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Azimuthal field instability in a confined ferrofluid

Eduardo O. Dias* and José A. Miranda†
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We report the development of interfacial ferrohydrodynamic instabilities when an initially circular bubble of
a nonmagnetic inviscid fluid is surrounded by a viscous ferrofluid in the confined geometry of a Hele-Shaw
cell. The fluid-fluid interface becomes unstable due to the action of magnetic forces induced by an azimuthal
field produced by a straight current-carrying wire that is normal to the cell plates. In this framework, a pattern
formation process takes place through the interplay between magnetic and surface tension forces. By employing a
perturbative mode-coupling approach we investigate analytically both linear and intermediate nonlinear regimes
of the interface evolution. As a result, useful analytical information can be extracted regarding the destabilizing
role of the azimuthal field at the linear level, as well as its influence on the interfacial pattern morphology at the
onset of nonlinear effects. Finally, a vortex sheet formalism is used to access fully nonlinear stationary solutions
for the two-fluid interface shapes.
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I. INTRODUCTION

Ferrofluids are colloidal suspensions of nanometer-sized
magnetic particles suspended in a nonmagnetic carrier
fluid [1,2]. This particular type of magnetic fluid behaves
superparamagnetically and can easily be manipulated with ex-
ternal magnetic fields. The combined action of hydrodynamic
and magnetic forces makes ferrofluids a remarkable material
to study a variety of interfacial instabilities and pattern for-
mation processes [3]. One iconic example of pattern-forming
phenomena in ferrofluids is the Rosensweig instability [4].
It occurs when an initially flat free surface of a ferrofluid
film is subjected to a uniform, perpendicular magnetic field
generated by a pair of Helmholtz coils. The competition
between magnetic, gravitational, and capillary forces results
in the rising of a visually striking, three-dimensional (3D)
array of spiky structures (the Rosensweig’s peaks) growing
from the liquid-free surface. Since then, various aspects related
to the form of the peaks and their nontrivial dynamic behavior
have been scrutinized by theory, simulations, and experiments
(see, for instance, Refs. [5–9], and references therein).

Another popular event in ferrohydrodynamics, known as the
conical meniscus instability, refers to the formation of a static
meniscus profile when an originally horizontal 3D layer of
ferrofluid encloses a vertical current-carrying wire [10]. This
particular setup is quite simple and generates an azimuthal
magnetic field that turns around the wire. As opposed to
the perpendicular field case studied in the development of
the Rosensweig’s peaks, the azimuthal field configuration
produces a magnetic force directed radially inward. This force
tends to attract the evolving ferrofluid toward the current-
carrying wire, making the magnetic fluid to lift it, and resulting
in the establishment of a curved ferrofluid meniscus. Since
the seminal work of Ref. [10] investigators have carried out
theoretical and experimental studies in order to determine the
precise shape of the curved meniscus in both the absence
and presence of surface tension effects [11–14]. Interestingly,
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the azimuthal magnetic field configuration produced by a
straight current-carrying wire has also been used to examine
the dynamics of solitons propagating on cylindrical ferrofluid
surfaces surrounding the wire. There is a recent example in
the literature in which theoretical predictions [15–17] about
solitary wave propagation in ferrofluids has been realized
experimentally [18].

Researchers have also analyzed how the perpendicular and
azimuthal magnetic fields discussed above act on ferrofluids
confined in the effectively 2D geometry of a Hele-Shaw cell.
The Hele-Shaw apparatus [19,20] consists of two parallel glass
plates separated by a narrow gap, where the ferrofluid can flow
under the action of an applied magnetic field [2,3]. In contrast
to the legitimately 3D free surface situation, the action of
a magnetic field perpendicular to the plates of a Hele-Shaw
cell containing an initially circular ferrofluid droplet encircled
by a nonmagnetic fluid does not lead to peak formation.
Instead, the applied field tends to align the tiny magnetic
moments in the ferrofluid in a direction perpendicular to the
plates. Consequently, these magnetic moments repel each other
within the plane of the Hele-Shaw cell, and the two-fluid
interface starts to distort. On the other hand, the surface
tension between the fluids tends to stabilize the interface.
The interplay between these two forces ultimately leads to
the emergence of mazelike, multiply bifurcated structures,
where a labyrinth-type pattern is formed. This characterizes
the celebrated labyrinthine ferrofluid instability [21–24].

A considerably different scenario arises when a circular
ferrofluid droplet, surrounded by a nonmagnetic fluid, is
placed in a Hele-Shaw cell and subjected to an azimuthal
magnetic field produced by current-carrying wire. In this
context, the wire is normal to the cell plates and passes
through the center of the ferrofluid droplet. As noted earlier,
the azimuthal magnetic field generates a radial magnetic
body force pointing inward, attracting the ferrofluid droplet
toward the wire. Under such circumstances both surface
tension and magnetic forces tend to stabilize the fluid-
fluid interface. This azimuthal field stabilizing strategy has
been proven effective to control interfacial instabilities in
ferrofluids under centrifugally induced fingering in rotating
Hele-Shaw cells [25–27], as well as during the stretch
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flow of thin ferrofluid films in the lifting Hele-Shaw flow
setup [28,29].

In this work we study a still unexplored aspect of the
azimuthal magnetic field configuration in Hele-Shaw geom-
etry. More specifically, we consider the influence of the
azimuthal field on the fluid-fluid interface, now assuming
that a viscous ferrofluid is the outer fluid, while the inner
fluid is inviscid and nonmagnetic. The interesting facet of the
problem resides on the fact that in this situation the azimuthal
field acts to destabilize the interface separating the fluids,
offering the possibility of investigating innovative dynamical
and pattern-forming behaviors.

It should be noted that, due its simplicity, the azimuthal
magnetic field offers plenty of room to analytical treatment
of the rising interfacial phenomena. This is in contrast to
what happens in the perpendicular magnetic field case, where
destabilization relies on complicated demagnetizing effects
that usually defy the analytical treatment of the system,
mainly during nonlinear stages of the dynamics. Here we
tackle the ferrohydrodynamic problem analytically: first, a
perturbative mode-coupling approach [30] is employed to
access relevant features of the time-evolving interface up
to quadratic nonlinearities. This allows one to examine the
linear stability of the problem, as well as the most salient
morphological characteristics of the two-fluid interface at the
onset of nonlinear effects. Fully nonlinear features of the
interface are also studied, via a vortex sheet approach [31],
leading to the determination of stationary solutions for the
interface shape.

II. LINEAR AND WEAKLY NONLINEAR REGIMES

A. Governing equations

Figure 1 illustrates an initially circular bubble (radius R)
of an inviscid, nonmagnetic fluid surrounded by a ferrofluid

FIG. 1. (Color online) Representative sketch of the physical sys-
tem: Hele-Shaw cell of thickness b containing an initially circular
bubble (radius R) of an inviscid, nonmagnetic fluid surrounded by
a ferrofluid of viscosity η. The in-plane azimuthal magnetic field
H is produced by a long wire carrying an electric current I . The
wire is perpendicular to the cell plates and passes through the
center of the initially circular fluid-fluid interface. The azimuthal
field destabilizes the two-fluid interface, deforming the circle with
perturbation amplitude ζ = ζ (ϕ,t), where ϕ denotes the azimuthal
angle.

of viscosity η. Both fluids are incompressible and are located
between two narrowly spaced flat plates of a Hele-Shaw cell of
thickness b. The surface tension at the fluid-fluid interface is
denoted by σ . We consider the action of an azimuthal magnetic
field produced by a long, straight, current-carrying wire that
is perpendicular to (coaxial with) the plates of the Hele-Shaw
cell,

H = I

2πr
êϕ. (1)

The electric current is represented by I , r is the radial distance
from the origin of the coordinate system (located at the center
of the cell), and êϕ is a unit vector in the azimuthal direction.
The azimuthal angle in the plane of the cell is denoted by ϕ.
A magnetic body force ∼∇H , where H = |H|, acts on the
ferrofluid pointing in the inward radial direction [1,25].

While surface tension tends to keep the two-fluid inter-
face circular, the magnetic force induced by the azimuthal
magnetic field (1) acts to deform it. In the framework of
our second-order perturbative approach, we describe the
deformed interface shape as R(ϕ,t) = R + ζ (ϕ,t), where
ζ (ϕ,t) = ∑+∞

n=−∞ ζn(t) exp (inϕ) represents the net interface
perturbation with Fourier amplitudes ζn(t) and integer az-
imuthal wave numbers n. The zeroth mode is included in the
Fourier expansion to keep the area of the perturbed shape
independent of the perturbation ζ [30].

For the effectively two-dimensional geometry of the Hele-
Shaw cell, the dynamics of the interface is governed by a
modified Darcy’s law for the gap-averaged velocity [21,24,25]

v = − b2

12η
∇�. (2)

The generalized pressure � = p − � contains both the pres-
sure p and a magnetic pressure represented by a scalar potential
� = μ0χH 2/2, where the linear relationship M = χH has
been used, with χ denoting a constant magnetic susceptibility.
Note that for the nonmagnetic fluid χ = 0 and � = 0.

From Eq. (2) and the incompressibility condition ∇ · v = 0
it can be verified that the velocity potential φ (v = −∇φ)
obeys Laplace’s equation. The problem is then specified by
the augmented pressure jump boundary condition [1,2]

p|r=R = −[
σκ + 1

2μ0(M · n̂)2
]
r=R, (3)

with n̂ = ∇[r − R(ϕ,t)]/|∇[r − R(ϕ,t)]| denoting the unit
normal vector at the interface, plus the kinematic boundary
condition [20]

∂R
∂t

=
[

1

r2

∂R
∂ϕ

∂φ

∂ϕ
− ∂φ

∂r

]
r=R

, (4)

which connects the velocity of the ferrofluid with the motion
of the interface itself. The first term on the right-hand side
of Eq. (3) represents the usual contribution related to surface
tension and interfacial curvature κ . The second term is the so-
called magnetic normal traction [1,2,27,28], which considers
the influence of the normal component of the magnetization
at the interface. This additional term will have an important
role in determining the shape of the rising interfacial patterns
under an azimuthal magnetic field.

Following canonical steps performed in previous weakly
nonlinear studies for Hele-Shaw flows [28,30], first we define
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Fourier expansions for the velocity potential. Then we express
the Fourier coefficients of the velocity potential in terms of
the perturbation amplitudes ζn by considering condition (4).
Substituting these relations, and the pressure jump condition
Eq. (3) into Darcy’s law Eq. (2), always keeping terms up
to second order in ζ , and Fourier transforming, we find
the dimensionless equation of motion for the perturbation
amplitudes (for n �= 0)

ζ̇n = λ(n)ζn

+
∑
n′ �=0

[F (n,n′)ζn′ζn−n′ + G(n,n′)ζ̇n′ζn−n′ ], (5)

where the overdot represents a total time derivative with
respect to time,

λ(n) = |n|[χNB − (n2 − 1)] (6)

denotes the time-independent linear growth rate, and

NB = μ0I
2

4π2σR
(7)

is a magnetic Bond number that measures the ratio of magnetic
and surface tension forces. The functions F (n,n′) and G(n,n′)
are the second-order mode-coupling terms given by

F (n,n′) = −|n|
{

3

2
χNB

[
1 + 1

3
χn′(n′ − n)

]

+
[

1 − n′

2
(3n′ + n)

] }
(8)

and

G(n,n′) = |n|[1 − sgn(nn′)] − 1. (9)

In Eq. (9) the sign function sgn equals ±1 according to the sign
of its argument. In Eq. (5) lengths and time are rescaled by
R and (12ηR3)/(b2σ ), respectively. From this point onward,
we work with the dimensionless version of the equations. We
stress that in the presentation of our theoretical results, we
make sure that the values of all relevant dimensionless quanti-
ties we utilize are consistent with realistic physical parameters
related to existing azimuthal magnetic field arrangements and
material properties of ferrofluids [1,2,10–18].

B. Discussion of linear and weakly nonlinear results

In this section we utilize Eq. (5) to analyze the interfacial
instability generated by the azimuthal magnetic field at early
stages of the interface dynamics. The beginning of the
fingering process occurs when a small initial disturbance at
the ferrofluid interface is forced by the external magnetic field
to grow toward the center of the nonmagnetic bubble. This
initial behavior can be described by a linear stability analysis
that considers just the contribution of the first term on the
right-hand side of Eq. (5), leading to a simple differential
equation ζ̇n = λ(n)ζn. One can readily see that a positive
growth rate λ(n) results in an unstable ferrofluid interface.
Therefore, from Eq. (6) we conclude that the magnetic
contribution, quantified by the magnetic Bond number NB and
by the magnetic susceptibility χ , induces a positive growth rate
and, consequently, destabilizes the interface. Nonetheless, the
second term in Eq. (6), which comes from the surface tension

effect, tends to drive λ(n) negatively, favoring the damping
of any disturbances caused by the external field. It is worth
noting that, since for ferrofluids the magnitude of the magnetic
susceptibility can be as large as 60 or 70, it is perfectly possible
to induce fingering with magnetic Bond numbers that are not
necessarily large (e.g., 0 < NB < 3).

Another relevant piece of information can be extracted from
the linear stability analysis. It refers to the linear prediction for
the typical number of fingers formed at the interface during
early stages of the pattern formation process. This quantity is
given by the fastest growing mode, and it can be obtained by
setting [dλ(n)/dn]|n=nλ

max
= 0. This leads to a pretty simple

form for nλ
max given by

nλ
max =

√
1
3 (1 + χNB). (10)

By inspecting Eq. (10), it is evident that the linear approach
predicts that the typical number of fingers increases with the
square root of NB , where its growth is more accentuated for
larger values of χ . Therefore, one might control the number
of fingers at early linear stages of the dynamics by either
manipulating the electric current on the wire (i.e., by tuning
NB) or by choosing an appropriate ferrofluid with a convenient
susceptibility. However, it is important to stress that depending
on the role played by the nonlinear effects, the growth rate,
and, consequently, nλ

max, may not offer a good estimate for
the number of emerging fingers. This important issue will be
discussed below.

In order to extract more information about the emerging
ferrofluid patterns, we turn our attention to the weakly
nonlinear stage. Now we focus on assessing the most salient
features of the patterns’ morphology induced by the az-
imuthal magnetic field. It should be pointed out that such
morphological characteristics cannot be predicted by a purely
linear stability analysis of the system. The search for key
nonlinear morphological aspects can be performed by making
use of the full mode-coupling equation (5). In particular, we
concentrate our attention on a fundamental mechanism of
pattern formation in Hele-Shaw cells, related to the finger
tip-splitting phenomenon [20]. Originally, finger tip-splitting
events have been studied in the context of injection-driven
radial Hele-Shaw flows [32–35] where the tip of the evolving
fingers exhibited a tendency to get wider and wider and
eventually went through a bifurcation process, where a single
finger splits into two smaller ones. This finger duplication
process may influence the proper counting of the fingers at the
weakly nonlinear regime.

To give a flavor of how the mode-coupling approach can
provide very useful information about finger tip-broadening
and finger tip-splitting phenomena, we proceed by following
the procedure originally implemented in Ref. [30] and consider
the coupling of just a small number of Fourier modes. For
convenience, we rewrite Eq. (5) in terms of cosine and sine
modes, where the cosine an = ζn + ζ−n and sine bn = i(ζn −
ζ−n) amplitudes are real valued. Without loss of generality
we choose the phase of the fundamental mode so an > 0 and
bn = 0. In this approach, finger tip broadening, and finger
tip splitting are described by considering the influence of a
fundamental mode n on the growth of its first harmonic 2n [30].
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Writing the equations of motion for the harmonic mode we
have

ȧ2n = λ(2n)a2n + 1
2T (2n,n)a2

n, (11)

ḃ2n = λ(2n)b2n, (12)

where the finger tip function is defined as

T (2n,n) = F (2n,n) + λ(n)G(2n,n)

= |n|[χNB(χn2 − 4) + 6n2 − 3]. (13)

Since the growth of the sine mode b2n is uninfluenced by
an and does not present second-order couplings, we focus
on the growth of the cosine mode a2n which is given by
Eq. (11).

It is known that the function T (2n,n) dictates the finger tip
behavior [30,36]. From Eq. (11), notice that if T (2n,n) > 0,
the term of order a2

n drives the growth of a2n positively, leading
to inward pointing finger tip broadening. For large magnitudes
of the finger tip function, the nonlinear term can eventually
promote the tip splitting of the inward pointing fingers of
the ferrofluid. The same argument is valid if T (2n,n) < 0,
where the tendency toward broadening of the outward pointing
fingers is observed. From Eq. (13) it is easily seen that in
our current problem T (2n,n) is always positive for n > 1,
regardless the value of NB and for χ of order 1. In addition,
notice that the magnitude of the finger tip function increases
linearly with NB , and its growth is more significant for higher
values of the susceptibility. These findings indicate that by
increasing NB and χ , it is possible to observe a broadening
or even a bifurcation process of the inward moving fingers of
the ferrofluid at early nonlinear stages of the pattern formation
process.

The illustrative analysis we performed above regarding the
development of tip broadening and splitting of the invading
ferrofluid fingers, used the coupling of just two particular
Fourier modes. At this point, we wish to verify the validity
and generality of these important results obtained from the
finger tip function analysis. This is done by employing a
more quantitative approach involving the nonlinear interaction
among various Fourier modes. In other words, instead of
examining the sole interaction between fundamental and first
harmonic modes, we consider the participation and interplay
of all linearly unstable Fourier modes [i.e., those for which
λ(n) > 0]. In this general scenario, we have to solve the
weakly nonlinear equation (5) consistently up to second-order
accuracy. Substituting the linear solution

ζ lin
n (t) = ζn(0) exp{λ(n)t} (14)

into the second-order terms on the right-hand side of Eq. (5),
we obtain

ζ̇n = λ(n)ζn +
∑
n′ �=0

[F (n,n′) + λ(n′)G(n,n′)]ζn′(0)ζn−n′ (0)

× exp{[λ(n − n′) + λ(n′)]t}, (15)

where λ(n − n′) and λ(n′) correspond to the linear growth rate
related to the modes n − n′ and n′, respectively. Notice that
Eq. (15) is a first-order linear differential equation for which a

closed form solution can be written as

ζn(t) = ζn(0) exp{λ(n)t}

+
∑
n′ �=0

ζn′ (0)ζn−n′ (0)

[
F (n,n′) + λ(n′)G(n,n′)
λ(n − n′) + λ(n′) − λ(n)

]

×
[

exp{[λ(n − n′) + λ(n′)]t} − exp{λ(n)t}
]
.

(16)

The analytical weakly nonlinear solution (16) allows the
explicit consideration of the coupling of an arbitrary number
of Fourier modes. From Eq. (16), one can easily obtain the
equivalent weakly nonlinear solutions for the cosine and sine
modes and then examine the evolution of the mode amplitudes
as well as the shape of the resulting interface. Figure 2 plots
the normalized Fourier amplitudes (|ζn|/|ζnmax |) as a function
of the modes n for three values of NB : 0.15, 0.7, and 2.8. Here
|ζn| =

√
|an|2 + |bn|2/2, |ζnmax | denotes maximum amplitude

(nmax is the mode of maximum amplitude), and χ = 70. The
plots are produced at the following final times: (a) 0.69,
(b) 0.57, (c) 0.07, (d) 0.053, (e) 0.0083, and (f) 0.0055. These
final times are determined so the condition of validity of our
perturbative approach |ζ |/R � 1 is obeyed.

In the insets we present the corresponding final interface
shapes, where random phases have been attributed to each
mode n, where 0 � n � 30. Note that Figs. 2(a), 2(c), and 2(e)
are obtained by using the linear stability theory, where just
the linear term on right-hand side of Eq. (16) is taken into
account. On the other hand, Figs. 2(b), 2(d), and 2(f) are plotted
considering all terms in the weakly nonlinear solution (16).

By inspecting Figs. 2(a), 2(c), and 2(e) for the linear
amplitudes we find that the number of resulting fingers, here
given by the mode with maximum amplitude nmax, increases
with NB consistently with the expression of the fastest growing
mode nλ

max (10). However, when nonlinear effects are taken
into consideration [Figs. 2(b), 2(d), and 2(f)], we verify that the
final number of fingers duplicates if compared to the number
given by the purely linear prediction. Despite the fact that we
have multiple interacting modes, in terms of the ultimate shape
of the patterns, everything works as if we had a “fundamental
mode” given by nmax and a nonlinearly selected, dominant
“first harmonic” associated to 2nmax.

This interesting nonlinear result, valid for the interaction of
multiple Fourier modes, is indeed in line with the finger tip
function mechanism discussed earlier in this section, which
considered a simplified setting involving only two specific
modes (the fundamental and its first harmonic). Recall that by
the simple analysis based on the finger tip function T (2n,n),
we expected that the interfacial patterns would present inward
pointing fingers of the ferrofluid with broad tips or, depending
on the magnitude of T (2n,n), we could see a resulting interface
with bifurcated fingers. Note that in Fig. 2 the nonlinear terms
force the inward fingers to duplicate, favoring the development
of twice the number of fingers in comparison to what is
expected by the linear approach. Another interesting nonlinear
behavior is unveiled when one increases the value of NB . For
larger values of the magnetic field [Figs. 2(d) and 2(f)] we
observe a decrease of the “fundamental mode” magnitude,
while the “subharmonic” and “first harmonic” modes tend to
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FIG. 2. (Color online) Normalized Fourier amplitudes (|ζn|/|ζnmax |) as a function of the Fourier modes n, for three values of NB , and
χ = 70. Purely linear (weakly nonlinear) analysis is utilized to plot (a), (c), and (e) [(b), (d), and (f)]. The insets show the corresponding
interface shapes at the final time. Notice that linear plots present peaks at n = nmax, while weakly nonlinear plots show peaks at n = 2nmax.

become the dominant ones in the azimuthal field fingering
dynamics. We have verified that the results obtained from
Fig. 2 are quite general and can also be obtained for smaller
values of χ , as long as the magnetic Bond number has higher
magnitude.

III. FULLY NONLINEAR REGIME:
STATIONARY PATTERNS

In this section we go beyond the linear and weakly nonlinear
stages of the pattern formation process and explore important
aspects of the fully nonlinear regime. More specifically, we
access the fully nonlinear pattern morphologies through the
calculation of the stationary solutions of the ferrohydrody-
namic problem. This is done by utilizing the vortex sheet
formalism of Hele-Shaw flows [31].

The vortex sheet formulation explores the jump in the
tangential component of the fluid velocity as one crosses the
interface separating an inner fluid 1 and an outer fluid 2. This
approach offers a useful method to probe the fully nonlinear
morphology of the arising pattern-forming structures in our
azimuthal magnetic field problem. By writing the generalized
Darcy’s law (2) for both fluids, then by subtracting the
resulting expressions, we solve for the vortex sheet strength
� = (v1 − v2) · ŝ to obtain a dimensionless expression for the
vorticity,

� = 2AV · ŝ + ∇
{
κ + 1

2

NB

r2
χ [1 + χ (n̂ · êϕ)2]

}
· ŝ, (17)

where ŝ is the unit tangent vector along the interface and êϕ

is the unit vector along the azimuthal direction. In deriving
Eq. (17) we have also used the pressure jump (3) described in
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Sec. II. In Eq. (17) A = (η2 − η1)/(η2 + η1) is the viscosity
contrast, and V = (v1 + v2)/2 is an average velocity of the
interface with v1 and v2 being the two limiting values (from
both sides of the interface) of the velocity at a given point.
Note that the term (n̂ · êϕ)2 is reminiscent of the magnetic
normal traction contribution in Eq. (3). Equation (17) is
made dimensionless by using the same rescaling utilized to
nondimensionalize Eqs. (5)–(9).

We are interested in the static solutions of Eq. (17), so
v1 = v2 = 0. By taking V = 0 in Eq. (17), and considering
the condition of zero vorticity (� = 0), we find that

∇
{
κ + 1

2

NB

r2
χ [1 + χ (n̂ · êϕ)2]

}
· ŝ = 0. (18)

We want to examine the family of planar curves whose
curvature satisfies the differential equation (18). These curves
are the stationary solutions that balance the competing mag-
netic and capillary forces at the ferrofluid interface. To find
such solutions numerically, we begin by defining the ferrofluid
interface as a parameterized curve in terms of polar coordinates
r and ϕ

x(s) = (x(s),y(s)) = r(s)( cos ϕ(s), sin ϕ(s)), (19)

where the arclength s is taken as the parameter of the curve.
From now onward, we will omit the dependence on the
parameter s in the equations. In this framing, the interface
curvature can be written as [37]

κ = (
1 + r2

s

)
ϕs + r(rsϕss − rssϕs), (20)

where the subscripts indicate derivative with respect to the
arclength.

To obtain the stationary shapes, we substitute Eq. (20)
into Eq. (18) and solve the resulting expression numerically.
However, first we have to write the scalar product n̂ · êϕ in
Eq. (18) in terms of r and ϕ. Note that the polar vector êϕ is
given by

êϕ = (− sin ϕ, cos ϕ), (21)

and the normal vector to the interface n̂ can be written as

n̂ = (−ys,xs)

= −(rs sin ϕ + rϕs cos ϕ,rϕs sin ϕ − rs cos ϕ). (22)

In Eq. (22) we used the expression (19) in polar coordinates.
Utilizing (21) and (22) to calculate the scalar product of
Eq. (18), we get a very simple relation n̂ · êϕ = rs . Therefore,
Eq. (18) becomes

κs + ∂s

{
1

2

NB

r2
χ

[
1 + χr2

s

]} = 0. (23)

For details about the numerical method used to solve equations
like Eq. (23), see, for instance, Refs. [38–40].

Figure 3 illustrates a collection of representative stationary
solutions for the problem of a fluid bubble surrounded by
ferrofluid under the influence of a azimuthal magnetic field. In
the top row of Fig. 3 the magnetic susceptibility is χ = 5 and
NB takes increasingly larger values from left to right: NB =
3.03 × 10−1, 4.01 × 10−1, and 5.89 × 10−1. In the middle row
χ = 10, and NB = 5.985 × 10−2, 7.731 × 10−2, and 9.635 ×
10−2. Finally, in the bottom row χ = 70, and NB = 1.053 ×

10−3, 1.287 × 10−3, and 1.850 × 10−3. We emphasize that all
patterns illustrated in Fig. 3 are stationary shapes and not a
time evolving sequence of events.

We advance by discussing the main morphological features
of the stationary patterns shown in Fig. 3. First, we observe
that all patterns in the first column present inward-pointing
fingers with blunt tips. In some cases (second column),
these flat tips show an evident tendency to split. These fully
nonlinear findings are consistent with the weakly nonlinear
prediction made in Sec. II B, where we used the finger tip
function approach and prognosticated the tendency toward
fingertip broadening and splitting. In addition, we verify
that the outward pointing fingers of the nonmagnetic bubble
grow as inflated, balloonlike shapes. This occurs because the
applied magnetic field decreases with radial distance and,
consequently, makes the interface more stable at that points.
This behavior leads to a reduction of the curvature of the
outward pointing fingers in comparison with the curvature
of the inward pointing ones since they are located closer
to the current-carrying wire [see Eq. (18)]. Moreover, the
magnetic traction term proportional to (n̂ · êϕ)2 in Eq. (18)
is maximized as n̂ is collinear to êϕ so, at the side of the
fingers, a larger amount of ferrofluid tend to flow outward to
the interface, making the outer fingering structure to become
more inflated. Finally, for larger values of χ and NB , one
can see the formation of asymmetric structures, made of two
balloons of different sizes and shapes (rightmost pattern in
the bottom row). This asymmetry could be attributed to an
enhanced nonlinear growth of the mode n = 1 [26].

In Fig. 3, one can also notice that the resulting stationary
shapes arise as n-fold structures, where for a given χ , the
number of fingers decrease for larger values of NB . This is
in opposition to the behavior predicted by the linear stability
analysis [see Eq. (10)]. However, this finding is not really
surprising: The structures presented in Fig. 3 exhibit strong
nonlinear effects that cannot be accessed by a linear approach.
One possible explanation for the decrease of the number of
fingers for increasingly larger NB could be given by one
of our weakly nonlinear results, where we observed that
the increasing of the magnetic Bond number promoted an
accentuated growth of the amplitude of the subharmonic
Fourier mode [see Figs. 2(d) and 2(f)]. Now, since we are
dealing with a fully nonlinear regime, by increasing NB it
is in principle possible to observe a significant growth of
lower Fourier modes in comparison to the fastest growing
modes predicted by the linear stability analysis. Therefore,
these lower modes could eventually dominate the dynamics
and dictate the resulting number of fingers in the emerging
fully nonlinear patterns.

If the susceptibility takes larger values (second and third
rows in Fig. 3) the number of fingers does not change, but
their morphology is modified. First, note that by increasing χ

the equilibrium outward pointing shapes become even more
“swollen.” In contrast, the inward pointing fingers grow toward
the origin, presenting a flat tip that can bifurcate for higher
values of NB . Finally, when χ = 70 and NB = 1.053 × 10−3,
this behavior induces a topological singularity, implying in
interface pinch-off (see the first figure in the bottom row).
Similar pinch-off events have been previously detected in
the stationary solutions obtained for the rotating Hele-Shaw
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FIG. 3. (Color online) Typical stationary shape solutions for a nonmagnetic fluid bubble surrounded by ferrofluid, considering three
increasingly larger values of the magnetic susceptibility χ . The intensity of the magnetic Bond number NB increases from left to right.

problem with nonmagnetic fluids [38], as well as in the
confined radial magnetic field [36] problem with ferrofluids.

IV. CONCLUSIONS

The azimuthal magnetic field configuration originated by
a straight current-carrying wire has a long history in the de-
velopment of interfacial instabilities in ferrofluids. Regarding
free surface flows, it is responsible for the well-known conical
meniscus instability and more recently has been used to induce
the formation of solitons in magnetic fluids. In the context
of confined Hele-Shaw flows, the great majority of existing
studies focus on the utilization of the azimuthal field as a
controlling parameter in order to stabilize ferrofluid interfaces
that would otherwise be unstable (i.e., in rotating or lifting
Hele-Shaw flows).

In this work, we have explored a different aspect of
the azimuthal magnetic field during spatially constrained
ferrofluid displacements in Hele-Shaw geometry. Here we
concentrated our attention on a situation in which the azimuthal
field acts in a destabilizing manner. More specifically, we
considered the emergence of ferrohydrodynamic instabilities
at an initially circular interface separating a nonmagnetic fluid
of negligible viscosity, surrounded by a viscous ferrofluid. In
this setting, a current-carrying wire is placed normal to the
Hele-Shaw cell plates and passes through the center of the
nonmagnetic fluid bubble. It turns out that the azimuthal field

presents a natural radial gradient, so a magnetic force pointing
radially inward arises, attracting the ferrofluid to the wire. As a
result, the two-fluid interface deforms, inducing the formation
of interfacial patterns driven by the azimuthal magnetic
field.

To investigate the pattern-forming phenomena at early
linear stages, as well as at the onset of nonlinear effects, we
carried out a mode-coupling analysis of the system. The linear
dispersion relation readily reveals that the azimuthal magnetic
field is indeed destabilizing, competing with stabilizing surface
tension effects. On the other hand, our weakly nonlinear results
offer useful analytical insights into the typical interfacial
features of the interface up to quadratic nonlinearities. By
considering the interplay of a small number of interacting
modes (via the finger tip function approach) we have been
able to predict that the invading fingers of the ferrofluid tend
to be flat and blunt at their tips, admitting the occurrence
of finger tip bifurcation. This finger duplication process has
been confirmed, even if many participating modes are present.
Under such multimode circumstances, we have found that a
“first harmonic” mode (n = 2nmax) has the largest amplitude
and is naturally selected by the weakly nonlinear dynamics.
Enhanced growth of a “subharmonic” mode (n = nmax/2) has
been detected for higher values of the magnetic Bond number.

Finally, a vortex sheet formalism has been employed to
address fully nonlinear aspects of the emerging interfacial
shapes. In this scenario, we have found stationary solutions
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for the interface when magnetic forces are equally balanced
by surface tension effects. The resulting typical steady shapes
present flat-tip penetrating ferrofluid fingers, separated by
balloon-shaped structures of the nonmagnetic fluid. We have
also observed that these inflated fingers of the nonmagnetic
fluid may pinch off at their basis.

As a natural extension of this work, it would be of interest
to study of the development of fully nonlinear, time-dependent
interfacial fingering structures through intensive conformal

mapping, boundary-integral, or phase-field numerical simu-
lations.
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