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Saffman-Taylor fingers with kinetic undercooling
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The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has
applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the
streamer context, the relevant regularization on the interface is not provided by surface tension but instead has
been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalize high velocities
and prevent blow-up of the unregularized solution. Previous asymptotic results for the Hele-Shaw finger problem
with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete
set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width.
In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2,
suggesting that this “selection” of 1/2 by kinetic undercooling is qualitatively similar to the well-known analog
with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic
undercooling, which turns out to be more subtle than the analog with surface tension, since kinetic undercooling
permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection
mechanism by setting up a problem with both kinetic undercooling and surface tension and numerically taking
the limit that the surface tension vanishes.
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I. INTRODUCTION

Inspired by the seminal work of Saffman and Taylor [1], an
enormous amount of research has been undertaken on aspects
of the problem of a steadily moving finger of inviscid fluid
in a Hele-Shaw cell of channel geometry (for an overview of
Hele-Shaw flows, with a thorough discussion on flows in the
channel geometry, see Refs. [2–4]). In a typical experiment
[1,5], air is injected from the left end of a horizontal channel,
which is otherwise filled with viscous fluid. The air-fluid
interface is unstable, as the less viscous fluid is displacing
the more viscous fluid (the Saffman-Taylor instability). As
the interface evolves from left to right, a fingering pattern
develops, which ultimately results in a single finger of air
propagating steadily along the Hele-Shaw cell and occupying
a fraction λ ∈ (1/2,1) of the channel width. As the finger speed
increases (via higher injection rates), the ratio λ is observed to
decrease towards roughly λ = 1/2 [1].

The most common approach to understanding the structure
of the corresponding mathematical model is to study the
role of a dimensionless surface tension parameter σ , which
decreases as the finger speed increases [6]. There are exact
solutions for the special case σ = 0 [1,6,7], but these all take
the ratio λ as an input parameter and so do not describe the
observed experimental behavior. The “selection” of λ = 1/2
as the physically appropriate solution in the limit σ → 0 is
a difficult problem in exponential asymptotics [8–14]. The
relevant analysis predicts that, for a given σ , there is a discrete
set of solutions with 1/2 < λ < 1. As σ → 0, the value of λ

for each solution branch approaches the special value λ = 1/2.
Numerical solutions support these conclusions [6,15].

In the present study, we are concerned with the effect
that kinetic undercooling has on the Hele-Shaw problem in
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a channel geometry. The appropriate dimensionless model for
a steadily propagating finger is [16]

∇2φ = 0 in �∞, (1a)

∂φ

∂n
= 0 on ∂�∞, (1b)

φ = cvn − x

1 − λ
on ∂�∞, (1c)

∂φ

∂y
= 0 on y = ±1, (1d)

φ ∼ − x

1 − λ
as x → −∞,

λ < |y| < 1, (1e)

φ ∼ −x as x → +∞,

−1 < y < 1. (1f)

Here φ is the velocity potential in the frame of reference of
the finger, ∂/∂n denotes a directional derivative normal to the
interface ∂�∞, vn is the normal velocity of the interface, and
c is the kinetic undercooling parameter. The unregularized
version (zero kinetic undercooling, c = 0) of Eqs. (1) has
Eq. (1c) replaced by

φ = − x

1 − λ
on ∂�∞, (2)

which also applies for the zero-surface-tension case mentioned
above.

Kinetic undercooling-type conditions arise in a variety of
applications. In the Hele-Shaw context, the kinetic undercool-
ing term arises from the curvature in the transverse direction
(perpendicular to the parallel walls of the Hele-Shaw cell)
and its dependence on the interface velocity. This effect was
included by Romero [17], who modelled the contact angle
as a linear function of the velocity, leading to a boundary
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condition such as Eq. (1c). An alternative interpretation is
to consider the existence of a wetting layer of the receding
fluid that remains on the plates of the Hele-Shaw cell. Park
and Homsy [18] derived a power-law relationship between
the thickness of this layer and the capillary number. This
relationship leads to a power-law dependence on velocity,
with the term cvn in Eq. (1c) replaced by cvδ

n, where δ = 2/3
is the exponent derived in Ref. [18]. Such a term may be
referred to as representing nonlinear kinetic undercooling.
The theoretical short-time existence of solutions to Hele-Shaw
flow with this regularization was established by Pleshchinskii
and Reissig [19]. Recently, the stability of an expanding
circular bubble with both surface tension and nonlinear kinetic
undercooling has been considered in both linear [20,21] and
weakly nonlinear [22,23] regimes. In this paper, however, we
consider linear kinetic undercooling (δ = 1) only.

In the context of melting or freezing, Stefan-type for-
mulations may include a Gibbs-Thomson law with kinetic
undercooling [24–27], with much attention given to insta-
bilities and pattern formation at the interface of a growing
dendrite [25,28,29]; in that case, in the limit of vanish-
ingly small specific heat, the governing equations reduce
to those for Hele-Shaw flow. Thus the unstable Hele-Shaw
model describes the manner in which a supercooled liquid
freezes, with Eqs. (1) above relevant for a single dendrite
propagating with constant velocity in a channel. Kinetic
undercooling conditions also apply on interfaces in very
similar moving boundary problems describing mass transfer
situations, such as the diffusion of solvent through glassy
polymers [30,31].

Of particular interest here, model (1) has applications to
streamers, which is a topic that has received much attention
in the physics literature in recent times (see the review in
Ref. [32]). Streamers are finger-shaped electrical discharges
which occur during the early stages of electric breakdown in
sparks or lightning, for example. They are caused by subjecting
a weakly ionized gas to a strong electric field, leading
to an ionization reaction via collisions of highly energetic
electrons with neutral molecules. The streamers themselves are
characterized by a thin charge layer and associated ionization
front that forms the finger shape.

A minimal model for streamer discharges consists of a
coupled system of reaction diffusion equations for the electron
and ion density. A further equation relates the Laplacian of
the electrostatic potential φ to these densities. For negative
streamers, these equations can be approximated by a moving
boundary problem by assuming the ionization layer is a sharp
interface that separates the strongly ionized streamers from
the weakly ionized gas ahead of front. The result is Laplace’s
equation for the electrostatic potential outside the interface. For
the case in which there is a periodic array of two-dimensional
streamers with equal spacing, all propagating in the x direction
with a constant electric field E = −xi in the far field as
x → ∞, one can impose Neumann conditions to isolate a
single streamer [32–34]. Under this periodic geometry, if the
electric field or periodic spacing is sufficiently small (strong
interaction between neighboring streamers), the streamers
evolve from their initial conditions to a traveling wave profile,
so they propagate uniformly. The approximate model is then
given by Eqs. (1).

In the context of streamers, the boundary condition (2) has
been used instead of Eq. (1c) (see Ref. [35], for example).
The former is appropriate if the streamer is assumed to be
ideally conducting (φ = 0 in the streamer) and the electric
potential is assumed to be continuous across the interface.
Indeed, the condition (2) was used by Luque et al. [33] in their
study of periodic streamers (see also Ref. [34]). However,
as is known from the Hele-Shaw literature, the unregularized
time-dependent model is ill posed, with a dense subset of
all initial conditions leading to finite time blow-up that is
characterized by infinitely sharp cusps on the interface [7].
Such behavior is not physical (in either the Hele-Shaw or
streamer context). The regularizing term (1c) is postulated
by Ebert and coworkers [36–38] for streamers and used, for
example, to model perturbed translating circles [39,40]. A
further relevant discussion is contained in Ref. [32]. Here the
kinetic undercooling parameter c is proposed to account for
the thickness of the ionization front. In the present paper, we
shall employ the language of Hele-Shaw flows but keep in
mind the application of streamers, discussing the relevance of
the analysis and results in Sec. IV.

The Saffman-Taylor problem with kinetic undercooling,
described by Eqs. (1), has received modest attention compared
to the surface tension analog mentioned above. The selection
problem was treated by Chapman and King [16], who used
exponential asymptotics to show that discrete families of ana-
lytic fingers exist, with the finger width for each family tending
to 1/2 in the limit that the kinetic undercooling parameter
c vanishes. These authors showed that λ ∼ 1/2 + Ac2/3 as
c → 0 for each branch but did not compute the constant A.
More recently, a numerical study by Dallaston and McCue
[41] showed that, for a given kinetic undercooling parameter
c, a continuous family of corner-free finger solutions exist with
widths λ ∈ [λmin,1). Further, it was found that the minimum
width λmin → 0 as c → 0. While this continuous spectrum of
solutions appears to be at odds with the analysis of Chapman
and King [16], the two studies need not contradict each other
since the numerical scheme in Ref. [41] is not designed to
distinguish between solutions with analytic fingers and those
with fingers that are also corner-free but may not be analytic
(that is, for all the numerical solutions found in Ref. [41],
the first derivative exists at the nose, but the higher-order
derivatives may not exist there).

In this paper we aim to reconcile these results by construct-
ing numerical solutions to Eqs. (1) that have analytic fingers.
The rigorous results of Tanveer and Xie [42,43] suggest that
solutions to the Hele-Shaw problem with sufficiently small
values of the surface tension coefficient must have interfaces
that are analytic. With this in mind, our strategy is add surface
tension to the model (1), so Eq. (1c) is replaced by

φ = σκ + cvn − x

1 − λ
on ∂�∞, (3)

where σ is the surface tension coefficient and γ is the curvature
of the interface (see Ref. [44,45] for an in-depth study of Hele-
Shaw flows with surface tension and kinetic undercooling).
Our hypothesis is that the work of Tanveer and Xie carries
over to Eqs. (1a)–(1b), (1d)–(1f), and (3) so solutions to the
problem with kinetic undercooling and surface tension must
be analytic at the nose. Thus with kinetic undercooling fixed
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at some value c > 0, by taking the limit σ → 0, we select the
analytic solutions studied in Chapman and King [16]. Using
this strategy, we are able to produce a plot of finger widths λ

versus kinetic undercooling c for the first two branches, thus
filling in the gap left by Chapman and King [16] and Dallaston
and McCue [41]. Our results have implications for the problem
of periodic streamers studied by Luque et al. [33].

Our numerical scheme is based on a boundary integral
formulation, as outlined in Sec. II. Section III summarizes
our main results, while Sec. IV includes a discussion.

II. BOUNDARY INTEGRAL FORMULATION

For the formulation of the problem, we follow the work
of McLean and Saffman [6] and Chapman and King [8,16].
Since φ is a harmonic function, we define an analytic
complex potential w(z) = φ(x,y) + iψ(x,y), where ψ is a
stream function and z = x + iy. The conformal transformation
z �→ w maps the fluid region onto an infinite strip of unit width
in the potential plane. A second conformal map, w �→ χ =
ξ + iη = e−πw maps this strip onto the upper half χ plane.
The interface is mapped onto the unit interval on the real line,
0 < ξ < 1, with the upper wall mapped onto −∞ < ξ < 0
and the center line y = 0 mapped onto 1 < ξ < ∞.

The complex velocity can be written

∂w

∂z
= q̂e−iθ̂ , (4)

where q̂ is the velocity tangential to streamlines and θ̂ is the
angle the tangent to the streamlines makes with the x axis. The
logarithm of this velocity, log q̂ − iθ̂ , is analytic in the upper
half χ plane, and its real and imaginary parts can be related
by a property of Hilbert transforms called the Kramers-Kronig
relations, such that

log q̂ = − 1

π

∫ 1

0
–

θ̂ (ξ ′) − π

ξ ′ − ξ
dξ ′, 0 < ξ < 1, (5)

since θ̂ = π everywhere on the real line except the unit
interval. Note that the integral is of Cauchy principal value
type.

Relating the quantities q̂(ξ ) and θ̂ (ξ ) to the curvature of the
interface (Ref. [6]) allows us to rewrite the dynamic condition
(3) as the differential equation

(1 − λ)q̂ = (1 − λ)π2σ q̂ξ
d

dξ

(
q̂ξ

dθ̂

dξ

)

+ cπq̂ξ cos θ̂
dθ̂

dξ
− cos θ̂ , 0 < ξ < 1. (6)

We now have Eqs. (5) and (6) relating q̂ and θ̂ , with the
associated boundary conditions

θ̂(0) = π, q̂(0) = 1

1 − λ
, θ̂ (1) = π

2
, q̂(1) = 0, (7)

which correspond to uniform flow at the tail (ξ = 0) and a
stagnation point at the nose (ξ = 1).

Given values of the physical parameters σ and c, we seek
to solve Eqs (5)–(7) and then compute the finger width λ via

log (1 − λ) = 1

π

∫ 1

0

θ̂ (ξ ′) − π

ξ ′ dξ ′, (8)

which comes from setting ξ = 0 into Eq. (5).
We now introduce another variable substitution that sim-

plifies the equations and removes the explicit dependence on
λ. We let θ (ξ ) = θ̂ (ξ ) − π , q(ξ ) = (1 − λ)q̂(ξ ) and introduce
new parameters

γ = σπ2

1 − λ
, ε = cπ

2(1 − λ)
, (9)

where γ is a scaled surface tension parameter [6,8] and ε is a
scaled kinetic undercooling parameter [16]. Then, with some
manipulation, the governing equations become

q = γ qξ
d

dξ

{
qξ

dθ

dξ

}
+ 2εqξ cos θ

dθ

dξ
+ cos θ, (10)

log q = − ξ

π

∫ 1

0
–

θ (ξ ′)
ξ ′(ξ ′ − ξ )

dξ ′, (11)

both of which hold on 0 < ξ < 1, together with boundary
conditions

θ (0) = 0, q(0) = 1, θ (1) = −π

2
, q(1) = 0. (12)

Given a solution for θ (ξ ), we can calculate the width of the
finger using Eq. (8), which is now

log(1 − λ) = 1

π

∫ 1

0

θ (ξ ′)
ξ ′ dξ ′, (13)

and calculate the shape of the interface from

x(ξ ) + iy(ξ ) = −1 − λ

π

∫ 1

ξ

exp
(
iθ (ξ ′)

)
q(ξ ′)ξ ′ dξ ′. (14)

Using McLean and Saffman’s exact solutions for the
unregularized problem [6],

q =
(

1 − ξ

1 + aξ

)1/2

, θ = cos−1 q, (15)

where a = (2λ − 1)/(1 − λ)2 is arbitrary, and the formulas for
the physical coordinates implicit in Eq. (14), we can recover
the analytic formula for the shape of the finger given by
Saffman and Taylor, namely that x(ξ ) = ((1 − λ)/π ) log ξ ,
y(ξ ) = (2λ/π ) cos−1 √

ξ . Combining the two results gives

x = 2(1 − λ)

π
log

(
cos

(πy

2λ

))
, (16)

which is often referred to in the literature as the ZST solution,
being equivalent to the expression derived first by Zhuravlev
[46] and then by Saffman and Taylor [1] (see Ref. [2] for an
alternative derivation).

III. NUMERICAL RESULTS

We solve our system of integrodifferential equations (10)–
(12) by applying the numerical scheme outlined in the
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appendix. The approach involves dividing the domain 0 <

ξ < 1 into N + 1 unevenly spaced grid points and solving a
system of N − 1 equations for the unknown function θ at each
of the N − 1 interior points using a Newton solver. The other
quantities of interest can be computed subsequently.

A consequence of discretizing the integral in Eq. (11) is that
the N − 1 equations depend on the unknown function θ at all
of the grid points, which leads to a fully dense Jacobian J in
the Newton scheme. In order to proceed with a large number
of grid points, we have employed a Jacobian-free Newton-
Krylov method which does not require the formation of the
full Jacobian; instead, a sparse approximation is all that is
required for preconditioning of the Krylov subspace linear
solver, as described in the appendix.

Typically, for a fixed surface tension parameter γ > 0 and
kinetic undercooling parameter ε � 0, the scheme converged
to a solution that corresponds to a particular finger shape with
a single finger width λ. The initial guess used for Newton’s
method was either the exact solution (15) for γ = 0, ε = 0, or
an already converged solution with similar parameter values.
For moderate to large values of γ , N = 3000 grid points were
used, while for small values of γ we used a larger number of
grid points, up to a maximum of N = 5000.

Some representative finger shapes are presented in Fig. 1(a).
Here we have fixed the kinetic undercooling parameter to be
ε = 0.1 and provided results for three different surface tension
values, γ = 0.03,0.5, and 1. We observe that the fingers are
qualitatively the same in each case and that the finger width
λ is greater than 1/2 and decreases as the surface tension γ

decreases.
Each of these three solutions correspond to a single data

point on the curve in Fig. 1(b), which shows the dependence
of the finger width λ on the surface tension γ for ε = 0.1.
This figure clearly demonstrates the trend that as surface
tension decreases, the finger width decreases. For values of
surface tension below roughly γ ≈ 0.015, we were unable
to compute sufficiently well-converged solutions (using up
to N = 5000 grid points). The reason for this breakdown in
the numerical scheme is related to the singular nature of the
limit γ → 0, which is illustrated by the highest derivative in
Eq. (10) being multiplied by γ . We discuss this issue further
below.

Recall that our hypothesis is that all these fingers are
analytic curves, since nonzero surface tension does not allow
nonanalytic solutions. On the other hand, for γ = 0 (zero
surface tension), Dallaston and McCue [41] show that there is
a continuous family of corner-free solutions for λ > λmin(ε),
where for ε = 0.1 the minimum value is roughly λmin ≈ 0.44.
To select a single solution in this family (with ε = 0.1 and
γ = 0) that has an analytic finger, we propose to consider the
branch of solutions for ε = 0.1 and γ > 0 and take the limit
γ → 0+.

Since it is difficult to calculate solutions for extremely small
values of γ , we use an extrapolation approach to obtain an
estimate for the finger width at γ = 0. One option to achieve
this is to fit a polynomial to the last few data points and extract
the value of this polynomial at γ = 0. However, we have the
result in the case of zero kinetic undercooling that λ ∼ 1

2 +
βγ 2/3 as γ → 0+, thus it seems reasonable to suggest that the
same scaling holds in the case of finite kinetic undercooling.

−0.2−0.4−0.6−0.8−1

−0.5

(a)

(b)

0

0.5

x

y

0 0.2 0.4 0.6 0.8 1
0.56

0.58

0.6

γ

λ

FIG. 1. (Color online) Numerical results for kinetic undercooling
ε = 0.1. (a) The shape of the fingers for the surface tension values
γ = 0.03,0.5,1 (from the innermost to the outermost curve). (b) The
dependence of the finger width λ on surface tension γ . Numerically
computed data points are indicated by the solid (blue) circles. The
open (red) circle is the estimated finger width for this family at γ = 0.

As such, we use the relation

λ ∼ α + βγ 2/3, (17)

and fit a small number of the final few points to this equation.
The value obtained for α is the predicted finger width for
γ = 0, the intercept on the vertical axis in Fig. 1(b).

In addition to the branch of solutions shown in Fig. 1(b),
we have found evidence of additional solution branches. This
is precisely the same behavior as known to occur for the
case without kinetic undercooling (ε = 0) [8,15,17]. Romero
[17] and Vanden-Broeck [15] demonstrated the existence of
multiple solution branches for a given value of γ numerically,
and Chapman [8] and others proved the existence of an infinite
number of branches using exponential asymptotics. Kessler
and Levine [47,48] suggested that only the lower branch is
stable while the other, higher, branches are unstable [2,14].

Thus for this particular example ε = 0.1, we postulate there
are a countably infinite number of solutions branches, each
more difficult to compute than the previous. We show three
such curves in Fig. 2(b). Each follows the trend of decreasing
λ as γ decreases. It is difficult to compute λ values for small
values of γ , but again, we are able to extrapolate to estimate the
analytic solution for γ = 0 on a second branch. For the third
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λ

0 0.2 0.4 0.6 0.8 1

0.5

0.58

0.66

0.74

γ

λ

(a) ε = 0

(b) ε = 0.1

(c) ε = 0.2

FIG. 2. (Color online) Dependence of finger width λ on surface
tension γ for fixed values of kinetic undercooling. In each case, three
solution branches are shown. The open (red) circles represent an
extrapolated value for γ = 0.

branch, the lowest γ value at which the numerical scheme
converged was too large to give an accurate extrapolation
estimate.

Also shown in Figs. 2(a) and 2(c) are three solution branches
for ε = 0 and ε = 0.2, respectively. Of course, the ε = 0
case is the original surface tension problem [6,8,15]. The
extrapolation technique was used on two branches for each
of these values to obtain an estimate for an analytic solution

γ = 0. In principle, we could construct a similar figure for any
fixed value of kinetic undercooling, ε.

To provide further insight into the singular nature of the
limit γ → 0, we have presented in Fig. 3 plots of the 2-norm
condition number, cond (J), of the Jacobian versus the surface
tension γ for the cases presented in Fig. 2. On this log-log
scale, the data appear to be linear as γ → 0, which implies
that cond (J) ∼ const γ −p, where p is a positive constant
depending only on the kinetic undercooling parameter ε and
the particular branch of solution. These observations support
the claim that the problem is singular in the limit γ → 0 for
ε � 0, which is consistent with our hypothesis that the findings
of Tanveer and Xie [41,42] do not extend to the case γ = 0,
ε > 0. The singular nature of the problem also helps to explain
the numerical findings [41] of a continuous solution space for
γ = 0, ε > 0.

By extrapolating our numerical results for the lower two
solution branches for many different values of ε, we have
constructed the data provided in Fig. 4(a). These are our
estimates of the finger widths associated with the analytic
solutions to Eqs. (1), also analyzed in Chapman and King [16]
using asymptotic techniques. It is noteworthy that our solution
branches in Fig. 4(a) also appear to approach λ = 1/2 in the
limit ε → 0+, which agrees with Chapman and King.

Also included in Fig. 4(a) as a dashed curve is the lower
bound of all solutions, including nonanalytic fingers, as found
by Dallaston and McCue [41]. We see that as ε increases, this
lower bound appears to asymptote to the lower solution branch
for analytic fingers.

In Fig. 4(b) we include more details of the primary branch,
showing the dependence of λ against 0 � c < 1. Recall that
as ε → ∞, c → 1− and λ → 1−. Since our method is most
useful for investigating the primary few branches in the (λ,ε)
solution space, we shall not attempt to match our curves to the
solution curves in Ref. [16], which are only valid near ε = 0
in the limit that εN → 0, where N is the branch number, that
is, when λ − 1/2 ∼ O(1). This implies that their results are
only valid for the higher-order branches. Unfortunately, it is
therefore infeasible to use our proposed method to investigate
these solution branches.

While our main focus is selection as ε → 0+, there are
interesting results in the limit that the kinetic undercooling
parameter ε → ∞, or, equivalently, as c → 1−, which we can
use to test our approach. Chapman and King determined in
the appendix of Ref. [16] that 1 − λ � 1 − c and that the
asymptotic behavior of the first branch is given by

c ∼ 1 − (1 − λ) log (1/(1 − λ)) , as λ → 1−. (18)

See the inset in Fig. 4(b) for a comparison of the numerical
results with this asymptotic relation. The shape of the finger
in this limit is given by Chapman and King [16] as being
circular at the nose. See Fig. 5 for a comparison between
this asymptotic solution and solution profiles for small surface
tension and varying values of kinetic undercooling.

We end this section by mentioning the results published
in Ref. [49]. The model (1) was treated in Ref. [49] and
numerical results were presented with discrete branches of
solutions. However, as discussed in detail by Dallaston and
McCue [41], these discrete branches were due to very small
numerical errors, which were corrected in Ref. [41].

023016-5



GARDINER, MCCUE, DALLASTON, AND MORONEY PHYSICAL REVIEW E 91, 023016 (2015)

10−2 10−1 100

106

107

108

109

γ

cond(J)

10−2 10−1 100

106

107

108

γ

cond(J)

10−2 10−1 100

106

107

108

γ

cond(J)

(a) ε = 0
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(c) ε = 0.2

FIG. 3. (Color online) The condition number of the Jacobian for
solutions computed with N = 1000 nodes plotted against γ for the
first branch (circles), second branch (diamonds), and third branch
(squares) for fixed values of ε. The (blue) dashed line is a rough
linear fit through the data on the first branch for small ε.

IV. DISCUSSION AND CONCLUSIONS

We have computed multiple discrete analytic solution
branches for the Saffman-Taylor finger with kinetic under-

0.5 1

(a)

(b)

1.5 2

0.25

0.5

0.75

ε

λ

λmin(ε)

0.9 1
0.96

1

0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1

c

λ

FIG. 4. (Color online) This figure constitutes our main result.
(a) The selection of two distinct branches shown as the solid (red)
circles. Note the distinction between these and the continuous solution
space found by Dallaston and McCue [41], bounded below by
λmin(ε), the dashed (black) curve. The primary branch seems to
asymptote to the curve λmin(ε) as ε → ∞. (b) The entire primary
branch from part (a). Recall that as ε → ∞, c → 1− and λ → 1−.
The portion of the branch shown in part (a) is boxed in the lower
left corner for reference. The inset shows a comparison with Eq. (18)
provided by Chapman and King [16], shown as the smooth (blue)
curve.

cooling, corresponding to those predicted asymptotically by
Chapman and King [16]. The greatest numerical challenge
is to distinguish analytic solutions from nonanalytic ones,
given the inability of a finite difference scheme to capture
high derivatives. Here we achieved this goal by extending
the numerical scheme of Refs. [6,15] to include both surface
tension and kinetic undercooling and then extrapolating to
find the limit as surface tension goes to zero for fixed
kinetic undercooling values. Our numerical results agree with
asymptotic results in selecting a finger width of 1/2 as ε → 0+,
as well as in producing a semicircular interface as the finger
width tends to the channel width.

The inclusion of surface tension ensures that the numerical
solutions we compute represent analytic fingers; the theory
of Tanveer and Xie [42] for the pure surface tension problem
ensures that any solution that is C2 (which finite differences
can certainly distinguish) is also analytic, and it is reasonable
to assume this carries over when both surface tension and
kinetic undercooling are present. The inability of the numerical
method to distinguish discrete solution branches in the absence
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FIG. 5. (Color online) The shape of the finger for solutions on
the primary branch with γ = 0.03 and ε = 0,1,10,3500 (from the
innermost to the outermost curve). For comparison, the dashed (red)
curve shows a semicircle of unit radius.

of surface tension (as observed in Ref. [41]) suggests that the
results of Tanveer and Xie do not apply when γ = 0; that is,
there do exist C2 but nonanalytic traveling finger solutions for
the pure kinetic undercooling problem.

We have not considered the numerical computation of
the time-dependent version of Eqs. (1). Analytic traveling
finger solutions are only relevant if analyticity is preserved
in evolving from an initial condition. While this is unlikely to
occur for sufficiently large kinetic undercooling (Dallaston
and McCue [41] have numerical and asymptotic evidence
of corner formation for c > 1) it may be possible if kinetic
undercooling is small enough (c < 1). Extrapolating a time-
dependent solution with zero surface tension and nonzero
kinetic undercooling from one with nonzero surface tension
and nonzero kinetic undercooling may introduce further com-
plications given the structural instability of the time-dependent
problem in the zero surface tension limit [2,52]. Any numerical
scheme would have to be very precise but also avoid the
node-crowding effect typical of numerical conformal mapping
methods.

We close with remarks about the relevance of our results
for the study of streamer discharges. For this application, it
has been proposed that Hele-Shaw type models can be used to
approximate the dynamic evolution of streamers, with a kinetic
undercooling term used as a form of regularization, where
the kinetic undercooling parameter is a measure of the actual
thickness of the ionization front [32,36–40]. Recall that Luque
et al. [33] considered a periodic array of strongly interacting
streamers and showed that, after some transient period, they
propagate uniformly. By isolating a single translating streamer,
they treated the Hele-Shaw problem (1) as an approximate
model, except that they used Eq. (1c) instead of (2). That
is, they considered the unregularized version of the classical
Saffman-Taylor finger problem [1]. Here we have treated
Eqs. (1) with nonzero kinetic undercooling and presented
results that support the hypothesis that the width of each
streamer finger for vanishingly small kinetic undercooling
(vanishingly small thickness of the ionization front) is one-half
the period of the array of periodic streamers [16]. This
conclusion explains why the exact solution to the unregularized
problem with the free parameter λ set to 1/2 agrees with

time-dependent solutions to the full streamer problem, at least
near the tip of the streamer [33].

As our study suggests, the use of a kinetic undercooling type
regularization for evolving streamers is not without complica-
tions. While the Hele-Shaw model without regularization is ill
posed, and therefore not appropriate for streamer discharges
(or any application, for that matter), the time-dependent
version of Eqs. (1) is still difficult to handle numerically.
For example, the time-dependent version of (1) is highly
unstable; linear stability shows all modes of perturbation
(of a flat interface) are unstable [16,50]. Further, it would
presumably require a particularly sophisticated numerical
scheme to distinguish between time-dependent solutions with
analytic fingers and those that are nonanalytic but corner-free.
As such, it seems that a better dynamic model for streamers
may involve kinetic undercooling plus another regularization
effect that comes from the full streamer model. This additional
effect may then act like surface tension does in the Hele-Shaw
context described here, allowing for selection of physically
appropriate solutions to the streamer problem of interest.

ACKNOWLEDGMENTS

SWM acknowledges the support of the Australian Research
Council via the Discovery Project DP140100933. MD ac-
knowledges support in part by Award No KUK-C1-013-04,
made by King Abdullah University of Science and Technology
(KAUST). The authors acknowledge helpful discussions with
John King and Jon Chapman.

APPENDIX: NUMERICAL SCHEME

We seek to solve the integrodifferential set of equations (10)
and (11) and associated boundary conditions (12) numerically
in a manner similar to that of McLean and Saffman [6]
(see also Refs [15,41,49]). In order to deal effectively with
the integral in Eq. (11), we note that both θ and q are
nondifferentiable functions of ξ at the end points, with square-
root-type singularities at ξ = 0 (the tail) and ξ = 1 (the nose).
The variable transformation

ξ τ = 1 − ζ 2, (A1)

is used to ensure that both variables have at least two derivatives
at the end points, and 0 < τ < 1/2 is the real root of the
transcendental equation

γ τ 2 + 2ετ = cot πτ, (A2)

which is obtained from considerations regarding the differen-
tiability of θ at both end points [6].

The integral in Eq. (11) is a Cauchy principle value integral;
we can add and subtract the singular part to give

log q = 1

π

∫ 1

0

θ (ξ ′)
ξ ′ dξ ′ − 1

π

∫ 1

0

θ (ξ ′) − θ (ξ )

ξ ′ − ξ
dξ ′

− θ (ξ )

π
ln

(
1 − ξ

ξ

)
. (A3)

Using Eq. (A1), the first integral in Eq. (A3) becomes

2

τ

∫ 1

0

ζ ′θ (ζ ′)
1 − ζ ′2 dζ ′.
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FIG. 6. The structure of a typical Jacobian for N = 100. The plot
shows log10 |J|, for γ = 0.02, ε = 0.2, on the first solution branch.

Since now θ = 0 at ζ = 1, the integrand has a removable
singularity there and can be replaced by −(1/2) dθ/dζ |ζ=1.
Again using Eq. (A1), the second integral in Eq. (A3) becomes

2

τ

∫ 1

0

ζ ′

(1 − ζ ′2)1−1/τ

θ (ζ ′) − θ (ζ )

(1 − ζ ′2)1/τ − (1 − ζ 2)1/τ
dζ ′,

which has a removable singularity at ζ ′ = ζ . L’Hopital’s
rule is again used to replace the integrand at ζ ′ = ζ with
−(τ/2)dθ/dζ .

Now turning to the numerical scheme itself, we discretize
the unit interval ζ ∈ [0,1] using N + 1 nodes, 0 � ζn � 1,
where n = 0,1,2, . . . ,N , and look to solve for the vector of
unknowns u = [θ1,θ2, . . . ,θN−1]T . Given an initial guess u0

for the values of θn, or an updated vector uk , we can calculate
the values [q1,q2, . . . ,qN−1]T using Eq. (11) (rewritten in
terms of ζ ) and then substitute both θ and q into Eq. (10) using

third-order mixed finite-difference formulas to approximate
the derivatives. Thus we have a system of N − 1 nonlinear
algebraic equations for the N − 1 unknowns in u, which
we solve using a Jacobian-free Newton-Krylov method [51],
implemented by the SUNDIALS package KINSOL [53]. Once
converged, the solution can be used to recalculate q, λ and the
physical coordinates x and y.

Due to the global nature of the integral equation (11), the
Jacobian matrix J of the nonlinear system is fully dense. The
Jacobian-free Newton-Krylov method avoids the need to form
this dense matrix, leading to considerable efficiency gains. It
does so by using a preconditioned Krylov subspace solver
at the linear level, which requires only an approximation of
the true Jacobian for preconditioning purposes. To efficiently
construct this approximation, we observe that the largest
entries in the Jacobian matrix are contained within a narrow
band around the main diagonal—a consequence of the finite
difference approximation of the derivatives in Eq. (10);
other relatively large values are located in the rightmost
columns. An example of this striking pattern is provided
in Fig. 6, where we see the magnitude of the entries in J
decay with distance from the main diagonal. To construct
the preconditioner, we retain only the entries within the
narrow band and a relatively small number of the rightmost
columns, yielding a sparse approximation that is efficient to
form and factorize. By varying the bandwidth, the trade-off
between the cost of factorization and the effectiveness of the
preconditioner can be controlled. This approach is analogous
to that applied recently by Pethiyagoda et al. [54,55], who also
solved a coupled system of two integrodifferential equations,
derived using a boundary integral method. Similar tactics
for constructing sparse preconditioners from dense Jacobians
have been implemented for other nonlocal systems (see
Ref. [56]).

[1] P. G. Saffman and G. I. Taylor, Proc. R. Soc. London A 245,
312 (1958).

[2] S. Tanveer, J. Fluid Mech. 409, 273 (2000).
[3] A. Vasil’ev, Comp. Anal. Oper. Theory 3, 551 (2009).
[4] T. T. Al-Housseiny, P. A. Tsai, and H. A. Stone, Nature Phys. 8,

747 (2012).
[5] P. Tabeling, G. Zocchi, and A. Libchaber, J. Fluid Mech. 177,

67 (1987).
[6] J. W. McLean and P. G. Saffman, J. Fluid Mech. 102, 455 (1981).
[7] S. D. Howison, J. Fluid. Mech. 167, 439 (1986).
[8] S. J. Chapman, Eur. J. Appl. Math. 10, 513 (1999).
[9] R. Combescot, T. Dombre, V. Hakim, Y. Pomeau, and A. Pumir,

Phys. Rev. Lett. 56, 2036 (1986).
[10] R. Combescot, V. Hakim, T. Dombre, Y. Pomeau, and A. Pumir,

Phys. Rev. A 37, 1270 (1988).
[11] A. T. Dorsey and O. Martin, Phys. Rev. A 35, 3989 (1987).
[12] D. C. Hong and J. S. Langer, Pshys. Rev. Lett. 56, 2032 (1986).
[13] B. I. Shraiman, Phys. Rev. Lett. 56, 2028 (1986).
[14] S. Tanveer, Phys. Fluids 30, 1589 (1987).
[15] J.-M. Vanden–Broeck, Phys. Fluids 26, 2033 (1983).
[16] S. J. Chapman and J. R. King, J. Eng. Math. 46, 1 (2003).

[17] L. A. Romero, The fingering problem in a Hele-Shaw cell, Ph.D.
thesis, California Institute of Technology (1981).

[18] C. W. Park and G. M. Homsy, J. Fluid Mech. 139, 291 (1984).
[19] N. B. Pleshchinskii and M. Reissig, Nonlinear Anal. 50, 191

(2002).
[20] L. M. Martyushev and A. I. Birzina, J. Phys.: Condens. Matter

20, 045201 (2008).
[21] E. O. Dias and J. A. Miranda, Phys. Rev. E 88, 013016 (2013).
[22] P. H. A. Anjos and J. A. Miranda, Phys. Rev. E 88, 053003

(2013).
[23] P. H. A. Anjos and J. A. Miranda, Soft Matter 10, 7459 (2014).
[24] J. R. King and J. D. Evans, SIAM J. Appl. Math. 65, 1677

(2005).
[25] S. Chen, B. Merriman, S. Osher, and P. Smereka, J. Comp. Phys.

135, 8 (1997).
[26] J. M. Back, S. W. McCue, and T. J. Moroney, Appl. Math. and

Comp. 229, 41 (2014).
[27] J. M. Back, S. W. McCue, and T. J. Moroney, Sci. Rep. 4, 7066

(2014).
[28] C. Misbah, H. Müller-Krumbhaar, and D. E. Temkin, J. Phys. I

France 1, 585 (1991).

023016-8

http://dx.doi.org/10.1098/rspa.1958.0085
http://dx.doi.org/10.1098/rspa.1958.0085
http://dx.doi.org/10.1098/rspa.1958.0085
http://dx.doi.org/10.1098/rspa.1958.0085
http://dx.doi.org/10.1017/S0022112099007788
http://dx.doi.org/10.1017/S0022112099007788
http://dx.doi.org/10.1017/S0022112099007788
http://dx.doi.org/10.1017/S0022112099007788
http://dx.doi.org/10.1007/s11785-008-0104-8
http://dx.doi.org/10.1007/s11785-008-0104-8
http://dx.doi.org/10.1007/s11785-008-0104-8
http://dx.doi.org/10.1007/s11785-008-0104-8
http://dx.doi.org/10.1038/nphys2396
http://dx.doi.org/10.1038/nphys2396
http://dx.doi.org/10.1038/nphys2396
http://dx.doi.org/10.1038/nphys2396
http://dx.doi.org/10.1017/S0022112087000867
http://dx.doi.org/10.1017/S0022112087000867
http://dx.doi.org/10.1017/S0022112087000867
http://dx.doi.org/10.1017/S0022112087000867
http://dx.doi.org/10.1017/S0022112081002735
http://dx.doi.org/10.1017/S0022112081002735
http://dx.doi.org/10.1017/S0022112081002735
http://dx.doi.org/10.1017/S0022112081002735
http://dx.doi.org/10.1017/S0022112086002902
http://dx.doi.org/10.1017/S0022112086002902
http://dx.doi.org/10.1017/S0022112086002902
http://dx.doi.org/10.1017/S0022112086002902
http://dx.doi.org/10.1017/S0956792599003848
http://dx.doi.org/10.1017/S0956792599003848
http://dx.doi.org/10.1017/S0956792599003848
http://dx.doi.org/10.1017/S0956792599003848
http://dx.doi.org/10.1103/PhysRevLett.56.2036
http://dx.doi.org/10.1103/PhysRevLett.56.2036
http://dx.doi.org/10.1103/PhysRevLett.56.2036
http://dx.doi.org/10.1103/PhysRevLett.56.2036
http://dx.doi.org/10.1103/PhysRevA.37.1270
http://dx.doi.org/10.1103/PhysRevA.37.1270
http://dx.doi.org/10.1103/PhysRevA.37.1270
http://dx.doi.org/10.1103/PhysRevA.37.1270
http://dx.doi.org/10.1103/PhysRevA.35.3989
http://dx.doi.org/10.1103/PhysRevA.35.3989
http://dx.doi.org/10.1103/PhysRevA.35.3989
http://dx.doi.org/10.1103/PhysRevA.35.3989
http://dx.doi.org/10.1103/PhysRevLett.56.2032
http://dx.doi.org/10.1103/PhysRevLett.56.2032
http://dx.doi.org/10.1103/PhysRevLett.56.2032
http://dx.doi.org/10.1103/PhysRevLett.56.2032
http://dx.doi.org/10.1103/PhysRevLett.56.2028
http://dx.doi.org/10.1103/PhysRevLett.56.2028
http://dx.doi.org/10.1103/PhysRevLett.56.2028
http://dx.doi.org/10.1103/PhysRevLett.56.2028
http://dx.doi.org/10.1063/1.866225
http://dx.doi.org/10.1063/1.866225
http://dx.doi.org/10.1063/1.866225
http://dx.doi.org/10.1063/1.866225
http://dx.doi.org/10.1063/1.864406
http://dx.doi.org/10.1063/1.864406
http://dx.doi.org/10.1063/1.864406
http://dx.doi.org/10.1063/1.864406
http://dx.doi.org/10.1023/A:1022860705459
http://dx.doi.org/10.1023/A:1022860705459
http://dx.doi.org/10.1023/A:1022860705459
http://dx.doi.org/10.1023/A:1022860705459
http://dx.doi.org/10.1017/S0022112084000367
http://dx.doi.org/10.1017/S0022112084000367
http://dx.doi.org/10.1017/S0022112084000367
http://dx.doi.org/10.1017/S0022112084000367
http://dx.doi.org/10.1016/S0362-546X(01)00745-3
http://dx.doi.org/10.1016/S0362-546X(01)00745-3
http://dx.doi.org/10.1016/S0362-546X(01)00745-3
http://dx.doi.org/10.1016/S0362-546X(01)00745-3
http://dx.doi.org/10.1088/0953-8984/20/04/045201
http://dx.doi.org/10.1088/0953-8984/20/04/045201
http://dx.doi.org/10.1088/0953-8984/20/04/045201
http://dx.doi.org/10.1088/0953-8984/20/04/045201
http://dx.doi.org/10.1103/PhysRevE.88.013016
http://dx.doi.org/10.1103/PhysRevE.88.013016
http://dx.doi.org/10.1103/PhysRevE.88.013016
http://dx.doi.org/10.1103/PhysRevE.88.013016
http://dx.doi.org/10.1103/PhysRevE.88.053003
http://dx.doi.org/10.1103/PhysRevE.88.053003
http://dx.doi.org/10.1103/PhysRevE.88.053003
http://dx.doi.org/10.1103/PhysRevE.88.053003
http://dx.doi.org/10.1039/C4SM01047G
http://dx.doi.org/10.1039/C4SM01047G
http://dx.doi.org/10.1039/C4SM01047G
http://dx.doi.org/10.1039/C4SM01047G
http://dx.doi.org/10.1137/04060528X
http://dx.doi.org/10.1137/04060528X
http://dx.doi.org/10.1137/04060528X
http://dx.doi.org/10.1137/04060528X
http://dx.doi.org/10.1006/jcph.1997.5721
http://dx.doi.org/10.1006/jcph.1997.5721
http://dx.doi.org/10.1006/jcph.1997.5721
http://dx.doi.org/10.1006/jcph.1997.5721
http://dx.doi.org/10.1016/j.amc.2013.12.003
http://dx.doi.org/10.1016/j.amc.2013.12.003
http://dx.doi.org/10.1016/j.amc.2013.12.003
http://dx.doi.org/10.1016/j.amc.2013.12.003
http://dx.doi.org/10.1038/srep07066
http://dx.doi.org/10.1038/srep07066
http://dx.doi.org/10.1038/srep07066
http://dx.doi.org/10.1038/srep07066
http://dx.doi.org/10.1051/jp1:1991154
http://dx.doi.org/10.1051/jp1:1991154
http://dx.doi.org/10.1051/jp1:1991154
http://dx.doi.org/10.1051/jp1:1991154


SAFFMAN-TAYLOR FINGERS WITH KINETIC UNDERCOOLING PHYSICAL REVIEW E 91, 023016 (2015)

[29] F. Gibou, R. Fedkiw, R. Caflisch, and S. Osher, J. Sci. Comp.
19, 183 (2003).

[30] S. W. McCue, M. Hsieh, T. J. Moroney, and M. I. Nelson, SIAM
J. Appl. Math. 1, 2287 (2011).

[31] S. L. Mitchell and S. B. G. O’Brien, SIAM J. Appl. Math. 74,
697 (2014).

[32] U. Ebert, F. Brau, G. Derks, W. Hundsdorfer, C.-Y. Kao, C.
Li, A. Luque, B. Meulenbroek, S. Nijdam, V. Ratushnaya, L.
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68, 292 (2007).
[38] F. Brau, A. Luque, B. Meulenbroek, U. Ebert, and L. Schäfer,
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