = 68 Hz. The
wavelength at the driving frequency w, is ~780 um. The conventional direct Kolmogorov-Zakharov (KZ) spectrum of capillary turbulence
I(w) o< w37 between 2 x 10> Hz < w/27w < 2 x 103 Hz is shown by the dashed line. Formation of low-frequency harmonics at @ < w, with
amplitudes larger than those at the driving frequency w, is clearly visible for U; = 14 V.
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Figures 1(c) and 1(d) show the evolution of the ensemble-
averaged turbulent wave spectrum I(w) = (|&(w)|?) with
increasing driving amplitude U,, when the driving frequency
is wy/2w = 68 Hz. In Fig. 1(c) for a moderate pumping
U, =4V, the direct KZ cascade forms in the high-frequency
domain 2 x 10> Hz < w/27 < 2 x 10° Hz. At very high fre-
quencies w/2m ~ 2 x 10 Hz, the KZ cascade is terminated
by bulk viscous damping. Weak low-frequency oscillations at
w < wg, with I(w) < 107" cm?s in Fig 1(c), are caused by
mechanical vibrations of the experimental setup.

With an increased driving voltage of U; =14 V in
Fig. 1(d), there are many low-frequency peaks in the spec-
trum that have heights a few orders of magnitude larger:
I(w) ~ 1077-107° cm?s. The spectra shown on Figs. 1(c)
and 1(d) have pronounced discrete spikes. The spikes are
the manifestation of capillary wave turbulence excited by a
narrowband driving force, which spectral width is smaller
than the characteristic driving frequency; cf. observations
for the direct cascade in Refs. [15,30] and simulations in
Refs. [31,32].

The total wave energy given by a sum of the energy due to
surface tension and the kinetic energy of fluid motion is

E = af IVe(r,n)|2dr. )

Calculations from the data in Fig. 1(d) show that only about 1%
of the total wave energy is concentrated in the high-frequency
domain w > w,, whereas 99% of the energy is localized at
frequencies < wy.

B. Turbulence buildup

To better understand the turbulence dynamics, we also
studied the buildup process of capillary turbulence on the
surface of superfluid helium in the presence of low-frequency
harmonics. Formation of capillary turbulence after steplike
application of a periodic driving force at the moment ¢t = 0
is shown in Fig. 2. The surface is driven at the frequency
wq/2mw = 199 Hz; the driving amplitude is U; = 97 V. It is
seen in Fig. 2(a) that at r = 1.31 s after the driving force
is turned on, the wave at the driving frequency and its
high-frequency harmonics with w/27 < 10 Hz start forming
on the noisy background.

At the moment ¢ = 11.80s [Fig. 2(b)] the direct cascade
is formed in the frequency range from the driving frequency
to the frequency ~2 x 10* Hz, in agreement with Figs. 1(c)
and 1(d) and previous observations [15,27]. However, it is
seen in Fig. 2(b) that the wave on the surface with the
frequency equal half the driving frequency is also formed
by that time. Generation of a wave with w = w,;/2 can be
attributed to the modulation instability of the capillary waves
due to nonlinearity [33,34].

At the moment ¢ = 53.74 s multiple low-frequency har-
monics with the frequencies w < wy are formed on the wave
spectrum, in agreement with with our results for the steady-
state measurements [Figs. 1(c) and 1(d)]. From comparison
of the spectra in Figs. 2(b) and 2(c) it is evident that the
characteristic formation time for the low-frequency harmonics
is larger than that for the direct cascade. This observation
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FIG. 2. Buildup of capillary turbulence on the surface of su-
perfluid helium. The spectra are calculated via short-time Fourier
transform of the recorded signal. The moments, for which the
spectra (a)—(c) are calculated, are labeled on the figure. The driving
frequency is w, /2w = 199 Hz (arrowed) and the driving amplitude
is U; = 97 V. Formation of the wave at a frequency equal to half
the driving frequency is seen in panel (b), and formation of multiple
low-frequency harmonics is seen in (c).

is in qualitative agreement with the observations made for
acoustic turbulence of nonlinear second-sound waves in bulk
superfluid helium [35]. However, in the case of second sound
the wave dispersion relation is close to linear, w o k [23],
and therefore the mechanism of acoustic turbulence is quite
different from that for capillary surface waves: formation
of correlated shock sound waves rather than strong phase
fluctuations for dispersive surface waves [1,35-38].

023021-3



L. V. ABDURAKHIMOV et al.

III. NUMERICAL SIMULATIONS
A. Numerical model

To illustrate the formation of large-amplitude, low-
frequency waves, we performed numerical modeling of the
wave dynamics in the cylindrical cell with external driving
and viscous damping. In the simulations, we assume angular
symmetry of the surface. The deviation ¢ (r,7) of the surface
from the equilibrium flat state is expressed by time-dependent
amplitudes a, () of the normal modes [13],

k, .
s(rt) = Zn:\/m[dn(l) + a, ()] Jok,r),  (3)

where r is the distance from the center of the cell, Jy(x) is the
Bessel function of the zero order, A = 7 R? is the free-surface
area, R is the cell radius, w(k) = \/ak3/p is the linear
dispersion relation, k, = §,/R is the radial wave number,
n > 0 labels the resonant radial modes, and §,, is the nth zero
of the first-order Bessel function J;(8,) = 0. Due to angular
isotropy, we utilize the angle-averaged dynamical equation
for a,(t),

day,(t) . ;
dnt = -1 Z Vn,nl,nz Dn,nl,nz anl(t)anz(t)elAw”'nl'nzt
np,ny
—2i Z Vn*l,n,nz Di’l],ﬂ,ng ap, (t)a;:z(t)e_iAw”]'n'nz[
niy,na
— y(@(kn))an(1). “)

Equations (4) are canonical equations of motion for capillary
waves with quadratic nonlinearity and, with an assumption of
angular isotropy, are equivalent to the equations of motion of
the surface deviation ¢ (r,t) [11].

The coupling coefficients V,, , », characterize the interac-
tion strengths between waves with wave numbers k,, &,,, and
kn,; instead of taking the exact value for capillary waves, we
model it by

V”wﬂl»ﬂz = 6\/60(](")60(]("])60(](”2), (5)

The coupling coefficients (5) in the model (4) have the
same scaling properties with respect to Zakharov’s conformal
mapping in K space as the respective exact coefficients
found from the hydrodynamic equations with the free surface
[1]. The asterisk in Eq. (4) denotes complex conjugate, i
stands for the imaginary unit, D, ,, », = 1/27 A(k,,ky,  kny),
where A(ky,kn,,k,,) is the area of the triangle with sides
kn, kn,, and k,,, and Aw, n, n, = 0(ky) — (k) — w(ky,) is
resonance detuning. In the simulations, w. = (pg>/a)'/* and
Ae = (a/pg)'/? are used as units of frequency and length,
respectively. We consider np,, = 100 radial modes. The
dimensionless factor € < 1 is of the order of the maximum
surface slope with respect to the horizontal [13]. We set
€ = 1072 as a representative value [25]. Driving was applied
by fixing the wave amplitude a; = |a,,(¢)| at a given value.
To capture the physical effects that remove energy from
the system, we add wave damping at both high and low
frequencies. Low-frequency damping is the result of viscous
drag at the cell bottom [22], and high-frequency damping is
caused by bulk viscosity in the fluid [12]. Specifically, we
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model the wave damping coefficient as

Y(w) = yr(w) + yur(w), (6)

which is the sum of damping at low frequencies below the
nrr = 10 resonance in the cell, with yp(w) = yirgLr(®),
as well as damping at high frequencies above the nyr = 80
resonance, with ypp(w) = yurgur(w). The range of wave
frequencies between the nr and the nyr can be considered
as a “numerical inertial interval” in which damping is absent.

The damping factor at high frequencies was set as
vur = 5 x 107 2w,.. Damping at high resonant numbers n >
nyr 1s modeled as gyp(n) = (n — an)z/(nmaX — npp)?, and
gur(n) =0 for n < nyp. For a fluid layer of finite depth,
we model damping at low resonant numbers n < npg as
gLr(n) = (nLr —n)/nrg, and gre(n) = 0 for n > nip. The
low-frequency damping coefficient ypr is varied between 0
and 4yyE.

Under conditions considered in this paper, the three-wave
interactions taken into account in Eq. (4) dominate and
the four-wave interactions can be neglected, as shown in
Sec. III B.

Additionally, the nonlinear frequency broadening of the
resonances is much larger than spacing between neighboring
resonant frequencies; see Sec. III B. Therefore, the system
can be considered as a quasicontinuous one and finite-
size mesoscopic effects such as frozen turbulence [11] and
resonance clustering [39] do not occur.

To calculate the dependence of a,, () on time 7, we integrated
Eq. (4) until the system reached the steady state. The wave
spectrum is calculated as the time-averaged quantity N (k,) =
(Jan(t)|?). For capillary waves, the time-averaged correlation
function is /(w) = N(k(w)), where N(k) is expressed as a
function of the wave frequency w via the relation k = k(w)
inverse to the linear dispersion relation [25].

B. Quasicontinuous turbulent spectra in a spatially
restricted nonlinear wave system

The dynamics of capillary turbulence in a restricted geome-
try depends on the ratio of the nonlinear resonance broadening
and the distance in K space between neighboring resonance
frequencies [11,39]. In spatially extended systems where the
resonance frequency spectrum is quasicontinuous, these are
the three-wave interactions that contribute to the nonlinear
wave dynamics of capillary waves [1,2]. In the opposite case
of small-size systems where the distance between neighboring
resonances is large, the three-wave interactions are out of
resonance and, hence, accounting for the next-order, four-wave
interactions is of importance [11,39-41]. We emphasize that
in both cases, the consideration is limited to weakly nonlinear
waves, for which the expansion of the full hydrodynamic
equations over the wave amplitude can be applied. In our case,
this is guaranteed by the smallness of the maximum surface
slope €.

To prove that under our experimental conditions the
three-wave interactions are only essential in the dynamical
equations (4), we compare the characteristic rates for three-
wave and four-wave interaction processes. The rate of the
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three-wave interactions is [37,42]

y =4 Vkki k)2 [N (k) + N (k)] Sk, -k, LO[w(k) — ok;) — (ko))

ki .k

—4 > Vi ko, k)P [N Gh2) — N (ki) 8k, i,k £0[(k)) — o(ka) — w(k)]
ki, ko

—4 Y [Vika,k k) [N (ki) = N(k2)] ik, L2 [0(kz) — (k) — (k)] (7
ki, ko

where N (k,) is the ensemble-averaged pair correlation function for the wave amplitudes of the mode with the resonance number r,
the factor

r
LOAw) = ——2 ®
(Aw)? + Fklz
accounts for nonlinear and viscous broadening of the resonances, and
Criz = v + Vi, + Vo &)

is the total resonance width. The total resonance width is estimated in Eq. (9) as a sum of individual broadenings of the resonances
[37,42]. In Eq. (7) the coupling coefficients for the three-wave interactions are expressed as functions of the wave vectors; thus,
V(kn, kny kns) = Vi, np.ns» Where V., . were introduced in Sec. III A. We consider an isotropic case where the correlation
functions n; do not depend on the direction of the wave vector k. Isotropic turbulence is usually considered as a general case in
the wave turbulence theory in the absence of the linear momentum flux along the surface [1]. Additionally, the angular symmetry
is dictated in our experiment by the cylindrical geometry of the cell. For angular symmetry, Eq. (7) reads after averaging over
the directions of the wave vectors k, k{, and k>,

5 kika |V (k k1, k2)|?
=4 R

3) B B
21 Ak, ky,k3) [N(k1) + N(kp)] L [w(k) — w(ky) — w(kz)]

ki,ky
kiko |V (ki ko, k)|
_42 k2 |V (ky,k2, k)

_ ® _ N
27 Ak ky,k>) [N(k2) — N(kDIL [w(ki) — w(kz) — w(k)]

ki ko
kiky |V (ko k k|2
_42 1ka |V (ko k,kp)|

- ® U
T Ak YD) = NEILD [w(ka) = (k) = k) (10)

ki,k2

where summation in Eq. (10) is made over the absolute values of the vectors. In Eq. (10) we use the following identity for the
angle-averaged Dirac 6 [1],

1 2 2T 27 1
do do dos ok, kg = ———————, 11
(271)3/0 1/0 2/0 PO T o Ak ko ka) .

where 0y, 0, and 65 are the directions of the vectors ki, ky, and k3, respectively.
The rate of the four-wave interactions is

Vk(4) = Z T (kk1,ka,k3)|* [N (k)N (k3) + N (k)N (ka) — N(ka)N (k3)18k 1k, ko —ks LY [0(k) + o(ky) — w(ky) — o(ks)],
ki .ky k3

12)

where the coupling coefficients T'(k,k;,k,,k3) characterize the four-wave interactions for waves with the wave vectors k, k1, k»,
and k3. Following the same approximation as in Sec. III A, we model it as follows:

T(k,k1 ko k3) = €y w(k)wkno(ky)o(ks). 13)

The model (13) has the same scaling properties as the exact coupling coefficients [1]. After averaging over the directions of the
wave vectors Kk, K, K,, and k3, one obtains

v’ =Y kikoks| T(k.ky ko ks) > IN (k)N (ks) + N (k)N (ka) — N(ko)N (ks)]

167 F (2«/](](]](2](3)

f T ks kki + koks kky + koks
x LY[w(k) + (k) — w(ky) — o(ks)]. (14)
Dirac § in Eq. (14) is averaged as [43]
2 2 2 2 167 2 /kk1k2k3
do do do dos = F , 15
(2n>4 / / : / ’ / PoeHe T Tk Kok (kkl + koks ) (1
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where F(x) is a complete elliptic integral of the first kind. We
denote in Eq. (14)

r
LY (Aw) = # (16)
(Aw)* + Tiios
and
Cris = Ve + vy + Vo + Vi o))

The angle averaged sums in Egs. (10) and (14) are numerically
indistinguishable from the discrete sums in (7) and (12),
respectively, everywhere except a few lowest wave numbers.
We set in Egs. (9) and (17) the total width of the resonances as

=y 4+ 4+, (18)

(visc)

where y, " is linear viscous broadening of a resonance with

the wave number k. We model viscous broadening as y,"*" =
w(k)/Q, where Q is the quality Q factor. We set Q = 10% in
agreement with our experimental parameters. Estimation of
the total resonance width in Eq. (18) as a sum of broadenings
arising from different incoherent processes is a widely used
approximation [44].

To find the three- and four-wave interaction rates, yk(3) and

yk(4), we solved Egs. (10), (12), and (18) self-consistently. For
that purpose we used an iterative procedure. The initial width
of the resonances for the iterative procedure has been set equal
to their viscous width ™. We found that the three- and
four-wave interaction rates, to which the results of the iterative
procedure converge, only weakly depend on Q. It is because
in turbulence one has y; > yk(wsc) [1]. We focused on the
wave-turbulent regime and therefore, we set the occupation
numbers in Egs. (10) and (12) in the known scale-invariant
form [1]

N(k) = Ck™ 7. (19)

In our simulations, we set C = 1. We found that the procedure
converges with the relative accuracy <0.2% after ten subse-
quent iterations.

The obtained dependencies of yk(3) and yk(4) on the resonance
number n are shown in Fig. 3. We remind that n labels the
wave number k of the radial resonant mode. The calculations
were done for the cell radius R = 30X.. Itis seen in Fig. 3 that
the three-wave interaction rate yk(3) is about an order larger than
the four-wave interaction rate yk(4) for all wave vectors. In other
words, the characteristic time for the three-wave interaction
processes, t,?) =1/ yk@) is much shorter than that for four-
wave interaction processes 1:154) =1/ yk(4) in the whole range
of wave vectors. Therefore, the contribution of the four-wave
interactions to the capillary wave dynamics is negligible under
the conditions described in the paper. It also follows from
Fig. 3 that the three-wave interaction rate yk(3) is larger than
the spacing between two neighboring resonances Awy. Thus,
the resonances overlap within their nonlinear widths and, in
effect, the system can be considered as a quasicontinuous one
[11,41].
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FIG. 3. (Color online) Three- and four-wave interaction rates,
yk@ (solid curve) and y,f4) (short-dashed curve) calculated from
Egs. (10), (12), and (18) as functions of the resonance number 7.
It is seen that one has yk(3) > yk(4) for all resonance numbers 7; thus,
the three-wave processes dominate. For comparison, the distance
between two neighboring resonances Awy, = w(k,41) — w(k,)is also
shown by a long-dashed curve. The discreteness of the resonance
frequency spectrum is inessential since yk(}) > Awy, .

C. Bidirectional energy cascade of capillary turbulence

The results of our simulations are summarized in Fig. 4.
In Fig. 4(a) (pulses) the steady-state wave spectrum [ (w) is
similar to that observed in the experiment for high-amplitude
driving U; = 14 V [cf. Fig. 1(d)]. In the domain @ > wy, the
high-frequency KZ spectrum forms in agreement with current
and previous observations. We emphasize that, in both the
experiment and simulations, the low-frequency waves with
® < wy retain finite values; moreover, the amplitudes of some
low-frequency waves exceed those at the driving frequency w,.
The fluctuations of the wave amplitudes in Fig. 4(a) (pulses)
are probably caused by the effect of the narrowband pumping
for the low-frequency harmonics, that is, by the same effect
that results in the high-frequency wave amplitude fluctuations
in the direct cascade; cf. Sec. I A above and Refs. [15,30-32].

To explain the formation of the low-frequency waves, we
demonstrate that bidirectional energy flux is established in the
system in place of the traditional direct energy cascade. In the
simulations, we varied the low-frequency damping and kept
all other parameters fixed. We analyze the energy balance in
the system in the form of the continuity equation for energy
(1,12],

dE(w)
dt

where E(w) = fow g(w)dew' is the total wave energy
in the spectral domain o <o, &(w)=2rak(w) x
[dk(w)/dw]wl(w) is the spectral energy density, IT is the total
energy flux, ['(w) = 2 fow y(0")e(w')dw' is the energy loss due
to viscous damping, and S(w) is the energy source from the
driving. In the steady state d E(w)/dt = 0, the total energy
balance in the low-frequency spectral domain w < wy is

dk(w)
do’

111 = —T'(w) + Sw), (20)

1= —471'0[/ y(@"k(w) [ :| o' l()do', (21)
0

because the source term is S(w) is absent for low frequencies.

To investigate the dependence of the energy flux on the system

parameters, we calculated IT from Eq. (21) for different
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(a) 10°f

10°k

e R=15 0 -
A R=30% .-

e

FIG. 4. (Color online) (a) Numerical steady-state spectrum /(w)
of sustained surface oscillations in the presence of low- and high-
frequency damping (peaks) and in the presence of only high-
frequency damping (open squares). The spectra are shown in units of
22w . The spectra are averaged over an interval of 10°,, where
t. = w;l is a numerical unit of time. The surface is driven at a
frequency w, of the 50th resonance (arrowed). The power-law spectral
behavior I(w) o< @3 (KZ) and ™! (the thermal equilibrium) are
shown by dashed lines. The radius of the cylindrical cell is R = 15A..
(b) Absolute value of the energy flux, |I1], in units of a¢w,, incoming
to the spectral domain w < w, as a function of the low-frequency
damping coefficient yr. The cell radii are R = 15A. (circles) and
304, (triangles). Vertical bars show the fluctuations of the flux as a
standard deviation about the mean. The dashed lines are shown to
guide the eye.

low-frequency damping coefficients and two cell radii [see
Fig. 4(b)]. In the absence of low-frequency damping, y r = O,
the thermodynamic-equilibrium Rayleigh-Jeans-like spectrum
I(w) o< o~ is formed at @ < wy [Fig. 4(a), open squares], in
agreement with Ref. [21]. This spectrum produces no energy
flux through the frequency scales. The absolute value of the
flux increases with the rise of the low-frequency damping
coefficient, as is seen in Fig. 4(b). The negative sign of IT for
finite low-frequency dampings in Eq. (21) corresponds to the
flux direction from the driving scales, w ~ wy, towards the
low-frequency domain.

We emphasize that in both cases R = 151, and 304,
the wave system is driven at the frequency of the 50th
resonance. Since the wave frequency at a given resonance
number decreases with the rise of the cell radius (cf. Sec. IIT A),
the driving frequency for R = 30A. [triangles in Fig. 4(b)]
is lower than that for R = 15X, (circles). Therefore, from
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FIG. 5. (Color online) Probability distribution functions of Re(a)
for the 20th resonant mode at frequency w = 9.38w, (a) and for
the 10th mode at frequency w = 3.62w, (b) in the absence of low-
frequency damping, y1r = 0 (open columns), and at y;r = 0.25yyr
(shaded columns). PDFs are calculated for the spectra shown in
Fig. 4(a). Dashed (green) lines show the Gaussian fit to the PDFs.
The line segments connecting the points are shown to guide the eye.

Fig. 4(b) it follows that the effect of the bidirectional cascade
is more pronounced in the case of the high-frequency driving.

D. Probability distribution functions

Wave turbulence predicts that the probability distribution
function (PDF) for wave amplitudes with specified wave
numbers is a Gaussian function. We verified numerically
that this is indeed the case for most modes. Specifically,
we calculated a real part of the complex wave amplitude,
Re(ay,), as shown in Fig. 5(a). The real part of the amplitudes
corresponds to the normalized surface elevation of the surface
above a flat equilibrium state, as follows from Eq. (3).

However, some modes showed significant deviations from
the predicted Gaussian form when low-frequency damping is
applied, as shown by the 10th mode in Fig. 5(b). The non-
Gaussian tails in the PDF in the presence of the bidirectional
energy cascade correspond to an increased probability of
the resonant formation of large-amplitude waves, which may
be thought of as a capillary-wave analog of “rogue” waves
observed in the ocean [45]. Rogue capillary waves on water
surface were recently observed under parametric excitation
conditions in Ref. [18].
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It is worth noting that for y g = 0 [Fig. 4(a), open squares],
the ratio of the spectral powers at w = 3.62w, and 9.38w, is
~5. Since in this case PDF for the wave amplitudes is close to
Gaussian, it is natural to expect that the ratio of PDF widths
for the respective amplitudes in Fig. 5 for the two frequencies
is ~+/5 ~ 2.2. It is seen in Fig. 5 that this is indeed the case.
However, for y g > 0, PDF for @ = 3.62w, strongly deviates
from the Gaussian form [Fig. 5(b), shaded bars] and thus, such
simple estimate for the distribution widths is not valid.

IV. CONCLUSIONS

In conclusion, we demonstrated that energy flux from the
driving scale towards the damping region can be formed for
capillary waves even if the damping occurs at frequencies
lower than the driving frequency. This bidirectional energy
flux provides a continuous energy source for sustained low-
frequency wave oscillations in the presence of finite damping.
Furthermore, bidirectional energy flux provides an effective
global coupling mechanism between the scales. In our experi-
ments, we studied nonlinear capillary waves on the surface of
superfluid He-II. However, the concept of bidirectional energy

PHYSICAL REVIEW E 91, 023021 (2015)

flux is relevant for a wider range of nonlinear systems, such as
waves on classical fluids in wave tanks [46] and in restricted
geometries [47], vibrating elastic plates [48], and quantum
fluids [35].
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