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Resonant and antiresonant bouncing droplets
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When placed onto a vibrating liquid bath, a droplet may adopt a permanent bouncing behavior, depending on
both the forcing frequency and the forcing amplitude. The relationship between the droplet deformations and the
bouncing mechanism is studied experimentally and theoretically through an asymmetric and dissipative bouncing
spring model. Antiresonance phenomena are evidenced. Experiments and theoretical predictions show that both
resonance at specific frequencies and antiresonance at Rayleigh frequencies play crucial roles in the bouncing
mechanism. In particular, we show that they could be exploited for bouncing droplet size selection.
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I. INTRODUCTION

Bouncing droplets (BDs) on vibrated liquid interfaces
attract much attention because of their peculiar properties [1].
Because of the air layer that separates the droplet from the
vibrated surface, the droplet is allowed to bounce vertically
upon the liquid without coalescing. Nevertheless, the perpetual
bouncing behavior is possible under some conditions concern-
ing the acceleration of the surface. This condition reads � > �th

where � is the ratio between the acceleration of the surface
and the acceleration due to gravity, �th being a given threshold
to reach that may depend on the frequency of oscillation [1,2].
BDs have the great advantage of transporting some quantities
of liquid without chemical contamination [3,4]. Moreover,
BDs may be either fragmented [5] or used to create controlled
microemulsions [6]. It was therefore suggested that those
droplets may be used in some microfluidics applications [7].
Depending on the deformability of both droplet and liquid
surface, different dynamics are expected as depicted in the
work of Terwagne et al. [8]. As shown in the latter article,
four main regimes are distinguished from each other through
the Ohnesorge numbers of the droplet and the liquid bath. The
definition of the Ohnesorge number reads

Oh = ν
√

ρ/2aσ , (1)

where ν is the kinetic viscosity of the fluid, ρ its density,
and a the typical length scale. An Ohnesorge number greater
than unity corresponds to a system where damping is more
important than capillary effect, and thus the deformability can
be neglected between two impacts. Deformability therefore
takes place when this number is less than unity. In this article,
we will focus on the regime where OhBath > 1 and OhDrop < 1.
Especially, we will focus on BD deformations and their link
with the bouncing dynamics without considering lubrication
or wave propagation on the liquid surface. For this purpose,
we investigate the BD dynamics experimentally, and we
propose a simple model consisting in an asymmetric bouncing
spring (ABS). Resonance and antiresonance behaviors are
evidenced and rationalized. The latter effect being observed
in system made of coupled oscillators [9] and in the case of
Fano resonance [10]. From the particular features of both
resonance and antiresonance, we propose a way to select
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bouncing droplet size. Since the concept we provide is
general, we expect this model and its subsequent behaviors to
be applicable to a broad range of elastic bouncing objects.

II. EXPERIMENTAL SETUP

The experimental setup consists in a container filled
with highly viscous silicone oil (Dow Corning 200 Fluid,
ν = 1000 cSt) in order to inhibit the surface deformations
(OhBath ≈ 65). Droplets of viscosity ranging from 5 to 50
cSt are created with a needle. The information relative to the
silicon oils for droplets is summed up in Table I. The container
is vertically shaken with a pulsation ω and an amplitude
A. The maximum acceleration normalized by the gravity,
� = Aω2/g, is accurately measured with an accelerometer.
Figure 1 presents snapshots of a typical bounce for a frequency
f = 50 Hz. One observes large deformations of the droplet,
which experiences periodic changes from oblate to prolate
shapes. Moreover, as the droplet detaches from the interface
on the crest of each oscillation, some asymmetry in its shape is
generated, the top of the droplet being wider than its bottom.
This observation is indicated by a white arrow in Fig. 1.
The above observations suggest that droplet deformations
superimpose with the periodic forcing from the surface, as
proposed in earlier works [11,12].

III. RESULTS

Let us consider the plots of Fig. 2. This figure presents the
bouncing threshold �th, in a logarithmic scale, as a function
of the dimensionless forcing frequency �2, as defined later by
Eq. (3). By means of this frequency, for each viscosity, droplets
of different radii, mass, and density can be compared onto a
single curve. For each curve, resonant behavior is observed
near �2 = 0.5. For the resonant frequencies of Fig. 2, the
droplet bounces onto the surface for �th < 1; i.e., for a maximal
acceleration below g. Indeed, in order to overcome gravity, the
droplet stores elastic energy into its deformation and uses this
energy for taking off [11]. Although resonance in BD dynamics
has already been studied, others features of those curves have
not been analyzed. One remarks that, for specific frequencies
�2 ≈ 1.15, the threshold reaches a maximum. The bouncing
threshold in this case can be 20 times higher than the threshold
at the resonance. The maxima in the bouncing thresholds
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TABLE I. Parameters relative to the silicon oils used in our
experiments. The four first rows contain the fluid properties, and
the last two rows contain the ξ and μ parameters obtained from
experiments and from Eqs. (11) and (12).

Droplet viscosity ν (cSt) 5 20 50

Surface tension σ (N/m) 1.97×10−2 2.06×10−2 2.08×10−2

Density ρ (kg/m3) 910 949 960

Ohnesorge number OhDrop 0.024 0.096 0.240

Dissipation ξ 0.241 0.253 0.330

Mass distribution μ 0.651 0.701 0.751

correspond to an antiresonance and will be discussed in the
following sections.

IV. MODEL

In order to model the curves of Fig. 2, let us focus on the
droplet shapes. The natural shape oscillations of a droplet have
been described, in the linear regime, by Prosperetti [13] with
a series of spherical harmonics, reading

R(θ,φ) = a +
+∞∑
�=1

�−1∑
m=−�+1

c�Y
m
� (θ,φ). (2)

The natural Rayleigh frequency ω� [14] of each � mode defines
a dimensionless frequency �� given by

�� = ω/ω� =
√

a3ρω2/σ
√

1/�(� − 1)(� + 2), (3)

The parameter � denotes the characteristic number of the
considered spherical harmonic. Please note that because
of the radius a in (3), the droplets of different radii can
experience different values of �l for a given set of parameters.
This observation is the key ingredient of the droplet filter
described at the end of this article. By considering that
the Y 2

0 axis-symmetric mode dominates others in average
during the bouncing dynamics, as observed in our experiments
(cf. Fig. 1), one can write the droplet radius as the following
decomposition:

R(θ,φ) ≈ a
[
1 + δY 0

2 (θ,φ)
]
, (4)

where δ measures the maximum Y 0
2 deformation. Two pictures

of deformed droplets are shown in Figs. 3(a) and 3(b). Those
pictures are superposed to theoretical results (grid shapes).

FIG. 1. BD for frequency f = 50 Hz, radius a = 0.76 mm, and
viscosity ν = 5 cSt. One observes that the droplet adopts periodically
oblate and prolate shapes. Note that the deformation may be, for
instance, asymmetric when the droplet takes off as denoted with a
white arrow.
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FIG. 2. (Color online) Bouncing threshold (logarithmic scale) as
a function of the dimensionless Rayleigh frequency �2 for droplets
of different viscosities: (a) 5cSt, (b) 20 cSt, and (c) 50cSt. Black dots
represents the experimental data. The curves corresponds to analytical
models. Dotted gray line: Couder model [1], dashed orange line:
Eichwald model [18], plain red line: our ABS model capturing two
extrema while Eichwald captures only resonant behaviors.

They are characterized by oblate (δ = −0.318) and prolate
shapes (δ = 0.437).

Computing the surface of the droplet under the appearance
of the Y 0

2 spherical harmonic with the constraint of constant
volume leads to the plot of Fig. 3(c), showing the evolution of
the relative surface energy 
E/E0 with respect to δ, E0 being
the surface energy of an undeformed droplet. One observes
that 
E/E0 ∝ δ2 in a large interval of δ values. The droplet
can therefore be considered as a linear spring while bouncing
freely upon the surface. This observation is consistent with
previous conclusions made in several articles [11,12,15] and
does not contradict the ones obtained by Molacek et al. or
Chevy et al. [16] where some logarithmic spring aims to model
the interaction between the droplet and the liquid surface rather
than the droplet itself. In conclusion, both descriptions could
be seen as complementary.

Based on the above observations, one needs to introduce
elasticity, as shown in the previous paragraph, asymmetry, as
seen on Fig. 1, and also damping in order to model the BD
dynamics. Considering the axis-symmetric Y 2

0 harmonics, we
model the droplet as two different masses m1 and m2 linked
together by a Hookian spring (stiffness k and natural length L)
and by a linear damper (dissipation β). The masses m1 and
m2 can be different in order to account for the asymmetric
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FIG. 3. (Color online) (a) Droplet deformed with δ = −0.318
resulting in an oblate-shaped droplet. The left side is the experimental
picture, the right one being the Prosperetti model. (b) Prolate shaped
droplet with δ = 0.437. The value of δ in each case has been obtained
by fitting the shape of the droplet. (c) Evolution of the relative surface
energy for a droplet deformed with the Y 0

2 spherical harmonic, E0

being the energy of an undeformed droplet (black dots). The plain
curve is a guide to the eyes showing the parabolic behavior. The
horizontal axis measures the deformation δ. Note also the asymmetric
shape of the curve for large δ.

shapes observed during take off in Fig. 1. The spring is used to
give some stiffness in order to reproduce resonance and energy
storage; more specifically, this stiffness should be linked to the
droplet surface tension. The damper captures the dissipation
within the droplet when it oscillates. We expect this coefficient
to take into account dissipation in the droplet, in the bath
and in the air layer. The whole object bounces onto a rigid
plate oscillating at the liquid surface amplitude A and angular
frequency ω. The plate is chosen to be rigid since the bath
beneath the droplet has an Ohnesorge number around 65.
Between two successive impacts, the ABS is only submitted
to gravity g. Note that this model is unidimensional because
of the Y 0

2 axial symmetry. The dynamic of such an object
has been described in a previous article [17] in the symmetric
case. Defining the mass distribution μ = m1/(m1 + m2), the
spring natural frequency ω0 = √

k/(m1 + m2), the damper dis-
sipation coefficient ξ = β/2ω0(m1 + m2) and �0 = ω/ω0 the
dimensionless oscillation frequency, � = Aω2/g the dimen-
sionless surface acceleration, φ = ωt the dimensionless time,
l = L/A the dimensionless natural length, and α = z/A the

dimensionless height, Newton’s second law of motion reads

αp(φ) = cos(φ),

α̈1 + 2ξ (α̇1 − α̇2)

�0μ
+ (α1 − α2 − l)

�2
0μ

+ 1

�
= 0, (5)

α̈2 − 2ξ (α̇1 − α̇2)

�0(1 − μ)
− (α1 − α2 − l)

�2
0(1 − μ)

+ 1

�
= n2(φ).

The subscripts p, 1, and 2 are relative to the plate, the upper
mass, and the lower mass, respectively. The dot above the
symbols denotes the dimensionless time derivative, and n2 is
the dimensionless normal reaction. In the same way than in
Ref. [18], the analytic expression of the bouncing threshold
can be found and reads

�th(�0) =
√√√√ (

1 − μ�2
0

)2 + (2ξ�0)2[
1 − (1 − μ)μ�2

0

]2 + (2ξ�0)2
. (6)

Because �0 �= �2, the latter frequency describing the free
oscillations of the droplet, one has to find the equivalent of this
frequency in the ABS case. For this purpose, we consider the
equation describing the evolution of 
α = α1 − α2 − l from
the set of Eqs. (5). This yields


̈α + 2ξ
̇α

�0μ(1 − μ)
+ 
α

�2
0μ(1 − μ)

= 0. (7)

The frequency describing the free oscillation of the ABS,
and thus the equivalent of the Rayleigh frequency, is
�2 = �0

√
μ(1 − μ). With this new definition, the ABS

bouncing threshold reads

�th(�2) =

√√√√(
1 − �2

2
1−μ

)2 + (2ξ�2)2(
1 − �2

2

)2 + (2ξ�2)2
. (8)

This bouncing threshold exhibits two extrema in the range
�2 > 0, which can be obtained by canceling the derivative of
�th(�2) with respect to �2. We obtain

�Max =
√√

μ2 + 8(μ − 2)(μ − 1)ξ 2 − μ + 2

4(μ − 2)ξ 2 + 2
(9)

�Min =
√

−
√

μ2 + 8(μ − 2)(μ − 1)ξ 2 − μ + 2

4(μ − 2)ξ 2 + 2
(10)

Those expressions thus leads to the maximum, i.e., the antires-
onance, and minimum, i.e., the resonance, of the bouncing
threshold presented in Fig. 2. Knowing the experimental
frequencies at which resonance and antiresonance occur, one
can inverse the relations (9) and (10) in order to obtain ξ and
μ; this will calibrate our ABS model:

μ = 2�2
Max�

2
Min − �2

Max − �2
Min

�2
Max�

2
Min − �2

Max − �2
Min

, (11)

ξ =
√

�2
Max − 1

√
1 − �2

Min√
2�2

Max + 2�2
Min

. (12)

The values of μ and ξ related to the plots of Fig. 2 are
given in Table I and correspond to the values used in our
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simulations; the corresponding bouncing threshold is shown
with plain curves in Fig. 2. In order to compare our ABS
model with existing models, we propose in dot-dashed curves
the model of Ref. [18] and in the dotted curve the model of
Ref. [1]. The first model describes only the deformation of
the bath and not those of the droplet, and the second takes
into account only the lubrication of the air layer. We observe
that the ABS model reproduces both the maximum and the
minimum of the bouncing threshold where Couder’s model
does not show any extrema and Eichwald’s model reproduces
only the minimum. As a conclusion, one understands that
antiresonance in the bouncing droplet dynamics is possible
only by considering the deformation of the droplet. Resonance
is also captured. Furthermore, one observes that, only knowing
the values of �Max and �Min, the model can be calibrated
a posteriori and that the results are in a good agreement with
experimental data: at low viscosity [Fig. 2(a)], the ABS model
coincides correctly with the data. At higher viscosity, the
model tends to overestimate the resonant behavior. Indeed, one
could discuss the range of validity of the model. Because the
model has been developed under the assumption OhDrop < 1,
the ABS model is not able to capture the dynamics of droplet
above this limit. As pointed out in Ref. [2], at high droplet
viscosity, the deformation effects are overcome by the air layer
dynamics.

Let us focus on the resonant and antiresonant behaviors.
Resonance corresponds to large deformation of the droplet.
The potential energy stored in this way helps the droplet
to take off at low values of �th. The dynamics in this
case is illustrated on Fig. 4 with spatiotemporal diagrams
in the case of a 5cSt droplet. The bottom one corresponds
to numerical simulations while the top one corresponds to
experimental results. One observes that, despite the simplicity
of the model, the calibration of the model made through the
knowledge of �Max and �Min leads to good agreement. An-
tiresonance appears for �2 � 1, i.e., the resonant frequency of
the free droplet. In this case the droplet or ABS oscillates
with a phase shift of π with the oscillation of the bath.
As a consequence, the elastic properties and the propulsion
provided by the bath are always against each other, leading to
a high bouncing threshold. Figure 4 also shows the comparison
between experimental and numerical spatiotemporal diagrams.
Once again, the comparison shows a good agreement between
the model and the experiments.

Resonance and antiresonance may find applications in
various situations. As an example, we propose to create a
droplet-size “filter”. For this purpose, one has to observe
that the size of a droplet is directly related to its natural
Rayleigh frequency [cf. Eq. (3)]. By this means, for a
given frequency of oscillation ω, droplets of different sizes
can experience different behaviors: resonance (for � ≈ 0.5)
antiresonance (for � ≈ 1), or anything between. In particular,
small droplets would experience resonance, and large droplets
would experience antiresonance. The droplet size selector
works as follows: The BD is driven at a high-acceleration
� much higher than the bouncing threshold �th for any
frequency. When the amplitude of vibration decreases, the
acceleration could be lower than the antiresonant droplet
condition. In such a situation, all droplets bounce except the
ones having a specific size, those experiencing antiresonance.

FIG. 4. Numerical and experimental spatiotemporal diagrams for
BD with ν = 5 cSt (in arbitrary units). The white region in the
experimental diagrams represents the motion of the liquid surface
while the black region corresponds to the droplet elongation. The
gray curve in numerical simulation is for the elongation of the spring.
The white line drawn in the spring motion represents its center of
mass. The numerical parameters are those indicated in Table I. (a)
Resonant ABS/BD. (b) Antiresonant ABS/BD. One observes in (a)
the propulsion of the spring or droplet at the maximum height of
the surface motion. (b) The phase opposition of the spring or droplet
elongation with the surface oscillation at antiresonance is illustrated.

This corresponds to a band-stop filter. This is shown in the
supplementary movie attached to this article [19]. The typical
time required for the antiresonant droplet to coalesce is the
time required to drain the air layer [20], which is typically
100 bounces. While reducing again the amplitude of vibration,
until reaching the lowest value of the threshold, one may only
keep the resonant droplets and thus creates a band-pass filter.
A specific droplet size is therefore selected. We tested this
procedure over a broad range of droplet sizes, and we typically
obtained a droplet diameter with a precision of 20 μm. This
accurate technique opens new perspectives because it could
be exploited for improving experiments [11] for which droplet
size is a dominant parameter.

V. CONCLUSION

In this article, we have developed a simple linear model con-
sisting in a asymmetric bouncing spring for droplet bouncing
on a liquid surface in the regime OhBath > 1 and OhDrop < 1.
We have shown that the model gives good quantitative results
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through the only knowledge of �Min and �Max. Indeed, once
the model calibrated on the experimental data, it reproduces the
droplet bouncing threshold and gives resonant and antiresonant
features. Thus, we expect the ABS model to be a useful tool
to study a broad case of dynamics. Finally, we showed that
resonance and antiresonance could both be used in order to
create a droplet size filter which might be of some interest in
microfluidic experiments.
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