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Low-to-moderate Reynolds number swirling flow in an annular channel with a rotating end wall

Laurent Davoust*

Grenoble-INP, SIMaP, Electromagnetic Processing of Materials (EPM) Laboratory, F-38000 Grenoble, France

Jean-Luc Achard
CNRS, LEGI, Microfluidics, Particles and Interfaces (MIP) Laboratory, F-38000 Grenoble, France

Laurent Drazek†
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This paper presents a new method for solving analytically the axisymmetric swirling flow generated in a finite
annular channel from a rotating end wall, with no-slip boundary conditions along stationary side walls and a
slip condition along the free surface opposite the rotating floor. In this case, the end-driven swirling flow can be
described from the coupling between an azimuthal shear flow and a two-dimensional meridional flow driven by
the centrifugal force along the rotating floor. A regular asymptotic expansion based on a small but finite Reynolds
number is used to calculate centrifugation-induced first-order correction to the azimuthal Stokes flow obtained as
the solution at leading order. For solving the first-order problem, the use of an integral boundary condition for the
vorticity is found to be a convenient way to attribute boundary conditions in excess for the stream function to the
vorticity. The annular geometry is characterized by both vertical and horizontal aspect ratios, whose respective
influences on flow patterns are investigated. The vertical aspect ratio is found to involve nontrivial changes in
flow patterns essentially due to the role of corner eddies located on the left and right sides of the rotating floor.
The present analytical method can be ultimately extended to cylindrical geometries, irrespective of the surface
opposite the rotating floor: a wall or a free surface. It can also serve as an analytical tool for monitoring confined
rotating flows in applications related to surface viscosimetry or crystal growth from the melt.
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I. INTRODUCTION

Viscous incompressible flows inside cylindrical containers
with a rotating end wall and a free surface above have
received sustained attention (see, e.g., Refs. [1–8] as a
nonexhaustive short list of references), motivated by both their
fundamental and engineering relevance. Taking advantage of
the simplicity of the cylindrical geometry, several analytical
models based on a low-Reynolds-number limit [9–11] have
been developed. Moreover, different boundary conditions
applied to the liquid surface opposite the rotating end wall (free
surface, contaminated surface, solid wall, rotating cover) have
been considered, allowing for meaningful comparisons among
analytical approaches, experimental data, and numerical calcu-
lations. Fundamental interest essentially focuses on the Ekman
pumping which, given a high-enough Reynolds number and a
particular range of the only available length-to-radius aspect
ratio, leads to the formation or breakdown of a concentrated
vortex bubble along the axis.

In a similar way, the flow in a cylindrical annular channel
(Fig. 1) should also be investigated. The main reason for this
is that its geometry is generic in the sense that, depending
on the limiting value of the ratio of the inner radius over
the outer radius, ri/ro, the geometry of a straight channel
can be approached. Despite both its fundamental interest and
its relevance in applications related to crystal growth [12]
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or surface viscosimetry [13–15], it is surprising to see how
end-driven annular flows have not attracted as much attention
as full cylinders. Most existing studies on annular channel
flows have been performed numerically or experimentally
[13,15–17], quite often with the aim of investigating the impact
of physicochemical contamination along the upper liquid
surface. To our knowledge, except for the recent analytical
modeling performed by Shtern [18,19] for an annular cavity
considered as semi-infinite along the vertical direction, all
existing analytical studies devoted to this configuration only
focus on the azimuthal flow either when the liquid surface is
free of contamination [20] or when it is contaminated [21,22].

The primary purpose of the present study is therefore
to remedy this gap, i.e., to understand the role of inertial
correction to the azimuthal Stokes flow in a finite annular
cavity with a rotating end wall and a free surface above. To
this end, a new analytical method is proposed, which can
address a diversity of boundary conditions around the fluid
domain (stationary side walls, moving wall, free surface). The
Reynolds number considered here is small but finite, which
means that it ranges between the Stokes limit (Re = 0) and the
weakly inertial flow (Re ∼ 100 typically). Beyond this limit, as
already mentioned, flow topology is well documented by direct
numerical studies carried out by Lopez and coworkers [16,17].
Furthermore, our approach will show how flow patterns evolve
according to the vertical and horizontal aspect ratios, especially
when the vertical aspect ratio is small (radially extended
cavity).

As a typical property of end-driven flows, discontinuities
are found at the left and right corners, between the rotating
floor and the inner side wall, maintained stationary, or between
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FIG. 1. Partial view of the channel geometry under consideration.
The floor is rotating slowly while the inner and outer side walls (at ri

and ro, respectively) are maintained stationary.

the rotating floor and the outer side wall, also maintained
stationary. It is therefore difficult to use Stokes solutions to
tackle these boundary discontinuities, as the associated Stokes
series for the stream function diverge when differentiated. This
problem cannot be circumvented since our aim is precisely
to calculate the recirculating flow induced by centrifugation
within a meridional cross section of the annular channel. In
the present paper, we propose an analytical method based on
the systematic use of dot products so involved analytical series
can always be integrated. In this way, the viscous impact of
boundary discontinuities upon the flow can be described.

The outline of the paper is as follows. In Sec. II A, the entire
flow is split between the azimuthal flow and the recirculating
flow in the meridional plane, where the latter is described from
nonprimitive variables: the stream function and the vorticity.
The three governing equations for the entire flow are obtained,
all based on the same single differential operator. In Sec. II C,
to demonstrate how the azimuthal flow and the meridional
flow are weakly coupled, use is made of a regular perturbation
series based on a low Reynolds number. Three eigenvalue
problems are derived, associated with governing equations. In
Sec. II D, an integral boundary condition is introduced to deal
with in-excess boundary conditions for the stream function.
Then, in Sec. II E, the solutions at successive orders are
derived. Special attention is given to the method for solving the
inertial correction at first order to the azimuthal Stokes flow. In
Sec. III A, the accuracy of the analytical method is discussed,
focusing particularly on the azimuthal flow calculated up to
second order. The influence of corner discontinuities is also
discussed. Finally, in Sec. III B, special attention is dedicated
to analyzing the two-dimensional (2D) cellular flow induced
by centrifugation and perturbed by corner singularities.

II. MATHEMATICAL FORMULATION

A. Governing equations

This paper addresses the permanent flow of an incompress-
ible fluid with a free surface in a cylindrical lid driven annulus
between a couple of vertical cylindrical and stationary side
walls with inner and outer diameters, ri and ro, respectively.
The floor at the bottom of the cavity is made to rotate slowly.
Figure 1 shows the geometry of the annulus and the coordinate
system, where r is taken along the radial direction and z along

the vertical direction. All physical quantities are normalized
by taking outer radius ro as the representative length scale
and 1/� as the time scale, where � is the rotation speed
rate of the floor. The nondimensional Reynolds number is

consistently defined by Re = ρr2
o �

μ
with ρ and μ, the density

and the Newtonian viscosity of the liquid.
In this paper, the swirling flow under consideration is

characterized by a cylindrical symmetry. A distinction is made
between a main azimuthal flow, described by the primitive
variable, −→vθ = vθ (r,z)−→uθ , and a two-dimensional recirculating
flow within a meridional cross section, −→v⊥ = vr (r,z)−→ur +
vz(r,z)−→uz , the components (vr,vz) of which are derived from
the following nonprimitive variables: the vorticity function ω

and the stream function ψ which differs from the well-known
Stokes function:1 Here the 2D meridional velocity is written,−→v⊥ = �∇ × (ψ−→

uθ ) or, explicitly,

vr = −∂ψ

∂z
, (1)

vz = 1

r

∂(rψ)

∂r
. (2)

Hence, the continuity equation is satisfied and, anticipating
the following, the latter nonprimitive formulation permits the
use of only one single generic differential operator, E2, in the
writing of the following mathematical modeling (4)–(6) with
inertia appearing in the form of source terms.

Dependence of the vorticity ω on −→v⊥ is written as:

ω = −→
uθ · (

−→∇ × −→v )θ = −→
uθ · (

−→∇ × −→v⊥). (3)

Considering these notations, axisymmetric Navier-Stokes
equations can be written as a nondimensional set of three
differential equations with forcing terms and homogeneous
boundary conditions specified in the following section:

E2(vθ ) = Re{−→∇ × (vθ
−→
uθ ) × [

−→∇ × ψ
−→
uθ ]} · −→

uθ , (4)

E2(ω) = Re
−→∇ × {(−→∇ × −→vθ ) × −→vθ

+ω
−→
uθ × [

−→∇ × ψ
−→
uθ ]} · −→

uθ , (5)

E2(ψ) = −ω. (6)

Here use is made of the differential operator, E2(), defined
as:

E2 () = ∂2 ()

∂z2
+ ∂2()

∂r2
+ 1

r

∂ ()

∂r
− ()

r2
. (7)

The two last terms are representative of the curvature effects
which are never negligible but more and more pronounced
when switching from an annulus to a full cylinder (ri → 0). A
straightforward scaling2 of the generic operator (7) reveals

1Note that ψ is actually the azimuthal component of the stream
vector potential to be considered for the study of 3D flows with
the most classical nonprimitive formulation of the incompressible
Navier-Stokes equation.

2Cartesian terms: ∂

∂z2 ∼ 1
h2 and ∂

∂r2 ∼ 1
(ro−ri )2 curvature terms: ∂

r∂r
∼

1
ri (ro−ri ) and 1

r2 ∼ 1
r2
i

.
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that the curvature effects are no longer significant when
(ro − ri)/ri → 0. Hence, two aspect ratios are sufficient in
describing the geometry: the horizontal aspect ratio, ri

ro
, and

the vertical aspect ratio, h
ro

, with h, the depth of the liquid bath.

B. Boundary conditions as written in terms of mixed variables

Since the inner and outer side walls are maintained station-
ary while the floor is rotating, no-slip boundary conditions for
the azimuthal component of the velocity field,

vθ = 0 at r = ri

ro

along 0 < z � h

ro

, (8)

vθ = 0 at r = 1 along 0 < z � h

ro

, (9)

vθ = r at z = 0 along
ri

ro

< r < 1, (10)

as well as for the radial and vertical components, vr and vz,

∂ψ

∂r
= 0 at r = ri

ro

along 0 < z � h

ro

, (11)

∂ψ

∂r
= 0 at r = 1 along 0 < z � h

ro

, (12)

∂ψ

∂z
= 0 at z = 0 along

ri

ro

< r < 1, (13)

together with the impermeability boundary conditions for vr

and vz,

ψ = 0 at r = ri

ro

along 0 < z � h

ro

, (14)

ψ = 0 at r = 1 along 0 < z � h

ro

, (15)

ψ = 0 at z = 0 along
ri

ro

< r < 1, (16)

are written in terms of the primitive variable, vθ , and the stream
function as well.

On the free liquid surface, the impermeability boundary
condition implies that

ψ = 0 at z = h

ro

along
ri

ro

< r < 1, (17)

while the tangential component of the jump momentum
balance leads to:

∂vr

∂z
= 0 at z = h

ro

along
ri

ro

< r < 1, (18)

∂vθ

∂z
= 0 at z = h

ro

along
ri

ro

< r < 1. (19)

Finally, considering that the impermeability boundary condi-
tion, vz = 0, is uniform along the liquid surface, which means
that ∂vz

∂r
= 0, the previous boundary condition (18) can be

turned into a Dirichlet condition for the nonprimitive variable,
ω:

ω = ∂vr

∂z
− ∂vz

∂r
= 0 at z = h

ro

along
ri

ro

< r < 1. (20)

This last boundary condition must be revised in case of uniform
contamination along the liquid surface (Appendix A).

C. Solutions for the vθ , ω, ψ problems

Forcing terms of Eqs. (4) and (5) are obviously nonlinear.
Taking advantage of the slow rotation speed of the floor and of
the weak coupling between unknowns, they can be linearized
by means of a regular perturbation expansion where Re is a
small parameter, leading to an infinite set of linear problems
[23,24]. More specifically, if ζ denotes either vθ , or ψ or ω,
the general solution of the flow can be assumed to be

ζ = ζ0 + Reζ1 + Re2ζ2 + O(Re3).

From a comparison with available results obtained from
both direct numerical simulations (DNS) [16] and experiments
[25], present analytical calculations can be limited to second
order O(Re2), as will be discussed later in this paper.

The mathematical model (4)–(6) shows that the azimuthal
flow field, vθ , as well as the stream function, ψ , and the
vorticity, ω, are all driven by the generic differential operator
E2 but with different forcing terms. An alternative form of E2

is also written as

E2 () = ∂2 ()

∂z2
+ E2

r () , (21)

suggesting at least one eigenvalue problem along the radial
coordinate and a second one along the vertical coordinate.
Finally, because of the different boundary conditions con-
sidered here, three eigenvalue problems can be derived from
the model (4)–(6), all of them defined over the open domain
D =] ri

ro
,1[×]0, h

ro
[.

(i) A first eigenvalue problem along the r axis,

E2
r (f ) = −β2f, with

ri

ro

< r < 1, (22)

is common to all three variables, vθ , ω, and ψ , and must be
associated with following Dirichlet boundary conditions:

f

(
ri

ro

)
= 0, (23)

f (1) = 0. (24)

This leads to an infinite set of orthogonal eigenfunctions, {fj },
defined by

fj (r) =
⎧⎨
⎩

√√√√π2β2
j

2

J 2
1

(
βj

ri

ro

)
J 2

1

(
βj

ri

ro

) − J 2
1 (βj )

⎫⎬
⎭

· [J1(βj r)Y1(βj ) − J1(βj )Y1(βj r)], (25)

with j ∈ N∗ and where J1 () and Y1 () are Bessel functions of
the first and second kinds at first order.
Eigenvalues βj are given as solutions of the transcendental
equation,

J1(βj )Y1

(
βj

ri

ro

)
− J1

(
βj

ri

ro

)
Y1(βj ) = 0.
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(ii) A second eigenvalue problem along the z axis only for
the stream function ψ and the vorticity ω can be written as:

∂2g

∂z2
= −α2g, with 0 < z <

h

ro

,

associated with following Dirichlet boundary conditions:
g(0) = 0 and g( h

ro
) = 0.

This leads to a second infinite set of orthogonal eigenfunctions,
{gk}, defined by:

gk (z) =
√

2ro

h
sin (αkz) , αk = kπro

h
(k ∈ N∗).

(iii) Finally, a third eigenvalue problem along the z axis
devoted to the azimuthal flow field vθ is written as

∂2q

∂z2
= −γ 2q, with 0 < z <

h

ro

,

associated with Dirichlet and Neumann boundary conditions,

q (0) = 0, (26)

∂q

∂z

∣∣∣∣
z= h

ro

= 0. (27)

This leads to a last infinite set of orthogonal eigenfunctions,
{qk}, defined by

qk (z) =
√

2ro

h
sin (γkz) , (28)

with γk = (2k−1)πro

2h
(k ∈ N∗).

The solution for the entire flow field is derived from
these three sets of orthogonal functions and, considering one
particular i th order, is expanded for each component in double
series as

vθ,i (r,z) =
+∞∑
k=1

+∞∑
j=1

vθ,ikj fj (r) qk (z) , (29)

ψi (r,z) =
+∞∑
k=1

+∞∑
j=1

ψikj fj (r) gk (z) , (30)

ωi (r,z) =
+∞∑
k=1

+∞∑
j=1

ωikj fj (r) gk (z) , (31)

where Fourier coefficients vθ,ikj and ψikj are directly calculated
by means of the following dot products along the r axis and z

axis:

〈u,v〉r =
∫ 1

ri
ro

ru(r)v(r)dr, (32)

〈u,v〉z =
∫ h

ro

0
u(z)v(z)dz. (33)

D. On the use of the integral vorticity condition

A look at boundary conditions (14)–(17) and (20) shows
that ψ conditions are overspecified along the edge of the
D domain at the expense of ω conditions. According to

Quartapelle et al. [26], these boundary conditions in excess
for the stream function can be redistributed on the vorticity
as follows: the ωikj coefficients are implicitly calculated by
making use of the second Green’s identity written here with
the E2 operator as:∫

D

[ψE2() − E2(ψ)]dA =
∫

∂D

(
ψ

∂

∂n
− 

∂ψ

∂n

)
dl,

where ∂
∂n

is the normal derivative to the edge ∂D which
delimits the D domain and  is an arbitrary scalar field.

The  scalar field can be constrained here in such a way
that E2 () = 0 throughout the D domain. This leads to a
new formulation of the Green’s identity, referred to here as the
integral condition for the vorticity:

∫
D

r(r,z)ω(r,z)dA = −
∫ 1

ri
ro

r

(
r,

h

ro

)
∂ψ

∂z

(
r,

h

ro

)
dr.

(34)

Hence, the three boundary conditions (11)–(13) can be
reassigned to the vorticity ω. It must be noticed that the
eigenfunctions fj (r) and gk (z) have been built considering
homogeneous Dirichlet boundary conditions which are not
checked for ω anywhere but at the interface. Yet the ω solution
is assumed to converge on the entire D domain, excluding
boundaries where the proposed solution naturally vanishes.
Incidentally, close to the side walls and to the floor where
boundary conditions are unknown, ω can fulfill a Dirichlet
boundary condition leading to:

lim
z→0

ω (r,z) = ωf (r) =
+∞∑
j=1

ω
f

j fj (r) , (35)

lim
r→ ri

ro

ω (r,z) = ωi (z) =
+∞∑
k=1

ωi
kgk (z) , (36)

lim
r→1

ω (r,z) = ωo (z) =
+∞∑
k=1

ωo
kgk (z) , (37)

where ω
f

j , ωi
k , and ωo

k sequences, while assumed to be
known, are used for the general solution of the problem
though they are calculated in a second step [see details in
Appendix B for their calculation at O(Re)]. By combining this
last assumption with the second Green’s identity, the difficulty
related to inappropriate boundary condition distribution can
be overcome.

To our knowledge, this treatment based on an integral
boundary condition is original.

E. Solution of the problem

The vθ , ω, and ψ solutions are determined using the general
method presented in Sec. II C. Considering the unknowns vθ ,
ω, and ψ , the problem presents a welcome property: It can
be demonstrated that the azimuthal flow field vanishes at odd
orders (i.e., vθ,1 = 0, vθ,3 = 0, etc.) while the stream function
ψ and the vorticity ω vanish at even orders (i.e., ψ0 = ω0 = 0,
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ψ2 = ω2 = 0, etc.):

vθ (r,z) = vθ,0(r,z) + Re2 vθ,2(r,z) + O(Re4), (38)

ψ(r,z) = Re ψ1(r,z) + O(Re3), (39)

ω(r,z) = Re ω1(r,z) + O(Re3). (40)

As a result, the azimuthal and meridional flow fields are
solved alternatively by forcing terms dependent on previously
calculated orders, with a consequent reduction in the number
of solutions to calculate. This also highlights the axisymmetric
geometry of the swirling flow which is characterized by a weak
coupling between the 1D annular flow along the azimuthal
direction and the 2D recirculating flow within a meridional
cross section of the channel.

1. Solution at zeroth order

As mentioned above, the model to solve at zeroth order
(ω0 = ψ0 = 0) is written as:

E2(vθ,0) = 0,

with the boundary conditions (8)–(10) and (19) must be
associated. This corresponds to the Stokes solution for the
azimuthal flow.

From the contents of Sec. II C, by making use of the
second Green’s identity when projecting relevant (orthogonal)
eigenfunctions on the E2 operator, the solution can be
expanded according to the double series:

vθ,0(r,z) = 2ro

h

+∞∑
j=1

[[+∞∑
k=1

γk

γ 2
k + β2

j

sin (γkz)

]

× 〈vθ (r,z = 0),fj 〉rfj (r)

]
, (41)

with vθ (r,z = 0) = r [see, e.g., (A5) with Zkj
(vθ ,ω,ψ) =

Bo = 0]. Referring to Ref. [27], this can be simplified into the

single series:

vθ,0 (r,z) =
+∞∑
j=1

vθ,0j
xj (z)fj (r) , (42)

with vθ,0j
= 〈r,fj 〉r and where xj (z) is written as:

xj (z) =
{

2 sinh
[
βj

(
2h
r0

− z
)]

sinh
(

2h
r0

βj

) −
sinh

[
βj

(
h
r0

− z
)]

sinh
(

h
r0

βj

)
}

.

Such a solution is quite similar to but simpler than those
developed by Mannheimer and Schechter [25] and Pintar et al.
[28] in the very first analytical studies of this complex flow.
Although we used trigonometric series which best fit closed
geometries along the z axis, the latter ones asymptotically
converge to the same hyperbolic lines for the particular case
of a free surface.

Finally, as illustrated here, and anticipating on what follows,
all the analytical solutions for the flow are calculated from the
second Green’s identity and dot products between unknown
variables and eigenfunctions. This is worthy of note since it
allows us to process the corner singularities at the bottom of
the channel with no risk of divergence.

2. Solution at first-order

The weak coupling between azimuthal and meridional
flows can be highlighted in the problem at the N th order by
the presence of a source term which depends on solutions
calculated at lower nth orders (n < N).

Since the azimuthal flow vanishes at first order, the
vorticity ω1 is given as the solution of the inhomogeneous
equation:

E2(ω1) = V (vθ,0; vθ,0), (43)

with

V (u; v) = [
−→∇ × (

−→∇ × u
−→
uθ ) × v

−→
uθ ] · −→

uθ .

Use of the interfacial boundary condition (20) and the
boundary expansions (35)–(37) leads after some calculations
[29] to:

ω1(r,z) =
+∞∑
j=1

+∞∑
k=1

ω1,kj (r,z)fj (r)gk(z), (44)

with ω1,kj (r,z) =
+∞∑
j=1

+∞∑
k=1

{
1

α2
k + β2

j

[
hkj +

√
2ro

h
αkω

f

1,j + ω
i

1,k

∂fj

∂r

∣∣∣∣
ri
ro

− ω
o

1,k

∂fj

∂r

∣∣∣∣
1

]}
,

where hkj = −2
∫ 1

ri
ro

∫ h
ro

0
v2

θ,0 (r,z) fj (r)
∂gk (z)

∂z
drdz,

= −2
+∞∑
m=1

+∞∑
n=1

vθ,0m
vθ,0n

(∫ h
r0

0
xm (z) xn (z)

∂gk (z)

∂z
dz

) (∫ 1

ri
ro

fm (r) fn (r) fj (r) dr

)
.

Note that use is made of (42) to find the last expression for the coefficient hkj .
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Finally considering the third differential problem,
E2(ψ1) = −ω1,

the expression of ψ1(r,z) is similar to that of ω1(r,z) in
(44), ψ1(r,z) = ∑+∞

j=1

∑+∞
k=1 ψ1,kj (r,z)fj (r)gk(z), but its co-

efficients are written as:

ψ1kj
(r,z) = ω1,kj (r,z)

α2
k + β2

j

. (45)

3. Solution at second order

Only azimuthal flow field is involved at this even order
when we solve the following problem:

E2(vθ,2) = U (vθ,0; ψ1), (46)

with

U (u; v) = [
−→∇ × u

−→
uθ × (

−→∇ × v
−→
uθ )] · −→

uθ ,

and the four associated boundary conditions:

along 0 < z � h

ro

:

vθ,2 = 0 at r =
(

1,
ri

ro

)
,

along
ri

ro

< r < 1 :

vθ,2 = 0 at z = 0,

∂vθ,2

∂z
= 0 at z = h

ro

.

It is not straightforward to find the solution to this problem
which can be written as

vθ,2(r,z) = −
+∞∑
k=1

+∞∑
j=1

1

β2
j + γ 2

k

Ukj (vθ,0,ψ1)qk(z)fj (r), (47)

where

Ukj (vθ,0,ψ1) = 〈〈U (vθ,0,ψ1),qk〉z,fj 〉r

= −
∫ 1

ri
ro

∫ h
r0

0
r2vθ,0 (r,z)

[
vr,1 (r,z)

∂fj (r)

∂r
qk (z) + vz,1 (r,z)

∂qk (z)

∂z
fj (r)

]
drdz

= −
+∞∑

l,m,n=1

vθ,0l
vr,1mn

(∫ 1

ri
ro

r2fl (r) fm (r)
∂fj (r)

∂r
dr

) (∫ h
ro

0
xl (z) gn (z) qk (z) dr

)

−
+∞∑

l,m,n=1

vθ,0l
vr,1mn

(∫ 1

ri
ro

r2fl (r) fm (r) fj (r) dr

) (∫ h
ro

0
xl (z) gn (z)

∂qk (z)

∂z
dr

)
. (48)

III. RESULTS AND DISCUSSION

A. Azimuthal flow field

As contribution at leading order to the azimuthal flow field
is expressed as a single series, the rate of convergence of the
series solution (42) is first studied. Due to corner singularities
for velocity at the edges of the rotating disk, related to the
nonphysical jump in the Dirichlet boundary conditions for the
velocity, the series solution needs to be approximated with a
truncation number near the floor much larger than that required
for finding the velocity along the liquid surface [21]. Corner
singularities stand as a topic extensively addressed by many
authors in the literature devoted to numerical issues (see, e.g.,
Refs. [30,31]). In this case, our aim is to find an analytical
solution without resorting to the use of a local analytical
solution [32,33] or to Lanczos factors for accelerating conver-
gence of the series [11]. Fortunately, in the present situation
of an end-driven annular flow, the gap between the rotating
floor and the stationary side walls is the natural length scale
allowing the corner singularities to be processed. Because one
fundamental aim of the present paper is to develop an analytical
formulation with no compromise with the physical situation,

a linear velocity profile is prescribed as a relaxed boundary
condition across a nondimensional gap width, s:

vθ (r,z) =
(
r − ri

ro

)(
ri

ro
+ s

)
s

for
ri

ro

< r <

(
ri

ro

+ s

)
and z = 0, (49)

vθ (r,z) = r

for

(
ri

ro

+ s

)
� r � (1 − s) and z = 0, (50)

vθ (r,z) = (1 − r)(1 − s)

s

for (1 − s) < r < 1 and z = 0. (51)

Here the jump in the swirl velocity vθ is replaced by a jump
in ∂vθ

∂r
and, doing this, the linear Couette profile so imposed

along the gap is thought of as physically relevant to model
the conditions of lubrication between the side walls and the
rotating floor. Note that an alternative approach to treat the
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FIG. 2. (Color online) Truncation threshold N required to
achieve an absolute precision better than ε = 10−3 on the calculated
azimuthal velocity at leading order, vθ,0(r,h/ro), as a function of
the normalized distance from the rotating floor z = z′h/ro, with
(�, s = 0.004) and without (�, s = 0) relaxed boundary conditions
at the corners.

corner singularities is proposed by Lopez and Chen, which
consists in using a boundary layer function [30,31].

Figure 2 shows the relationship between the vertical
distance measured from the rotating floor and the truncation
threshold N required so correction by the (N + 1)th term is less
than ε = 10−3 with and without corner singularities and for a
reference channel geometry (ri/ro = 0.8 and h/ro = 0.2). As
expected, the convergence rate is faster when the relaxation
method based on use of a prescribed profile along the gaps
is applied, since no more than 50 terms are necessary to
find a solution with target precision near the rotating floor.
Note that one term is sufficient to obtain the required level of
precision at the vicinity of the liquid surface. The search for an
analytical solution to this complex flow and the mathematical
strategy applied here are enhanced by this significant property.
Now, if we consider nonrelaxed boundary conditions, the radial
profiles of vθ,0 at different depths are reported in Fig. 3 for the
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FIG. 3. (Color online) Azimuthal velocity profiles at leading
order vθ,0(r,z) as a function of the normalized distances r and z

where s = 0 and geometrical aspect ratios ri/ro = 0.8 and h/ro = 0.2
(line curves). Comparison with profiles computed with boundary
conditions relaxed by gap conditions (• s = 0.001, � s = 0.002,
and � s = 0.004).

geometry under consideration and for a truncation threshold
based on the first 200 terms.

As expected, while the radial profiles are close to a parabolic
shape near the air-water interface, they become more linear
near the bottom of the channel due to the linear distribution of
momentum imposed by the no-slip boundary condition. Still,
in Fig. 3, it is also worthy to note that reducing the velocity
scale with the vertical elevation (vθ,0 ∼ 1 at z ∼ 0.01 h

ro
while

vθ,0 ∼ 0.1 at z ∼ h
ro

) is well explained by the conservation of

the axial angular momentum, d[r vθ ]
dt

= 0, in the control volume
defined as [0 . . . z] × [ri . . . ro]. As a matter of fact, the source
of angular momentum, typically the viscous torque along the
rotating end wall, is balanced by the resisting viscous torques
along the inner and outer side walls.

Introduction of smoothing boundary conditions (49)–(51)
is expected to modify these vθ,0 profiles. Consequently, as
demonstrated by Eq. (43), we also expect gap size, s, to
have an impact on the meridional flow pattern, which solely

TABLE I. Evaluation of maximum and minimum values of the parameter Rs along the velocity profiles for different values of both the
channel depth z/(h/ro) and the gap s (horizontal and vertical aspect ratios: ri

ro
= 0.8 and h

ro
= 0.2). Truncation threshold of the vθ,0(r,z) series

is set to 200 terms.

Rs

s = 0.001 s = 0.002 s = 0.004 s = 0.008 s = 0.01

z/(h/ro) Min Max Min Max Min Max Min Max Min Max

0.01 0.9373 1.0471 0.8040 1.1813 0.5709 1.5003 0.3411 1.2984 0.2821 1.2431
0.1 0.9991 1.0000 0.9965 1.0000 0.9863 0.9998 0.9486 0.9994 0.9233 0.9990
0.2 0.9998 1.0000 0.9990 0.9999 0.9962 0.9997 0.9851 0.9988 0.9770 0.9980
0.5 0.9999 1.0000 0.9998 0.9999 0.9990 0.9994 0.9961 0.9976 0.9940 0.9963
1 1.0000 1.0000 0.9998 0.9998 0.9993 0.9993 0.9972 0.9974 0.9957 0.9959
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TABLE II. Evaluation of the second-order correction to the maximum magnitude and related location of surface azimuthal velocity vθ as a
function of vertical aspect ratio (Re = 100 and ri/ro = 0.8).

Order 0 Order 2 Relative deviation

h/ro Position Magnitude Position Magnitude Position Magnitude

0.3 0.897858522 0.0204196 0.897950995 0.0204054 0.01% 0.07%
0.2 0.898206786 0.098269 0.898152027 0.0982326 0.01% 0.04%
0.1 0.899955455 0.44899 0.899517549 0.44888 0.05% 0.02%
0.06 0.903311568 0.73389 0.903089666 0.73373 0.02% 0.02%

depends on vθ,0(r,z). As illustrated in Fig. 3, the azimuthal
profiles would appear to be sensitive to a growing value of
s only at the vicinity of the inner and outer corners where
smoothing conditions (49)–(51) apply. However, the s gap
impact on azimuthal profiles in this area rapidly vanishes
when it moves away from the rotating end floor as illustrated
in Fig. 4. This is confirmed by a detailed inspection of the
indicator, Rs = vθ,0(r,z,s)

vθ,0(r,z,s=0) , introduced to quantify deviation
from the nonrelaxed case as a function of the s parameter;
Rs is therefore defined as the ratio between two azimuthal
velocities at leading order: a first one calculated with the
linear profile along the gap s, vθ,0(r,z,s), and the second one,

vθ,0(r,z,s = 0), calculated with a jump in the velocity at the
corners. Minimum and maximum values of Rs are determined
all along the profiles for various s values. Table I shows that,
with smoothing boundary conditions, significant discrepancies
in vθ,0(r,z) only occur at the very vicinity of the rotating wall
(z < 0.1h/ro). The no-gap case is also sometimes overshot by
a solution with a smoothed boundary condition (z = 0.01h/ro

and s > 0.01) in the neighborhood of the corner singularities
(results not shown here). To maintain a regular behavior of
vθ,0, a very low value of s = 0.004 has been often chosen
hereafter in this paper, thus ensuring a more physical picture
of existing annular flow devices (see, e.g., Ref. [15]).

(a) (b)

FIG. 4. (Color online) Sensitivity of azimuthal velocity profiles at leading order vθ,0(r,z) to the s gap relaxation parameter for two different
depths (z = 0.01h/ro and z = 0.1h/ro): (•) s = 0, (�) s = 0.002, (�) s = 0.004, (�) s = 0.006, and (�) s = 0.01. (A) Near the inner side
wall (r ∼ ri

ro
). (B) Near the outer side wall (r ∼ 1). Geometry: ri/ro = 0.8 and h/ro = 0.2.
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TABLE III. Sensitivity to Reynolds number, Re, of the impact
of the second-order correction upon the maximum magnitude and
related location of surface azimuthal velocity vθ (aspect ratios:
ri/ro = 0.8 and h/ro = 0.2).

Max. Relative Max. Relative
Re location deviation magnitude deviation

0 0.898206953 — 0.0982684 —
10 0.898206232 8 × 10−5% 0.0982702 0.002%
100 0.898153074 0.006% 0.0982424 −0.026%
200 0.897991332 0.024% 0.0981466 −0.124%

Finally, as shown by the regular perturbation (38), the
azimuthal flow at leading order can be corrected by the
solution at second order (47). By anticipating the following
and assuming that the solution of Eq. (43) discussed in
Sec. III B is available, Table II shows that the correction at
second order is not really significant for a reference horizontal
aspect ratio (ri/ro = 0.8) and different vertical aspect ratios
h/ro ranging from 0.06 to 0.3. Position and magnitude of the
maximum values of velocity profiles along the liquid surface
are compared with and without the second-order correction at
Re = 100. Maximum relative deviations are less than 0.05%
and 0.07% for both indicators, respectively. Keeping the same
horizontal aspect ratio, ri/ro = 0.8, but now considering a
typical vertical aspect ratio of h/ro = 0.2, dependence of
the azimuthal flow to the correction at second-order is also
estimated in Table III when the Reynolds number is made
to vary. The relative deviation in azimuthal velocity along
the liquid surface appears to be less than 0.124% throughout
the range of Re-numbers extending from 0 to 200. Note that
this result is confirmed from DNS simulations previously
performed by Lopez and Hirsa (here referred to as LH98)
using the same base geometry [16].

The azimuthal flow along the liquid surface as analytically
calculated up to second order is finally validated by comparison
with experimental data from Manheimer and Schechter [25]
and with DNS calculations from LH98 [16], both of which
are obtained with the same geometrical aspect ratios (h/ro =
0.13 and ri/ro = 0.8) at Re = 146. Results are illustrated in
Fig. 5. Note that our model tends to slightly underestimate
experimental values while DNS calculations tend to slightly
overestimate them.

B. Axisymmetric meridional flow field

The first-order solution of Eq. (43) gives the stream function
ψ1(r,z), using the relationship (45) between stream function
and vorticity coefficients obtained as a projection of the
differential equation (II E 2) on the eigenfunctions fj and
gk . Solutions ω1(r,z) and ψ1(r,z) are implicitly validated from
the second-order correction analyzed in the previous Sec. III A
focusing on the azimuthal flow field, vθ (r,z). Convergence tests
are also performed (not shown here) to demonstrate that the
stream function is no longer dependent on the gap s, provided
it is small enough.

To determine a channel design which best fits needs for
applications involving, for instance, a flow control along
the liquid surface at the top of the cavity [7,15,34,35], the

r

 v θ
(r

,z
)

FIG. 5. (Color online) Comparison along a free liquid surface
among (−) the azimuthal velocity profile, as calculated at O(Re2) in
this paper, vθ0 (r,h/ro) + Re2vθ2 (r,h/ro); () the azimuthal velocity,
vθ (r,h/ro), as calculated from DNS by LH98 [16]; and (◦) the velocity
as measured by Manheimer and Schechter [25], for the following
parameters: Re = 146, ri/ro = 0.8 and h/ro = 0.13, s = 0.004).

influence of geometrical aspect ratios on the meridional
flow is investigated. As represented in Fig. 6, the ratio of
the maximum radial velocity over the maximum azimuthal
velocity, vrmax/vθmax , is calculated along the liquid surface for
different vertical aspect ratios, h/ro ∼ [0.06 − 0.3], with a
unit Reynolds number (Re = 1), a horizontal aspect ratio,
ri/ro = 0.8, and a gap, s = 0.004. These conditions are the
ones of the configuration calculated in LH98 [16] if h/ro =
0.2. Beyond the nonmonotonic distribution of vrmax/vθmax , it is
worthwhile to note that an optimized ratio, vrmax/vθmax ∼ 10−3,
at the liquid surface is achieved for a vertical aspect ratio

FIG. 6. (Color online) Ratio of maximum radial velocity over
maximum azimuthal velocity, vrmax/vθmax , along the liquid surface,
as a function of vertical aspect ratio for Re = 1, ri/ro = 0.8, and
s = 0.004. Horizontal and vertical dotted lines are drawn to identify
the flow pattern calculated in LH98 [16].
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FIG. 7. (Color online) Maximum radial and azimuthal compo-
nents of the velocity along the liquid surface, vrmax (right axis) and
vθmax (left axis), respectively, as a function of the Reynolds number.
Comparison between velocities at successive O(Ren) orders (n = 0,
1, 2) and DNS calculations of LH98 [16] for ri

ro
= 0.8, h

ro
= 0.2, and

s = 0.004.

h/ro ∼ 0.25, a value which is surprisingly closed to pioneering
configuration of Manheimer and Schechter with h/ro = 0.2
[25]. A second point to notice is that for a vertical aspect
ratio h/ro = 0.2, the latter ratio (vrmax/vθmax ∼ 0.92 × 10−3)
is found to be of same order of magnitude as the one
found in LH98 (vrmax/vθmax ∼ 0.6 × 10−3, [16]). Nevertheless,
a difference remains between these two values, which suggests
that the ratio vrmax/vθmax is highly sensitive to the way the gap
s is processed [see, e.g., the impact of the gap upon the profile
vθ (r): Fig. 4].

1. The weakly nonlinear regime

The linear (Stokes) regime is expected in the range:
Re ∼ 0–250. The ability of the present model to address the
weakly nonlinear regime is estimated from a comparison with
DNS data extracted from LH98 configuration [16]: ri

ro
= 0.8,

h
ro

= 0.2. The Re dependence of the maximum values of
the radial and azimuthal velocities along the liquid surface
is shown in Fig. 7, namely the azimuthal (Stokes) flow at
zeroth order, vθ,0max ; the radially inward flow as calculated at
O(Re) order, Re vr,1max ; and the azimuthal flow as corrected
by the solution at O(Re2) order, vθ,0max + Re2 vθ,2max . A first
discrepancy between the first-order solution and DNS data
can be made evident for Re beyond a critical value, Rec ∼
30. As for the azimuthal flow, the second-order correction is
found fruitful since a first significant discrepancy with DNS
results is made evident from Rec ∼ 800 (to be compared to
Rec ∼ 250 for the Stokes flow). Higher-order corrections are
not considered because this paper focuses on the calculation
of the (laminar) meridional flow at leading order.

2. Moffatt eddies

Contour plots of the stream function ψ1(r,z) are reported in
Figs. 8 and 9. Note here that the streamlines are represented as
a first-order correction without dependence on the Reynolds

(a) (b)

(c) (d)

FIG. 8. (Color online) Streamlines for different values of the
vertical aspect ratio with the following horizontal aspect ratio and gap
width: ri/ro = 0.8 and s = 0.004. (a) h/ro = 0.06. (b) h/ro = 0.14.
(c) h/ro = 0.19. (d) h/ro = 0.3. All values along the streamlines
when multiplied by 106 give the stream function ψ1.

number. Nevertheless, based on a previous analysis carried out
on sensitivity of the azimuthal flow to the Reynolds number
(Tables II–III), observations on the meridional flow can be
consistently considered robust even for Re ∼ 10.

As the literature leads us to expect, two Moffatt eddies
are found in some of our configurations, located at the two
lower corners. Whatever the values of the aspect ratios,
the vorticity of corner eddies is systematically found to be
positive, contrary to what is dictated by centrifugation. A
close inspection of Figs. 8 and 9 shows that small values of
the vertical and horizontal aspect ratios enhance the ability of
corner discontinuities to behave as a strong localized source
of vorticity, especially when the horizontal aspect ratio (radial
extent) is small enough [Figs. 9(c)–9(d)]. The case of a full
cylinder is asymptotically close to our configuration when
ri

r0
→ 0. As mentioned in the experimental work by Spohn

et al. [2], the vibrations can change the flow pattern due to
the modified gaps between the rotating floor and the stationary
side walls. It is therefore not so surprising here to note how
the presence or the absence of Moffatt eddies can affect the
overall topology of the recirculating flow (Figs. 8 and 9).
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(a)

(b)

(c)

(d)

FIG. 9. (Color online) Streamlines for different values of the
horizontal aspect ratio and a fixed vertical aspect ratio, h/ro = 0.2:
(a) ri/ro = 0.8 and s = 0.004, (b) ri/ro = 0.6 and s = 0.008, (d)
ri/ro = 0.4 and s = 0.012, (d) ri/ro = 0.1 and s = 0.018. All values
along the streamlines when multiplied by 106 give the stream
function ψ1.

3. Influence of the vertical aspect ratio h/ro

If channel width is maintained constant (i.e., ri/ro = 0.8),
changes in flow patterns with respect to h/ro are not trivial but
whatever the value of the vertical aspect ratio, the flow remains
unconditionally radially inward along the liquid surface. It is
worthwhile to note that the aspect ratio h/ro determines the
volume of fluid driven by the meridional flow. For a given
Re number and a constant horizontal aspect ratio, increasing
the vertical aspect ratio h/ro results in a larger volume of
fluid being moved and hence a weaker overall meridional flow
(Fig. 8). This can be explained by the centrifugal force along
the rotating end wall which behaves as a source of momentum
for the meridional flow. Near a smallest value of the vertical
aspect ratio, h/ro = 0.06 [Fig. 8(a)], the configuration can be
seen as particularly flattened: in addition to Moffatt eddies at
the corners, a counterclockwise corotating vortex pair with
axis along the radial direction becomes evident, embedded in
a recirculating core flow whose negative vorticity is induced
by centrifugation in the meridian plane. Here, due to the
growing importance of curvature effects, the symmetry of the
2D recirculating flow, −→v⊥, with respect to the vertical median
axis of the cross section (r = ri

ro
+ ro−ri

2 ro
) is demonstrated to be

definitely broken for a cylindrical geometry; this can be seen
from the values taken by the stream function at the center
of the vortices. Such a symmetry is only made possible for

the configuration of a straight channel with a moving floor.
The presence of the counterclockwise vortex pair is consistent
with a constructive interaction between centrifugation and
the secondary vortices induced by viscosity from the Moffatt
eddies at the corners.

When the vertical aspect ratio h/ro is large enough,
previous symmetry tends to be recovered [Figs. 8(b)–8(d)].
Also mentioned in the literature on full cylinders, a single
cell in the core of the meridional flow with a negative vorticity
[see, e.g., Fig. 8(b) for h/ro = 0.14] is not the only flow pattern
observed.

For an aspect ratio as large as h/ro = 0.19, a stratified flow
pattern made from a vertical stack of two counter-rotating
vortical cells is revealed [Fig. 8(c)]. According to Eq. (5),
the vorticity is generated by a nonlinear forcing term. At
O(Re) order, this forcing term is nonlinearly dependent on
the azimuthal velocity [see Eq. (43)] and, consequently, it is
not straightforward to interpret the sign of the vorticity from
a vertical dependence of the azimuthal velocity profiles. To
explain the stack of two vortical cells with opposite vorticities,
it is interesting to consider Hills [10], who demonstrated for
a semi-infinite cylinder that a stack of alternate eddies can be
present even when inertia is small.

4. Influence of the horizontal aspect ratio ri/ro

and curvature effects

A constant depth is now considered where h/ro = 0.2. The
horizontal aspect ratio, ri/ro, is made to decrease (ri/ro =
0.8 → 0.1), while the outer diameter is maintained constant.
The consequent enlargement of the annular channel modifies
the flow pattern markedly, as demonstrated in Figs. 9(a)–9(d).

Not surprisingly, the vortex of positive vorticity, already
evident near the rotating floor in Fig. 8(c) for ri/ro = 0.8
and h/ro = 0.19, is again observed in Fig. 9(a) for ri/ro =
0.8 and h/ro = 0.2. However, for smaller values of the
horizontal aspect ratio, ri/ro = 0.6 → 0.1 [Figs. 9(b)–9(d)],
it is progressively replaced by two Moffatt eddies arising at
lower corners. From these observations, it can be inferred that
when ri

ro
is large enough [small gap: ri

ro
∼ O(1)]:

(i) the previous symmetry of the 2D meridional flow with
respect to the vertical median axis is recovered, as illustrated by
Moffat eddies of same magnitude at the left and right corners
and as expected since prescribed azimuthal velocities become
asymptotically of the same order. This point is clearly checked
in Fig. 9(b) [in contrast with Fig. 9(d)].

(ii) Moffatt eddies are merging, giving rise to one single
cellular pattern of positive vorticity, confined near the rotating
floor [Fig. 9(a)].

When the cavity is stretched more horizontally (small
value of ri/ro), the growing influence of curvature effects,
as revealed from previous breakup of symmetry within the
cross section, is again observed: the point of maximum
vorticity in the core flow moves radially outward from the
middle axis of the cavity. This is the result of the linear
increase of centrifugation along the radial direction. As
observed in Figs. 9(c)–9(d), the latter symmetry breakup is also
demonstrated by the values of the stream function at corner
singularities. As expected, due to a large jump in the boundary
conditions for velocity at the right corner, the Moffatt vortex
induced by viscosity significantly perturbs the main flow.
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Although both the radial and vertical aspect ratios, ri/ro

and h/ro, have a significant effect on the flow pattern, they do
not have the same effect: The enhancement of curvature effects
as induced by radially inward enlargement of the channel does
not drive the presence of two stacked counter-rotating vortical
cells, as previously observed when changing depth.

Here again, the flow along the liquid surface is consistently
found radially inward whatever the value of the horizontal
aspect ratio. This suggests that, provided the Reynolds number
is not larger than 100 typically, a fair approximation of the
meridional flow can always be seen as prescribed by mass
conservation: the centrifugal force moves the fluid radially
outward along the rotating floor and a condition of zero flow
rate makes the flow radially inward along the liquid surface,
irrespective of the cellular pattern within the core flow.

IV. CONCLUSION

A closed-form solution of an axisymmetric swirling flow in
an annular channel, topped with a free surface, has been found,
based on a regular asymptotic expansion where Re is a small
parameter. With the cylindrical geometry considered, such a
flow is made up of two weakly coupled components: a 1D
azimuthal flow, �vθ (r,z), and a 2D meridional flow, �v⊥ (r,z),
respectively. Both are explicitly derived as double series of
orthogonal eigenfunctions.

Two points should be mentioned: First, the asymptotic ap-
proximation is valid over a larger range than initially expected,
far beyond the Stokes limit and, second, the azimuthal and
meridional flows are derived from problems at even and odd
orders, respectively. This latter feature accounts for how the
azimuthal shear flow and the meridional flow interact. It is also
demonstrated that the correction at O(Re2) to the (azimuthal)
Stokes flow is not significant provided that Re ∼ 100 at
most. In the weakly nonlinear regime (Re ∼ 100–800), it is
demonstrated to estimate fairly well the azimuthal velocity.

The analytical solution also reveals how the meridional
flow patterns can be drastically modified by a change in the
horizontal and vertical aspect ratios. As expected from the
literature, it is also disrupted by the presence of Moffatt eddies
located at corner discontinuities. Due to the linear dependence
of the centrifugal force on the radial coordinate, a significant
enlargement of the cavity (smaller value of the horizontal
aspect ratio) leads to a growing role of the curvature effects
and, hence, a symmetry breakup of the 2D recirculating flow,−→v⊥, in the meridian cross section. But for a suitable value of
the horizontal aspect ratio, close to unity (ri/ro ∼ 0.8), an
accurate monitoring of the vertical aspect ratio allows one
single vortical flow to be recovered across the channel. More
specifically, a significant dependence of this flow pattern on the
vertical aspect ratio can be illustrated by three typical cellular
patterns which illustrate the competition between the overall
influence of centrifugation and the local influence of Moffatt
eddies:

(i) a counterclockwise corotating vortex pair with axis
along the radial direction, as observed for a sufficiently small
vertical aspect ratio,

(ii) a single vortical cell which prevails as a core flow
throughout the cross section, whose negative vorticity is driven
by the centrifugal force (the latter is responsible for a radially

outward flow along the rotating floor and, therefore, for a
radially inward flow along the free surface due to mass
conservation),

(iii) a counter-rotating vortex pair with axis along the
vertical direction with the counter-clockwise vortex located
in the upper part of the cavity.

Whatever the flow pattern, its zero flow rate always involves
a radially inward flow along the liquid surface.

Our analytical method is proved to take into account a
variety of boundary conditions (rotating floor, free surface, and
stationary walls). Provided that the swirling flow considered is
axisymmetric, the extension of the present method to the case
of a full cylinder is almost straightforward due to the Neuman
condition which holds for ψ along the vertical axis. This is
valid irrespective of the boundary conditions at the cavity ends
(sliding or rotating covers).

This generic ability of our analytical method is essentially
due to the introduction of an integral boundary condition
for the vorticity ω, which allows the boundary conditions
in excess for ψ to be efficiently redistributed to ω along
the side walls and the rotating floor, where no natural
boundary condition can be proposed for the vorticity. The
problem related to corner discontinuities is also appropriately
tackled with this method, which is based on the extensive
use of dot products (Appendix A). Analytical series we have
introduced can be always integrated and the viscous impact of
boundary discontinuities upon the flow can be described. All
analytical series involved exhibit a rather fast convergence rate,
especially when a small lubricated gap is introduced in order to
comply with boundary conditions near corners. Introduction
of a lubricated gap is probably more realistic than dealing
with corner singularities as currently done in the literature.
Sensitivity of the azimuthal Stokes flow to gap width has been
investigated. A future study could look into how the meridional
flow can be affected by small to moderate gaps, using, for
instance, methods developed by Lopez and Chen [31], Piva
and Meiburg [36], or Yu et al. [37,38].

To conclude, the present study is intended not only for
comparison with numerical codes in asymptotic conditions
but also for monitoring processes based on a confined swirling
flow with a free surface above. Present modeling can be
extended to surface viscosimetry of 2D assembly of surfactants
molecules [7,15,34,35]) in densified conditions (Appendix A).
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APPENDIX A: THE CASE OF A CONTAMINATED
LIQUID SURFACE

The planar liquid surface is contaminated by surfactant
molecules. As shown in Ref. [16], a strong secondary flow
is required to generate a surface velocity with a significant
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radial component and therefore a nonuniform distribution of
surfactant on the interface. Since the flow regime in this paper
is at most weakly nonlinear, the surface dilatational viscosity,
the Marangoni effect as well as the radial gradient in surface
shear viscosity are disregarded.3 A (uniform) surface shear
viscosity μs is introduced by way of a Boussinesq surface
fluid model [39] with the following jump momentum balance
at the liquid surface (z = h

ro
and ri

ro
� r � 1):

∂vθ

∂z
=

(
1 − ri

ro

)
Bo

∂

∂r

[
1

r

∂ (rvθ )

∂r

]
, (A1)

with Bo, the Boussinesq number defined as Bo = μs

μ(ro−ri )
.

Note that the gaseous atmosphere is not supposed to yield
a significant shearing at the liquid surface [16].

The model to solve is now written:

E2(vθ ) = Z(vθ ,ω,ψ), (A2)

completed with the boundary conditions (8)–(10) and (A1).
The source term Z either cancels at zeroth order or is written
as Z = U (vθ,0; ψ1) at O(Re2).

Equation (A2) is projected onto the set of eigenfunctions
{qk(z)} [defined from (28)], using the dot product (33) along
the z axis,

∂2vθk

∂r2
+ 1

r

∂vθk

∂r
− vθk

r2
+

〈
∂2vθ

∂z2
,qk

〉
z

= Zk (vθ ,ω,ψ) , (A3)

where Z (vθ ,ω,ψ) = ∑+∞
k=1 Zk (vθ ,ω,ψ) qk (z). By making

use of the second Green’s identity, the latter dot product in
(A3) is written:

〈
∂2vθ

∂z2
,qk

〉
z

=
〈
vθ ,

∂2qk

∂z2

〉
z

+
[
qk

∂vθ

∂z
− vθ

∂qk

∂z

] h
ro

0

.

Considering that ∂2qk

∂z2 = −γ 2
k qk , and taking into account (28)

as well as the boundary conditions (10), (26), and (27), it can
be demonstrated that:〈
∂2vθ

∂z2
,qk

〉
z

= −γ 2
k vθk

+
√

2ro

h
(−1)k+1 ∂vθ

∂z

∣∣∣∣
z= h

ro

+
√

2ro

h
γkr.

Hence, an updated form of (A3) can be written as:

E2
r

(
vθk

) − γ 2
k vθk

= Zk(vθ ,ω,ψ) −
√

2ro

h
γkr +

√
2ro

h
(−1)k

∂vθ

∂z

∣∣∣∣
z= h

ro

.

Each term vθk
is now projected on the second set of the

eigenfunctions {fj } [as defined from (25)], using the dot

3Note that these conditions are naturally fulfilled for a highly
densified regime (near the maximum packing concentration) or a
dilute regime with a large-enough surface diffusivity of the surfactant
molecules (small surface Peclet number based on the radial velocity).

product (32) along the r axis:

〈
E2

r

(
vθk

)
,fj

〉
r
− γ 2

k vθkj
= Zkj (vθ ,ω,ψ) −

√
2ro

h
γk〈r,fj 〉r

+
√

2ro

h
(−1)k

〈
∂vθ

∂z

∣∣∣∣
z= h

ro

,fj

〉
r

,

(A4)

where Zk(vθ ,ω,ψ) = ∑+∞
j=1 Zkj (vθ ,ω,ψ)fj (r) and

〈E2
r (vθk

),fj 〉r = −β2
j vθkj

. The latter expression can be
demonstrated from the second Green’s identity, considering
that E2

r (fj ) = −β2
j fj [see Eq. (22)] and taking into account

(23) as well as the boundary conditions (8) and (9) and then
(23) and (24). In a similar way, it can be demonstrated that

〈
∂vθ

∂z

∣∣∣∣
z= h

ro

,fj

〉
r

=
(

e

ro

)
Bo

∫ 1

ri
ro

rvθ

(
r,

h

ro

)
E2

r

(
fj

)
dr

or, equivalently,

〈
∂vθ

∂z

∣∣∣∣
z= h

ro

,fj

〉
r

= −
(

e

ro

)
Boβ2

j vθj

(
h

ro

)
,

due to the fact that E2
r (fj ) = −β2

j fj . The coefficients vθj
( h
ro

)
in the latter expression can be expanded in a single series as

vθj

(
h

ro

)
=

+∞∑
l=1

vθlj
ql

(
h

ro

)
=

√
2ro

h

+∞∑
l=1

(−1)l+1vθlj
.

A final expression of (A4) is written as:

(
β2

j + γ 2
k

)
(−1)kvθkj

+ β2
j

2ro

h

(
e

ro

)
Bo

+∞∑
l=1

(−1)lvθlj

= (−1)k
[
−Zkj

(vθ ,ω,ψ) +
√

2ro

h
γk〈r,fj 〉r

]
, (A5)

from which a countable infinite set of vectorial equations
can be written and therefore truncated (k = 1 . . . M and
j = 1 . . . N ) to get the required coefficients vθkj

. Hence, the
latter expression (A5) is written according to the formulation:(

Aj + β2
j

(
e

ro

)
2

h
Bo�M

) (
vθkj

−→
uj

) = S
−→
uj , for 1 < j < N,

with N the number of columns, the matrix of coefficients to be
calculated, vθkj

= [(−1)kvθkj
]{k=1...M,j=1...N}, the square matrix

of size M × M , Aj ,

Aj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

β2
j + γ 2

1 0 . . . . . . 0

0
. . .

. . .
...

...
. . . β2

j + γ 2
k

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 β2

j + γ 2
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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the set of N vectors, {−→uj }1<j<N ,

−→
u1 =

⎛
⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎠,

−→
u2 =

⎛
⎜⎜⎜⎜⎝

0
1
0
...
0

⎞
⎟⎟⎟⎟⎠, . . . ,

−→
uN =

⎛
⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎠,

the N × M source matrix S with coefficients, Skj =
(−1)k[−Zkj (vθ ,ω,ψ) +

√
2ro

h

(2k−1)πro

2h
〈r,fj 〉r ], and, finally,

the square unit matrix, �M , of size M × M:

�M =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 . . . . . . . . . 1
...

. . .
...

1 . . . 1 . . . 1
...

. . .
...

1 . . . . . . . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

1. Surface flow at leading order

The velocity along a uniformly contaminated liquid surface
is calculated at zeroth order (Stokes regime) following the
previous steps with vθk

= vθ,0k
and Zk (vθ ,ω,ψ) = 0. A

comparison with the experimental measurements by Hirsa
et al. [14] is displayed in Fig. 10 for ri

ro
= 0.77, h

ro
= 0.11,

Bo = 0.027, and Re = 250. Despite the rather large value of the
Reynolds number (Stokes regime is eventually questionable,
see Fig. 6), a fair agreement is observed in the central area
of the liquid surface where velocity scale is recovered. The
significant departure between the velocity profiles especially
near the side walls could be explained by the radially inward
convection of surfactants along the liquid surface in the
experiments of Hirsa et al. [14].

FIG. 10. (Color online) Comparison along the liquid surface
between (�) the experimental data of Hirsa et al. [14] and (–)
the azimuthal velocity, vθ,0(r,h/ro), as calculated at zeroth order
[Z = Zk (vθ ,ω,ψ) = 0 in (A2) and (A3)] with ri

ro
= 0.77, h

ro
= 0.11,

Bo = 0.027, and Re = 250.

2. Considerations on the meridional flow

By considering sequentially the relations (1) and (20), the
radial component of the jump momentum balance at z = h

ro
,

∂vr

∂z
=

(
1 − ri

ro

)
Bo

∂

∂r

[
1

r

∂ (rvr )

∂r

]
, (A6)

the differential equation (6), and, finally, the fact that

∂vz

∂r

∣∣∣∣
z= h

ro

= 0,

due to the impermeability condition, vz(r,z = h
ro

) = 0, it can
be demonstrated that a generalized expression of the vorticity
at the liquid surface is written:

ω

(
r,z = h

ro

)
=

(
ri

ro

− 1

)
Bo

∂2

∂r∂z

[
1

r

∂ (rψ)

∂r

]
z= h

ro

. (A7)

As made evident from the latter expression, the analytical
method developed in this paper is concerned with the dilute
regime as a first asymptotic case for which the influence
of surfactants becomes negligible (Bo → 0). The boundary
conditions (18)–(20) are consistently recovered from (A6)
and (A7).

As a second asymptotic case, the highly densified regime
can be distinguished when the molecular area of the surfactant
molecules is so small that Bo → ∞. Then the jump balance
at the surface (A1) simplifies accordingly, ∂

∂r
[ 1
r

∂(rvθ )
∂r

] = 0,
which finally delivers a no-slip condition, vθ = 0, owing to
end conditions at the side walls. Due to continuity equation,
∂(rvr )

∂r
+ ∂(vθ )

∂θ
= 0, a second no-slip condition is found for the

radial velocity, vr = 0 along the liquid surface.
The liquid surface therefore behaves as a wall with the

additional boundary condition,

∂ψ

∂z
= 0 at z = h

ro

along
ri

ro

< r < 1, (A8)

completed by (11)–(13). The integral vorticity condition (34)
used in this paper to get the vorticity field is now written as:

〈〈,ω1〉〉r,z = 0.

Based on a new ωls
1,j sequence assumed to be known along the

liquid surface, the condition

lim
z→ h

ro

ω (r,z) = ωls
1 (r) =

+∞∑
j=1

ωls
1,j fj (r)

must be added to the conditions (35)–(37). And following
the same route as the one developed in Appendix B, a
fourth scalar function ls is required in order to check
homogeneous boundary conditions everywhere except along
the liquid surface.

For any values of Bo, the expression (A7) cannot be
simplified and introduces an additional coupling between
the vorticity and the stream function at the liquid surface.
This prevents us to gain benefit from the analytical strategy
developed in this paper, essentially based on the fact that the
differential equations (5) and (6) and their associated boundary
conditions are not two-way coupled at O(Re(2n+1)) orders.
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Clearly, the calculation of the O(Re)-order correction to
the Stokes flow with a contaminated liquid surface remains
beyond the scope of this paper.

APPENDIX B: DETERMINATION OF ω
f
j , ωi

k, ωo
k

SEQUENCES AT O(Re)

The coefficients ω
f

1,j , ωi
1,k , and ωo

1,k are determined by a
proper use of integral boundary condition (34):

〈〈,ω1〉〉r,z = −〈|h,∂ψ

∂z
| h

ro

〉r , (B1)

with well-chosen scalar functions . To this end, three
different kind of functions, f , i , o, are defined where
the boundary conditions differ from each other. First, f

can be introduced in order to check homogeneous boundary
conditions everywhere except along the rotating floor:

f = δ� (r − rs) = δ (r − rs)

r
, for

ri

ro

< r < 1

and z = 0, (B2)

where δ� is the extended Dirac function over this
surface.

By inspiring us from the path to get the solution (44) for
the vorticity ω1, one gets here:

f (r,z; rs) =
+∞∑
j=1

+∞∑
k=1

1

α2
k + β2

j

√
2ro

h
αkgk(z)fj (r)fj (rs).

(B3)

Following the same strategy, the functions i and o

are required for taking into account homogeneous boundary

conditions everywhere except along the inner and outer side
walls where:

i = δ� (z − zs) = δ (z − zs) ,

if r = ri

ro

and 0 < z <
h

ro

,

and o = δ� (z − zs) = δ (z − zs) ,

if r = 1 and 0 < z <
h

ro

.

Solutions i and o are then found written as:

i(r,z; zs) =
+∞∑
j=1

+∞∑
k=1

∂fj

∂r

∣∣
ri
ro

α2
k + β2

j

fj (r)gk(z)gk(zs), (B4)

o(r,z; zs) = −
+∞∑
j=1

+∞∑
k=1

∂fj

∂r

∣∣
1

α2
k + β2

j

fj (r)gk(z)gk(zs). (B5)

Then, considering the term on the right-hand side of
Eq. (B1), it can be recalled that:

f

(
r,

h

ro

; rs

)
= i

(
r,

h

ro

; zs

)
= o

(
r,

h

ro

; zs

)
= 0,

which leads to:

0 = 〈f | h
ro

,
∂ψ

∂z
| h

ro

〉r = 〈i | h
ro

,
∂ψ

∂z
| h

ro

〉r

= 〈o| h
ro

,
∂ψ

∂z
| h

ro

〉r .
Thus, injecting expression (44) and sequentially (B3), (B4),
(B5), into (B1) leads to:

+∞∑
j=1

+∞∑
k=1

a
f

kj

[
h1,kj + ωi

1,k

∂fj

∂r

∣∣∣∣
ri
ro

− ωo
1,k

∂fj

∂r

∣∣∣∣
1

+
√

2ro

h
αkω

f

1,j

]
fj (rs) = 0, (B6)

+∞∑
j=1

+∞∑
k=1

ai
kj

[
h1,kj + ωi

1,k

∂fj

∂r

∣∣∣∣
ri
ro

− ωo
1,k

∂fj

∂r

∣∣∣∣
1

+
√

2ro

h
αkω

f

1,j

]
gk(zs) = 0, (B7)

+∞∑
j=1

+∞∑
k=1

ao
kj

[
h1,kj + ωi

1,k

∂fj

∂r

∣∣∣∣
ri
ro

− ωo
1,k

∂fj

∂r

∣∣∣∣
1

+
√

2ro

h
αkω

f

1,j

]
gk(zs) = 0, (B8)

with:

a
f

kj =
√

2ro

h

kπro

h

1(
α2

k + β2
j

)2 , (B9)

ai
kj = 1(

α2
k + β2

j

)2

∂fj

∂r

∣∣∣∣
ri
ro

, (B10)

ao
kj = 1(

α2
k + β2

j

)2

∂fj

∂r

∣∣∣∣
1

. (B11)

A countable infinite equations (j = 1 . . . + ∞, k = 1 . . . + ∞) is obtained by operating dot products [defined in (32) and
(33)] of (B6) with fj (rs) and dot products of (B7) and (B8) with gk(zs). Truncation to orders j = M , k = N gives (M + 2N )
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linear equations which permit in fine to find the series of coefficients ωi
1,k , ωo

1,k , ω
f

1,j :

ω
f

1,j

N∑
k=1

√
2ro

h
αka

f

kj + ∂fj

∂r

∣∣∣∣
ri
ro

N∑
k=1

a
f

kjω
i
1,k − ∂fj

∂r

∣∣∣∣
1

N∑
k=1

a
f

kjω
o
1,k = −

N∑
k=1

a
f

kjh1,kj , (B12)

√
2ro

h
αk

M∑
j=1

ai
kjω

f

1,j + ωi
1,k

M∑
j=1

ai
kj

∂fj

∂r

∣∣∣∣
ri
ro

− ωo
1,k

M∑
j=1

ai
kj

∂fj

∂r

∣∣∣∣
1

= −
M∑

j=1

ai
kjh1,kj , (B13)

√
2ro

h
αk

M∑
j=1

ao
kjω

f

1,j + ωi
1,k

M∑
j=1

ao
kj

∂fj

∂r

∣∣∣∣
ri
ro

− ωo
1,k

M∑
j=1

ao
kj

∂fj

∂r

∣∣∣∣
1

= −
M∑

j=1

ao
kjh1,kj . (B14)
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