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Free-path distribution and Knudsen-layer modeling for gaseous flows in the transition regime
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In this paper, we use molecular dynamics (MD) simulations to study the mean free path distribution of
nonequilibrium gases in micronanochannel and to model the Knudsen (Kn) layer effect. It is found that the mean
free path is significantly reduced near the wall and rather insensitive to flow types (Poiseuille or Couette). The
Cercignani relation between the mean free path and the viscosity is adopted to capture the velocity behavior of
the special zone in the framework of the extended Navier-Stokes (NS) equations. MD simulations of flows are
carried out at different Kn numbers. Results are then compared with the theoretical model.
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I. INTRODUCTION

For gaseous flows in the Knudsen number (Kn) range
from 0.01 to 0.1, it is possible to use the Navier-Stokes (NS)
equations and slip boundary conditions at the wall. The latter
concerning the linear relation between the nonzero velocity
us and the velocity derivative ∂u/∂z can be written in the
following form [1,2]:

us = αλ
∂u

∂z
. (1)

In Eq. (1) the wall is assumed to be normal to the z direction
and Kn is defined as the ratio between the mean free path
(MFP) λ and the characteristic length of the channel, for
example, the channel height L. The parameter α is related
to the accommodation coefficient σv as follows:

α = 2 − σv

σv

. (2)

One of the main causes that makes the NS equations inappli-
cable for higher Kn is due to the Knudsen layer. In this layer,
the velocity profiles deviate significantly from the continuum
solutions. The size of this zone is of the order of one mean
free path (MFP) and becomes increasingly considerable for
high Kn. Recently attempts in modeling fluid behaviors in
this special zone through the reduced viscosity concept were
presented [3–6]. The authors argued that the mean free path
near the wall is not the same as in the bulk, and the viscosity,
which is proportional to λ, must be modified accordingly.

Based on the molecular dynamics (MD) method, the
present paper examines the mean free path profile in the
channel and studies how the consideration of the variation
of the MFP can do to well recover the Knudsen layer effect
for the case of nonequilibrium fluids with slip boundary
conditions. In contrast to previous works [5,6], the authors
study the distribution of MFP in different complex situations,
for example, Couette or Poiseuille flows with nondiffusive
walls, which can be isotropic or anisotropic. The fluid model
is of hard-sphere types from which viscosity and mean free
path distribution can be recovered. In terms of Knudsen layer
modeling and MFP-based viscosity, the present work does not
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use a MFP distribution model but adopts MFP distribution
issued from MD simulations. Regarding the velocity slip
modeling, an expression based on stress and accommodation
coefficients is proposed and examined directly with MD
results.

II. MOLECULAR DYNAMIC SIMULATIONS

A. Pseudohard sphere potential and EMD simulation
results for infinite system

To derive interatomic force in MD simulations, the pseudo-
hard sphere potential is used with the following form [7]:

U (r) = 50

(
50

49

)49

ε

[(σ

r

)50
−

(σ

r

)49
]

if r < rc,

U (r) = 0 if r � rc, rc = 50

49
σ. (3)

In (3), σ and ε are the parameters of the potential, and
together with the atomic mass m, they are used, respectively,
as the reference length, energy, and mass. All the results in
this work will be presented in the reduced units based on
these reference quantities. It is shown that using Eq. (3),
the system behaviors, e.g., the compressibility, diffusion, and
structure, are very close to hard sphere fluids at moderate
density and temperature [7]. Similarly at low density and high
temperature limit for which the interatomic interaction are
negligible, classical kinetic theory results are expected to be
recovered as well. In particular, the mean free path λ∞ and the
viscosity η∞ of fluids composed of hard spheres of diameter
d at temperature T verify the expression [8,9]

λ∞ = 1√
2πnd2

, η∞ = 5

16d2

√
kBmT

π
, (4)

with n being the number density and kB the Boltzmann
constant. Given the potential (3), the hard sphere diameter
d is chosen equal to 1.014σ so that the MD results can best
fit both relations (4)1,2. The distribution function f (l/λ∞) of
the dimensionless free path l/λ∞ follows the exponential law
[10]

f (l/λ∞) = e−l/λ∞ . (5)

Here the subscript ∞ represents quantities of an infinite
system, which is different from those of confined systems
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studied in the later section. All these results can be found
within the MD simulations of system in equilibrium (EMD).
Regarding the viscosity, it can be computed by the Green-Kubo
(GK) expression based on the stress autocorrelation function
(SAF) [11–14]:

η∞ = V

kBT

∫ ∞

0
〈τxy(t)τxy(0)〉dt. (6)

The instantaneous microscopic virial shear τxy is computed
using the formula

τxy = 1

V

⎡
⎣∑

j

mvjxvjy + 1

2

∑
i �=j

rijxfijy

⎤
⎦ , (7)

where rj and vj are, respectively, the position and the velocity
vectors of the atom j and f ij the force vector of atom j acting
on atom i. For the pseudohard sphere gas at small density
in consideration, the contribution of the second virial part is
usually negligible in comparison with the first kinetic part
(less than 1%). To accelerate the convergence of SAF integral
computation, we make use of the isotropy and substitute τxy by
the average of all nondiagonal elements of the pressure tensor
τxy,τyz, and τxz [14].

In the EMD simulations, the gas number density is fixed at
n = 0.005σ−3, which corresponds to the mean free path of an
infinite system in equilibrium λ∞ = 43.78σ . For the free path
calculation, we use the starting configuration constituted of
64 000 atoms contained in the periodic cubic box of dimension
L = 234σ . The initial velocities of the atoms are assigned
randomly at temperature T = 2ε/kB . We relax the system for
20 millions of time steps of 0.001 time unit, the time to achieve
the equilibrium, after which the measurements are carried out.
The free path is the distance that an atom travels between
the collision events, i.e., when the distance between the two
atoms is less than the distance d. To determine its distribution,
the range [0,5λ∞] is divided into 50 intervals, and we count
the number of free paths falling within each interval. The
MD results in Fig. 1 have been normalized so that the total
probability is equal to 1 and showed excellent agreement with

FIG. 1. Distribution function f (l/λ∞) of dimensionless free path
l/λ∞. The continuous line represents the theoretical distribution
exp (−l/λ∞), and the filled circles the MD results. The mean free
path computed by MD simulation is 43.96σ to compared with 43.78σ

from kinetic theory.
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FIG. 2. Normalized SAF 〈τxy (0)τxy (t)〉
〈τxy (0)τxy (0)〉 as function of time t (in√

mσ 2/ε unit). The viscosity computed from the integrated SAF
is 0.2539 to compared with the kinetic theory value 0.2425.

the theoretical distribution. The mean free path of the system
is also very close to the theoretical value, 43.96σ by MD
calculation and 43.78σ by the kinetic theory.

To calculate the viscosity using GK expression, the total
integration time occurs over 1000 time units, with each time
unit corresponding to an integration interval. The system is
equilibrated at the same temperature using the same procedure
as the previous calculation. Then the ensemble average of
〈τxy(t)τxy(0)〉 is taken over 30 000 samples of 64 000 atoms
collected during the same run. Figure 2 shows a much longer
decaying behavior of the SAF function, in comparison with
Lennard-Jones (LJ) liquids. The fluctuation of the latter usually
terminates at around t = 2 time units. For pseudohard sphere
gas at the present density, due to the long collision time, the
SAF function is vanishingly small after t = 200 time units.
The viscosity integrated from SAF function yields the value
η∞ = 0.2539, which is close to value 0.2425 predicted by the
kinetic theory.

All the results presented in the present section agree
very well with the kinetic theory, which is valid for infinite
system in equilibrium, or deviated slightly from equilibrium.
In the next section, we shall investigate the case of confined
nonequilibrium systems, for example, gas flow in micro- and
nanochannels. In particular, we are interested in how to capture
the Knudsen layer effect based on the local mean free path and
viscosity.

In Ref. [6], the variation of MFP of a LJ gas in equilibrium
inside a channel was considered. The authors proposed a
power law to fit the variation trend of the MFP and studied
the Knudsen layer effect at different Kn numbers [5]. The
present paper aims at extending the approach of Ref. [6]
which was based on the following discussion: (1) The LJ
model was used to study Ne gas. However, the viscosity value
η∞ associated to the potential was not computed but taken
elsewhere. (2) In MD simulations, the gas is in equilibrium,
and the wall boundary conditions were specular reflections.
(3) The empirical parameters for the power law used to fit the
MFP variation were not universal enough. They may depend on
the system in consideration. (4) The second order slip model
was used in combination with the viscosity variation. The
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coefficients were chosen to fit best the flow rate in some Kn
ranges and were not linked to accommodation coefficients.
Furthermore, the macroscopic agreement was only obtained at
the expense of velocity profile.

As presented above in this section, the MFP and viscosity
are determined uniquely from the same potential by MD
calculation and agree very well with kinetic theory. In the
following, we shall examine how the MFP behaves in both
equilibrium and nonequilibrium conditions. Next, without
assuming any wall law a priori, we use directly both MFP
and velocity profiles obtained by MD simulations to evaluate
how the approach can well reproduce the Knudsen layer.

B. Mean free path of nonequilibrium gas in confined channels

1. MFP in confined channels

In this subsection, we study gas systems with the same
density n = 0.005σ−3 and temperature T = 2ε/kB as in the
previous section. However, the periodic boundary conditions
along direction z is replaced by stochastic thermal wall. Two
wall models are considered: (1) Maxwell isotropic thermal
wall with one accommodation parameter σv , (2) anisotropic
thermal wall with three parameters σvx,σvy , and σvz. According
to the Maxwell gas-wall collision model, σv is the percentage
of the gas atoms that are thermalized by the wall and
reflect diffusively with the temperature of the latter Tw and
1 − σv is the portion of atoms that reflect specularly [2].
The anisotropic wall model generalizes the Maxwell model
by applying the diffusive or specular reflection mechanism to
each velocity component [15]. The model is useful to capture
direction-dependent effect in walls possessing two planes of
symmetry, for example, atomic walls composed of infinite
parallel stripes. The parameters σvx,σvy , and σvz representing
the accommodation coefficients along Ox,Oy, and Oz, can be
determined separately from the gas-wall collision numerical
experiments [16,17]. Since the paper’s scope deals with
the Knudsen layer aspect, we take hypothetical values for
accommodation parameters at wall temperature Tw = 2ε/kB

as follows:

Isotropic wall (Maxwell’s model): σv = 0.8,

Anisotropic wall: σvx = 0.96,σvy = 0.83, and σvz = 0.9.

The implementation of these wall boundary conditions in MD
simulations can be found in Refs. [18,19]. The number of gas
atoms N and the box dimension Lx = Ly = Lz = L are varied
so that Kn ranges from 0.2 to 0.5 (see Table I).

The gas flows are induced by applying uniform gravity
like force field (Poiseuille) γ = 0.0005ε/(σm) or moving the
upper wall with a constant velocity (Couette) uw = 0.13

√
ε/m

TABLE I. Total number of atoms, box sizes, and Knudsen
numbers of systems in consideration.

N L[σ ] Kn = λ∞/L

64 000 234 0.18
27 000 178 0.25
8000 117 0.37
3375 88 0.49

FIG. 3. Model surface using directional accommodation coeffi-
cients reproducing the effects of atomic collisions on the striped
surface [18,19].

along direction x. For anisotropic wall model, we define
ϕ ∈ [0◦,90◦] the angle made between the force field (or wall
motion) and Ox (see Fig. 3). The channels are divided into 100
layers (Nlayer = 100), and we extract the mean free path, shear
stress, velocity, density, and temperature profiles for each layer.
Each run requires 520 millions of time steps of 0.001 time unit.
The averaging process begins after achieving stabilization, i.e.,
20 millions of time steps. In this work, when an atom collides
with another atom or with the wall, its coordinate is recorded.
When it collides again, we calculate the distance that it has
traveled and update its collision coordinate, and so on. The
mean free path at one layer is the average of the free paths of
atoms that collide in that layer. We also distinguish average
quantities associated with atoms coming from below and from
above, λ− and λ+, and the mean free path λ for all atoms.
As a result, λ− is expected to vanish at the lower wall and to
be maximal at the upper wall and vice versa. Taking atoms
coming from below as an example, near the lower wall, the
distance between two collisions is limited by the size of the
interval [0,z/L] in which the MFP is computed. But for larger
values of z/L, the MPF depends mainly on the gas density. We
shall compare this to an approximate analytical formula given
in Ref. [20] for the layer at a distance z from the lower wall

λ−(z)

λ∞
= 1 +

(
z

λ∞
− 1

)
e−z/λ∞ −

(
z

λ∞

)2

Ei

(
z

λ∞

)
,

Ei(x) =
∫ ∞

1

e−xt

t
dt. (8)

From Fig. 4 we can find that the analytical approximation
of the MFP profile seems to give good results at small Kn. At
higher Kn, the deviation is significant. Considering the effect
of flow type (Couette or Poiseuille), we find that the mean
free path is rather insensitive (see Fig. 5). Similar conclusions
are obtained for different wall models (not shown): the MFP
is also insensitive to the wall models and the accommodation
coefficients. These remarks suggest that the distribution of
MFP of quasi-isothermal and quasiuniform fluids mainly
depends on the geometry and on the gas density inside the
channel. We see in Fig. 6 that the variation across the channel
of temperature and density obtained from MD results is almost
uniform in the studied case. It can be explained by the fact that
if the driving force parameters γ and uw are small enough, the
fluid deviates only slightly from equilibrium.

2. MFP-based viscosity, slip velocity

To fully capture the Knudsen layer effect, we need the slip
velocity at the wall and we must know how the velocity varies
into the channel center. As continuation of the previous section,
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FIG. 4. λ− (in σ -unit) as function of z/L (for Kn = 0.37 and
0.18). The thermal wall model is the Maxwell’s model with σv = 0.8.

we shall discuss first the variation of velocity profiles, which
is closely related to the MFP.

Equation (4)2 results from the Chapman-Enskog treatment
of Boltzmann’s equation [8,9], when combined with (4)1,
showing that the viscosity is proportional to the MFP, thermal
speed and density. Such linear relation can also be derived
using a less formal approach, for example, by studying the
momentum transport at a control plane due to an average flux of
atoms carrying the average velocity from one λ away [21,22],
etc. The relation between viscosity and mean free path

η 	 1

2
nc̄λ, c̄ =

√
8kBT

πm
(9)

is universally accepted. However, Eq. (4) cannot explain the
reduction of MFP and the velocity defect in the Knudsen
layer while the density and temperature vary very slightly
(see Fig. 6). A common continuum approach to deal with
the Knudsen layer is to make recourse to higher order
hydrodynamics models (see Refs. [1,21–24] and the references
cited therein), i.e., Burnett, super Burnett, augmented Burnett,
and moment equations (Grad, R13, R26), etc.

In contrast to Eq. (4), Eq. (9) is not subject to the same
limitations. In recent works [3,4,6], it is suggested that one can
still use the NS equation but with varying viscosity depending

FIG. 5. (Color online) λ (in σ unit) as a function of z/L at
Kn = 0.37 for Poiseuille and Couette flows. The two curves nearly
superpose. The thermal wall model is the Maxwell’s model with
σv = 0.8.

on the local mean free path λ(z):

η(z) = η∞
λ(z)

λ∞
. (10)

Here the local MFP λ(z) is considered as given information.
It can be determined accurately from MD simulations or
approximated by models, as presented in the previous section.

Regarding the boundary conditions, the slip velocity us can
be obtained from the accommodation coefficients. They can
be written in two general forms

us = λN.
∂u
∂z

, us = ν

m
N.τ , (11)

where ν is the collision rate at the wall and N is given by

N =
[

(2 − σvx)/σvx 0

0 (2 − σvy)/σvy

]
, (12)

FIG. 6. (Color online) Normalized temperature T/Tw and den-
sity n/n0 as functions of z/L at Kn = 0.37 for Poiseuille flows. The
thermal wall model is the Maxwell’s model with σv = 0.8.
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in the base xOy. The derivation of Eq. (11)2 is based on
the association of velocity change at the wall with shear
stress vector τ via the accommodation coefficients. The two
expressions (11)1 and (11)2 are equivalent if the NS equations
are valid up to the wall and λ = λ∞. However, if these
conditions are not satisfied, Eq. (11)1 is subject to Knudsen
layer effect and fails in the transition regime. Otherwise, we
must use a correction parameter to reproduce macroscopic
quantities [8,25], for example the flow rate or the macroslip.
Since we focus on the variation of velocity in the Knudsen
layer, Eq. (11)2 will be considered. Assuming that the gas near
the wall is not far from equilibrium, we can estimate the wall
collision rate ν using the Maxwell Boltzmann distribution. The
final equation can also be rewritten under the dimensionless
form1

us

c∗ = N.
τ

p
, c∗ =

√
πkBT /2m, (13)

where p is the pressure. We note that when the gas-surface
interaction is isotropic, i.e., σvx = σvy = σv , Eq. (13) is
identical to Maxwell’s boundary condition for isothermal flows
[1,2,21]

us

c∗ = (2 − σv)

σv

τ

p
. (14)

3. Knudsen layer modeling and comparison with MD results

We shall continue with the previous MD experiments but
now focus more on the dynamical results. First, we are looking
at the shear stress profile in the channel. The local shear stress
τ/p is, by definition [see Eq. (7)], computed from the product
of the peculiar velocity components ṽix = vix − ux,ṽiy =
viy − uy , and ṽiz = viz − uz along the x,y, and z directions,
averaged for all atoms inside the considered bin. Here ux,uy ,
and uz are the components of the stream velocity vector u.
From Fig. 7, we find that the shear stress profile is constant for
Couette case and linear for Poiseuille flow. These profiles are
in agreement with the solutions of the momentum conservation
equation, which is universally valid. Regarding the slope of the
Poiseuille case, it is also consistent with uniform body force
that we apply to the fluid

τ = −nmγ (z − L/2). (15)

The same conclusion can be obtained when the surface model
is anisotropic. Since Eq. (13) can predict the slip velocity at the
wall, we shall compare this value with the MD results. Table II
shows that equation (13) gives a fairly accurate prediction of
this quantity, i.e., around 5% difference. In order to obtain the
velocity profile, the NS equations are solved considering
the variation of the viscosity η associated with the variation
of the mean free path [using Eq. (10)]. The velocity slope is
obtained from the local Newtonian relation, for example,

τ = η
∂u
∂z

, (16)

1In works currently carried out we have used a more general ap-
proach based on a scattering kernel, the Chapman-Enskog distribution
and the Grad’s moment method [21] in order to model the thermal
transpiration effects, the temperature jumps and velocity slip. This
model reduces to Eq. (13) for the isothermal flows.

FIG. 7. (Color online) Dimensionless shear stress τ/p (vertical
axis) as a function of z/L (horizontal axis) at Kn = 0.37 for Poiseuille
and Couette flows. The thermal wall model is the Maxwell’s model
with σv = 0.8.

where τ is known by (15). Two boundary conditions are used
leading to two different solutions called Approximation 1 and
Approximation 2, respectively. In Approx. 1, we use the mi-
croslip at the wall. In Approx. 2, we use the MD velocity at the
center of the channel. Approximation 2 is useful only to judge
the quality of the viscosity approximation deduced from the
velocity slope since it is meaningless in most of the modelings
for which the midstream velocity is usually unknown.

To summarize, we have used the following equations
to determine the velocity profile u in the interval 0 < z <

L/2 Approx. 1: Integrating Eqs. (10), (15), and (16) using
slip velocity u(z = 0) = us in (13) as the starting point,
the mean free path function λ(z) is calculated from MD
simulations; Approx. 2: Integrating Eqs. (10), (15), and (16)
using MD midstream velocity u(z = L/2) = uMD(z = L/2)
as the starting point, the mean free path function λ(z) is
calculated from MD simulations.

From Fig. 8 we find that the two approximations capture
very well the Knudsen layer effect demonstrated by the

TABLE II. Normalized slip velocity at the wall us/c
∗ (isotropic

wall model) or slip velocity components usx/c
∗ and usy/c

∗

(anisotropic wall model, see Fig. 3) computed by MD simulations
and Eq. (13). The theoretical value is calculated by Eq. (13).

Flow/wall Kn ϕ Dir. MD Theory Diff.

Pois./Iso. 0.18 – – 0.0410 0.0432 5%
0.37 – – 0.0218 0.0220 1%
0.49 – – 0.0173 0.0161 7%

Couette/Iso. 0.37 – – 0.0136 0.0145 6%

Pois./Aniso. 0.18 45◦ x 0.0210 0.0224 6%
y 0.0279 0.0291 4%

0.25 45◦ x 0.0156 0.0170 8%
y 0.0211 0.0222 5%

0.37 45◦ x 0.0109 0.0110 1%
y 0.0149 0.0146 2%

0.49 45◦ x 0.0084 0.0084 1%
y 0.0116 0.0110 6%
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FIG. 8. Normalized velocity profile u/c∗ as a function of z/L.
Comparison between the MD results and the two approximations.
The thermal wall model is the Maxwell’s model.

disagreement between the Approx. 1 and 2 velocity profiles,
and the NS solution determined from the use of constant
viscosity η∞ and slip boundary conditions, which have been
defined by the microslip (13). Indeed, this disagreement is
maximum at the center of the channel. The two approximations
also agree well with the MD results at Kn = 0.18. At higher Kn
(Kn = 0.37), Approx. 1 underestimates the velocity profiles,
while Approx. 2 leads to slight overestimates. From the
velocity slope, the visible difference between MD calculations,
and Approx. 1 and 2 results are observed at the zone within
less than a half mean free path from the wall, a zone that can be
identified to a new reduced Knudsen layer. Another interesting
remark can be made here that outside this Knudsen layer, the
estimation of viscosity from the mean free path is particularly
good at the channel center.

Since the slip velocity can be computed with relatively
good accuracy from the shear stress and accommodation
coefficients, we shall keep Approx. 1 in the following analysis.
From Fig. 9 we can see that the approximation works well

FIG. 9. (Color online) Normalized velocity components ux/c
∗

and uy/c
∗ as a function of z/L. Comparison between the MD

results and the present approximation 1. The thermal wall model
is anisotropic. The flow direction is ϕ = 45◦.

TABLE III. Dimensionless flow rate.

Kn Q̄x (MD) Q̄x (present) Q̄y (MD) Q̄y (present) Diff.

0.18 0.02325 0.02268 0.02662 0.02621 3%
0.25 0.01581 0.01536 0.01837 0.01808 3%
0.37 0.00911 0.00899 0.01157 0.01068 9%
0.49 0.00696 0.00626 0.00753 0.00841 12%

for flows over anisotropic surface. Generally good agreement
with MD results is found for Kn = 0.25. To judge the overall
performance of the approximation at different Kn, we compare
the dimensionless flow rate Q̄x and Q̄y , integrated from the
normalized velocity profile

Q̄x = 1

2Lc∗

∫ L

0
ux dz, Q̄y = 1

2Lc∗

∫ L

0
uy dz. (17)

The results presented in Table III show that for Kn up
to 0.25, the present approach agrees very well with the MD
method. However, at Kn as high as 0.37, the agreement is lost.
By linear interpolation, it is suggested that the method can
work up to Kn = 0.3 (with 5% error).

III. CONCLUSIONS

The paper presents MD simulation results on the MFP
profile of non equlibrium gas in confined channel with slip
boundary conditions. This variation of the MFP profile leads
to variation of the viscosity across the channel. The main
results are the following.

First, the MFP strongly reduces near the wall. Second, the
MFP profile is insensitive if Poiseuille or Couette flows are
considered. It is also suggested that MFP is independent of the
surface properties(via the influences of the accommodations
coefficients and isotropy). Third, the NS equations at different
Knudsen numbers have been solved for a varying viscosity, and
the solutions are compared with MD solutions and NS solution
with a constant viscosity. Fourth, in contrast to previous
works [5,6] using empirical second-order slip coefficients for
a purely diffusive wall, we have evaluated the slip velocity
directly from the shear stress at the wall and accommodation
coefficients which are not equal to 1 and depend on directions
for anisotropic surfaces. This stress-slip velocity relation is
valid for all Kn numbers under consideration. We note here that
the slip velocity is the real slip velocity at the wall (microslip),
not the velocity extended from the velocity profile at the center
of the channel (macroslip). Finally by comparing MD results
with the extended NS equations, we suggest that the latter ap-
proach works well at Kn high as 0.3 but still fails at higher Kn.

The present work approach can be extended to study
different aspects. Since the stress-slip velocity relation still
works while MFP based NS equations fails at high Kn (Kn �
0.4, for example), it is suggested that combining higher order
dynamics model and the MFP profile can improve Knudsen
layer issue at this Kn range. Further studies on its validity for
different flow conditions, e.g., highly nonequilibrium fluid,
complex geometry, will be done in the future. In addition,
the study of the influence of accommodation coefficients with
different scattering kernel models in both dynamic and heat
transfer problems will also be considered.
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