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Self-propulsion of a spherical electric or magnetic microbot in a polar viscous fluid
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The self-propulsion of a sphere immersed in a polar liquid or ferrofluid is studied on the basis of
ferrohydrodynamics. In the electrical case an oscillating charge density located inside the sphere generates
an electrical field that polarizes the fluid. The lag of polarization with respect to the electrical field due to
relaxation generates a time-independent electrical torque density acting on the fluid, causing it to move. The
resulting propulsion velocity of the sphere is calculated in perturbation theory to second order in powers of the
charge density.
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I. INTRODUCTION

A planar sheet can propel itself through a polar liquid
or a ferrofluid by the generation of an oscillating electric
or magnetic polarization in the fluid [1]. The mechanism is
based on the nonlinear coupling of polarization and field,
which leads to a torque density acting on the fluid, causing
it to move. The same coupling allows pumping of a neutral
electrically polar liquid such as water by the application of
a running electric wave [2] and pumping of a ferrofluid by
the application of a running magnetic wave [3,4]. In the
following we study electric or magnetic self-propulsion of a
spherical microbot. The planar sheet provides a simple model
allowing straightforward mathematical analysis, but a sphere
resembles more closely a compact object that would be used
experimentally and needs to be analyzed separately.

For definiteness we discuss only the electrical case in
detail, but a quite analogous derivation holds in the magnetic
case. In the electrical case we assume that the motion is
caused by an oscillating charge density located inside a
rigid spherical surface, generating an electrical field that
polarizes the surrounding fluid. For simplicity we assume
that the electrical field can be decomposed into dipole and
quadrupole contributions. The sphere is caused to move by
interference of the dipole and quadrupole fields, which leads to
a time-independent electrical azimuthal torque density acting
on the fluid. The torque density creates a steady vortex ring
surrounding the sphere and propelling it. In Fig. 1 we draw a
schematic picture of the effect.

In analogy to the theory of ferrohydrodynamic pumping [5],
we calculate the propulsion velocity of the sphere in pertur-
bation theory to second order in powers of the amplitude of
the exciting charge density. The perturbation calculation has
the advantage of simplicity. It leads to an explicit expression
for the propulsion velocity and hence allows insight into its
dependence on the system parameters. To the order considered,
the nonlinear convective terms in the equations of motion can
be neglected. We have shown in the case of ferrohydrodynamic
pumping [5] and self-propulsion of a planar microbot [1] that
the theory can be extended to higher order, but the second-order
perturbation theory turned out to be quite sufficient from a
numerical point of view. Therefore, we limit the calculation
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to second-order perturbation theory in the present case. At the
surface of the sphere the flow velocity is required to satisfy a
no-slip boundary condition, but a mixed slip-stick boundary
condition could also be considered.

The spherical geometry is preferable to the planar one in
experimental realization and in numerical simulation. It would
be fascinating to construct a microbot without moving parts of
the type considered here. If realized, it may offer interesting
technical application, for example, in the transport of drugs
through a fluid. The physical situation under consideration
provides a remarkable example of the coupling of translational
and rotational degrees of freedom in a fluid [6–9]. The
spherical geometry poses a challenging problem and the
mathematical solution is of interest on its own.

The spatial shift of the spherical microbot during a period of
the field is related to the concept of geometric phase or holon-
omy [10]. Examples of holonomy are Foucault’s pendulum,
the four-bar linkage studied by Yang and Krishnaprasad [11],
and Berry’s phase in quantum mechanics [12].

The self-propulsion studied here is more closely related to
swimming than to phoresis in an applied field. In electrokinetic
phenomena in electrolyte solutions the effects are linear in
the applied electric field to lowest order [13]. Bazant and
Squires [14,15] have studied the effect of induced-charge
electro-osmosis, where the flow at the surface of a body
immersed in an electrolyte solution is quadratic in the applied
field. In the present case the propulsion velocity is quadratic
in the self-generated field, as in swimming at low Reynolds
number [16,17], where to lowest order the speed is quadratic
in the amplitude of surface distortion. We study a single active
particle, but in principle two or more with hydrodynamic
interactions may be considered [18].

II. EQUATIONS OF MOTION

We consider a sphere of radius a immersed in an incom-
pressible polar viscous fluid with shear viscosity η, vortex
viscosity ζ , and spin viscosity η′. The fluid can be either
electrically or magnetically polar. For definiteness we shall
use language appropriate to an electrically polar liquid. With
minor changes, the same equations apply in the case of a
magnetic ferrofluid.

Due to incompressibility of the fluid, the divergence of
the flow velocity v(r,t) vanishes ∇ · v = 0. The flow velocity
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FIG. 1. Schematics of a sphere being propelled by an electrically
or magnetically generated vortex ring. We show a cross section in the
xz plane and propulsion along the z axis.

satisfies the momentum balance equation

ρ
dv

dt
= ∇ · (σ hyd + σ el), (2.1)

where d/dt = ∂/∂t + v · ∇ is the substantial derivative, σ hyd

is the hydrodynamic stress tensor, and σ el is the Maxwell
stress tensor. The hydrodynamic stress tensor has Cartesian
components [19,20]

σhyd,αβ = −pδαβ + η(∂αvβ + ∂βvα)

+ ζ εαβγ (∇ × v − 2ωp)γ , (2.2)

where p is the pressure, η is the shear viscosity, ζ is the
vortex viscosity [8], and ωp is the rate of rotation of the
polar molecules. In SI units the Maxwell stress tensor has
the form [21]

σ el = DE − ε1

2
E2 I, (2.3)

where D(r,t) is the electric displacement, E(r,t) is the
electrical field, ε1 is the high-frequency dielectric permeability
of the fluid, E2 = E · E, and I is the unit tensor. The fields
are related by

D = ε1(E + P), (2.4)

where P(r,t) is the polarization due to permanent dipole
moments of the fluid molecules. The fields satisfy Maxwell’s
equations of electrostatics

∇ · D = ρel, ∇ × E = 0, (2.5)

where ρel(r,t) is the electrical charge density located inside the
sphere. The charge density ρel acts as a source of the fields and
is assumed to be known. We use spherical coordinates (r,θ,ϕ)
with the origin located at the center of the sphere. The charge
density is taken to be a superposition of dipole and quadrupole

components such that the first-order electric field outside the
sphere is given by

E1(r,θ,t) =
2∑

l=1

μl(t)ul(r,θ ), r > a, (2.6)

with dipole moment μ1(t), quadrupole moment μ2(t), and
component field

ul(r,θ ) =
(

a

r

)l+2[
(l + 1)Pl(cos θ )er + P 1

l (cos θ )eθ

]
, (2.7)

with Legendre polynomials Pl and associated Legendre func-
tions of the first kind P 1

l in the notation of Edmonds [22]. The
electrical field E1 can be derived from a scalar potential φ1 as
E1 = −∇φ1 by use of the identity

ul(r,θ ) = −al+2∇�−
l (r,θ ), �−

l (r,θ ) = r−l−1Pl(cos θ ).
(2.8)

We assume that the multipole moments vary harmonically in
time with frequency ω and can be expressed as

μl(t) = μlc cos ωt + μls sin ωt (l = 1,2). (2.9)

The first-order electrical field E1(r,t) has the character of
a running wave. The external multipole moments μ1,μ2

are linear in the exciting charge density ρel and must be
calculated from an electrostatic problem with account of the
high-frequency permeability ε1 and the first order polarization
P1. The details of the linear electrostatic problem of a sphere
immersed in a dielectric medium need not concern us here.

The relaxation of polarization P is assumed to be governed
by the constitutive equation [21]

∂ P
∂t

+ v · ∇ P − ωp × P = −γ [P − Peq(E)], (2.10)

where Peq(E) is given by the equilibrium equation of state
and the relaxation rate γ is the inverse of the relaxation time
τ . The rotation rate ωp is related to the spin S per unit mass
by S = Iωp, where I is an average moment of inertia per unit
mass. The equation of motion for the spin per unit mass is
taken as

ρ
dS
dt

= 2ζ (∇ × v − 2ωp) + ε1 P × E + η′∇2ωp, (2.11)

where η′ is the spin viscosity [21]. The first term on the right-
hand side is the hydrodynamic torque density and the second
term is the electrical torque density. In the situation considered
in the following ∇ · ωp = 0 due to spatial symmetry, so there
is no need to introduce a bulk spin viscosity [6].

We shall neglect the inertial term on the left-hand side in
Eqs. (2.1) and (2.11). Then Eq. (2.11) reduces to

2ζ (∇ × v − 2ωp) = −ε1 P × E − η′∇2ωp. (2.12)

Substituting this into Eq. (2.2), we find from Eq. (2.1)

η∇2v − ∇p + ∇ · σ S
el + 1

2η′∇ × ∇2ωp = 0, (2.13)

where σ S
el is the symmetric part of the Maxwell stress tensor

σ S
el = 1

2
(DE + E D) − ε1

2
E2 I . (2.14)
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Using Maxwell’s equations of electrostatics, one may express
the divergence of this tensor as [23]

F = ∇ · σ S
el = ε1 P · (∇E) + ε1

2
∇ × (P × E). (2.15)

The first term on the right-hand side is the Kelvin force
density. The second term may be expressed as the divergence
of an antisymmetric tensor. For our purposes the alternative
expression [24]

F = ε1

2
∇(P · E) − ε1

2
E × (∇ × P) − 1

2
D(∇ · P) (2.16)

will also be useful.
The reduced equations of motion (2.12) and (2.13) must be

supplemented with boundary conditions for v and ωp at the
surface of the sphere. We assume that v and ωp satisfy the
no-slip conditions

v|r=a+ = 0, ωp|r=a+ = 0. (2.17)

The field E is assumed to vanish for r → ∞. Together with
Maxwell’s equations of electrostatics (2.5) and the polarization
relaxation equation (2.10), the equations constitute a nonlinear
set. We solve the equations by formal perturbation expansion
in powers of the amplitude of the exciting charge density ρel,
setting

E = E1 + E3 + · · · , P = P1 + P3 + · · · ,

v = v2 + v4 + · · · , p = p0 + p2 + p4 + · · · , (2.18)

ωp = ωp2 + ωp4 + · · · ,

where p0 is the static equilibrium pressure and the subscripts
denote the power of ρel. We perform the calculation to second
order in ρel. The higher-order terms E3,P3,v4,p4,ωp4, . . . are
generated by the two convective terms in Eq. (2.10) and by
nonlinearity in the equation of state Peq(E).

III. FIRST-ORDER FIELDS AND SECOND-ORDER
PROPULSION VELOCITY

The first-order electrical field E1 is expressed by Eq. (2.6) in
terms of the external multipole moments μ1,μ2. To first order
the flow velocity v1 and the particle rotational velocity ωp1

vanish, so for the calculation of the first-order polarization P1

the convective terms in Eq. (2.10) can be omitted. The linear
relaxation equation reads

∂ P1

∂t
= −γ (P1 − χ0 E1), (3.1)

where χ0 is the zero-field susceptibility. We decompose the
fields E1 and P1 as in Eq. (2.9),

E1(r,θ,t) = E1c(r,θ ) cos ωt + E1s(r,θ ) sin ωt,
(3.2)

P1(r,θ,t) = P1c(r,θ ) cos ωt + P1s(r,θ ) sin ωt.

It is convenient to use complex notation with the oscillating
factor exp(−iωt). Then, with the linear susceptibility χ =
χ ′ + iχ ′′, the field and polarization components are related by

P1c = χ ′ E1c − χ ′′ E1s , P1s = χ ′ E1s + χ ′′ E1c. (3.3)

We find from Eq. (3.1)

χ ′ = χ0
γ 2

ω2 + γ 2
, χ ′′ = χ0

ωγ

ω2 + γ 2
. (3.4)

The linear susceptibility is used in the dielectric problem
mentioned below Eq. (2.9).

We find for the second-order electrical torque density

N2 = ε1 P1 × E1 = (0,0,N2ϕ), (3.5)

with

N2ϕ = C
a7

r7
(5 sin θ + sin 3θ ),

(3.6)

C = 3

8
ε1χ

′′(μ1cμ2s − μ1sμ2c),

independent of time. The torque density (3.5) is the central
quantity in our derivation. The torque density acts on the fluid,
creating a ring vortex surrounding the sphere and causing it
to move. In Fig. 1 we show a schematic picture of the effect.
In order to find the propulsion velocity of the sphere we must
calculate the vortex flow pattern from the equations of motion
for the fluid.

To second order the equations of motion (2.12) and (2.13)
become

2ζ (∇ × v2 − 2ωp2) = −N2ϕeϕ − η′∇2ωp2,
(3.7)

η∇2v2 − ∇p2 + ∇ · σ S
el2 + 1

2η′∇ × ∇2ωp2 = 0.

In the term ∇ · σ S
el2 we can use Eq. (2.16) with P and E

replaced by P1 and E1. The last two terms in the expression
then vanish, because ∇ × P1 = 0 and ∇ · P1 = 0. The first
term shows that the electric force density can be balanced
by the gradient of a pressure. Therefore, we look for a
solution of Eqs. (3.7) with the term involving ∇ · σ S

el2 omitted.
The remaining equations are driven by the time-independent
torque density N2 and we denote the corresponding remaining
pressure disturbance as p2N .

The geometry of the torque density suggests that the flow
velocity is axially symmetric. We can reduce the equations to
scalar form by setting ωp2 = (0,0,χ (r,θ )) and using a Stokes
stream function ψ(r,θ ) such that v2 = (vr,vθ ,0) with

vr = −1

r2 sin θ

∂ψ

∂θ
, vθ = 1

r sin θ

∂ψ

∂r
. (3.8)

The angular factor in the torque density in Eq. (3.6) can be
expressed as

5 sin θ + sin 3θ = 24
5 P 1

1 (θ ) + 8
15P 1

3 (θ ), (3.9)

with

P 1
1 (θ ) = sin θ, P 1

3 (θ ) = 3
8 (sin θ + 5 sin 3θ ). (3.10)

This suggests that we look for a solution of the form

ψ(r,θ ) = rf1(r) sin θP 1
1 (θ ) + rf3(r) sin θP 1

3 (θ ),

χ (r,θ ) = g1(r)P 1
1 (θ ) + g3(r)P 1

3 (θ ), (3.11)

p2N (r,θ ) = η
h1

r2
P1(θ ) + η

h3

r4
P3(θ ).

We have used that the pressure disturbance p2N satisfies
Laplace’s equation. Substitution of these expressions leads to
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two pairs of ordinary differential equations for the pairs (f1,g1)
and (f3,g3) separately. The equations for the pair (f1,g1) read

2ζ [r2f ′′
1 + 2rf ′

1 − 2f1] + η′[r2g′′
1 + 2rg′

1 − 2g1] − 4ζ r2g1

= −24

5
C

a7

r5
,

2η[r2f ′′
1 + 2rf ′

1 − 2f1] − 2ηh1 − η′[r2g′′
1 + 2rg′

1 − 2g1]

= 0.

(3.12)

The equations for the pair (f3,g3) read

2ζ [r2f ′′
3 +2rf ′

3−12f3]+η′[r2g′′
3 + 2rg′

3 − 12g3] − 4ζ r2g3

= − 8

15
C

a7

r5
,

2η[r2f ′′
3 + 2rf ′

3 − 12f3] − η
2h3

3r2
− η′[r2g′′

3 + 2rg′
3 − 12g3]

= 0. (3.13)

Consider first the equations for the pair (f1,g1). We can find
a particular solution of the second of Eqs. (3.12) by setting
h1p = 0 and g1p(r) = (2η/η′)f1p(r). Substituting this into the
first of Eqs. (3.12), we obtain a second-order inhomogeneous
equation for f1p(r) of the form

r2f ′′
1p + 2rf ′

1p − 2f1p − κ2r2f1p = − 12

5(η + ζ )
C

a7

r5
, (3.14)

with the abbreviation

κ2 = 4ηζ

η′(η + ζ )
. (3.15)

The equation has the solution

f1p(r) = 12a7

5(η + ζ )
C

2κ

π
[i1(κr)L1(r) + k1(κr)G1(a,r)]

+A1k1(κr), (3.16)

with modified Bessel functions [25]

il(z) =
√

π

2z
Il+1/2(z), kl(z) =

√
π

2z
Kl+1/2(z), (3.17)

integrals

L1(b) =
∫ ∞

b

k1(κr)

r5
dr, G1(a,b) =

∫ b

a

i1(κr)

r5
dr, (3.18)

and a constant A1. The integrals can be performed explicitly.
The constants of integration have been chosen such that f1p(r)
tends to zero at infinity.

In order to satisfy the boundary conditions we must add
solutions of the homogeneous equation (3.12) with the right-
hand side set equal to zero. The solution with proper behavior
at infinity takes the form

f1(r) = f1p(r) − 12a7

5(η + ζ )
C

[
A2r + A3

r2

]
,

(3.19)

g1(r) = 2η

η′ f1p(r), h1 = 0.

The solution proportional to A2 corresponds to a flow pattern
with uniform flow velocity and vanishing pressure. The solu-
tion proportional to A3 corresponds to a dipolar irrotational
flow pattern, again with vanishing pressure. We have omitted
an Oseen flow pattern proportional to h1 with f1 = −h1/2
and g1 = h1/2r2 since such a contribution would imply that
the sphere exerts a force on the fluid, which is excluded in
self-propulsion. The velocity of self-propulsion is given by
minus the uniform flow velocity at infinity and is proportional
to the coefficient A2. The sphere is propelled by a ring vortex
generated by the azimuthal torque density proportional to
eϕ . The constants of integration A1,A2,A3 are determined by
applying the no-slip boundary conditions (2.17). These imply

f1(a+) = 0, f ′
1(a+) = 0, g1(a+) = 0. (3.20)

In particular, we find for the coefficient A2

A2 = 24 + 24σ − 6σ 2 + 2σ 3 − σ 4 + σ 5 − σ 6eσ�(0,σ )

432a6(1 + σ )
,

σ = κa. (3.21)

The velocity of self-propulsion is given by

U2 = U2ez, (3.22)

with the scalar

U2 = −4a

15(η + ζ )
CF (σ ), F (σ ) = 18a6A2. (3.23)

The coefficient C is given in Eq. (3.6) and can be positive
or negative. In Fig. 2 we plot F (σ ) as a function of σ . The
function has the properties

F (0) = 1, F (σ ) = 6

σ
+ O(σ−2) as σ → ∞, (3.24)

showing a slow decay for small spin viscosity η′.
With the expression (3.23) for the propulsion velocity we

have attained the goal of our calculation. The power required
to achieve the propulsion velocity is purely electrical and
can be calculated from the first-order polarization P1 and
the electrical field E1, given by Eqs. (3.2) and (3.3). Since
the first-order flow velocity vanishes, the dissipation due to
viscosity does not contribute to the order considered. The
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FIG. 2. Plot of the reduced propulsion velocity F (σ ), defined in
Eq. (3.23), as a function of σ = κa. The parameters σ and κ are
defined in Eqs. (3.15) and (3.21) and a is the radius of the sphere.
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power equals the time-averaged dissipation given by

D = 1

T

∫ T

0

∫
r>a

ε1 E1 · ∂ P1

∂t
dt d r, (3.25)

with period T = 2π/ω. Substituting for the first-order
field and polarization and performing the integrations we
find

D = 2π

15
ε1ωa3χ ′′[10

(
μ2

1c + μ2
1s

) + 9
(
μ2

2c + μ2
2s

)]
. (3.26)

Like the propulsion velocity, the power is proportional to the
imaginary part of the susceptibility χ ′′. For the dimensionless
efficiency defined by [26]

ET = ηωa2 |U2|
D

(3.27)

we find

ET = 3

4π

η

η + ζ
F (σ )

|μ1cμ2s − μ1sμ2c|
10

(
μ2

1c + μ2
1s

)+ 9
(
μ2

2c + μ2
2s

) . (3.28)

For definiteness we may choose the phase such that μ1s =
0. Then the efficiency is maximized for μ2c = 0 and μ2s =
±√

10/9μ1c.
Though the velocity of self-propulsion and the correspond-

ing required power have been determined, we consider for
completeness also the solution of Eq. (3.13) corresponding
to the higher-order angular dependence. One can again find
a particular solution of the inhomogeneous equations with
h3p = 0 and g3p(r) = (2η/η′)f3p(r) with

f3p(r) = 4a7

15(η + ζ )
C

2κ

π
[i3(κr)L3(r) + k3(κr)G3(a,r)]

+A4k3(κr), (3.29)

integrals

L3(b) =
∫ ∞

b

k3(κr)

r5
dr, G3(a,b) =

∫ b

a

i3(κr)

r5
dr, (3.30)

and a constant A4. The solution with proper behavior at infinity
takes the form

f3(r) = f3p(r) + A5

r4
− h3

30r2
, g3(r) = 2η

η′ f3p(r) + h3

6r4
.

(3.31)

The three coefficients A4, A5, and h3 follow from the three
boundary conditions f3(a+) = 0, f ′

3(a+) = 0, and g3(a+) =
0, which hold in analogy to Eq. (3.20).

IV. DISCUSSION

For the known viscosity coefficients of water [27] the
screening length 1/κ , defined in Eq. (3.15), equals 2.3 nm.
For a planar microbot we estimated for typical values of
frequency and length scale a velocity of self-propulsion of the
order of several nanometers per second [1]. A similar estimate
should be valid for the spherical microbot considered here.
It would be of interest to demonstrate the self-propulsion in
numerical simulation [28]. For the case of a ferrofluid, the
previous estimate [1] suggested that experimental realization
may be feasible.

We have chosen to discuss only the electrical case in
detail. The above estimate shows that experimental realization
in a polar liquid such as water presumably is not possible.
For computer simulations the electrical formulation is to be
preferred to the magnetic one. Experimental realization may
be attempted for a ferrofluid, where the magnetic formulation
applies. The successful experiments on ferrohydrodynamic
pumping by Mao and Koser [3,4] suggest that an attempt may
be worthwhile.

As shown above, the analytic solution of the effect in
spherical geometry is quite intricate and is of interest on its
own. The coupling of translational and rotational degrees of
freedom of the fluid poses a challenging problem. We have
limited the calculation to second-order perturbation theory,
but in principle a fully nonlinear calculation on the basis of
self-consistent integral equations, like in the planar case, is
possible. For the planar case we found that the second-order
perturbation theory calculation is quite sufficient from a
numerical point of view and we presume that this is true also
in the present case.
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Phys. 132, 184907 (2010).

[25] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1965).

[26] B. U. Felderhof and R. B. Jones, Physica A 202, 94 (1994).
[27] J. S. Hansen, H. Bruus, B. D. Todd, and P. J. Daivis, J. Chem.

Phys. 133, 144906 (2010).
[28] S. De Luca, B. D. Todd, J. S. Hansen, and P. J. Daivis, J. Chem.

Phys. 138, 154712 (2013).

023014-6

http://dx.doi.org/10.1103/PhysRevE.64.063501
http://dx.doi.org/10.1103/PhysRevE.64.063501
http://dx.doi.org/10.1103/PhysRevE.64.063501
http://dx.doi.org/10.1103/PhysRevE.64.063501
http://dx.doi.org/10.1063/1.3430726
http://dx.doi.org/10.1063/1.3430726
http://dx.doi.org/10.1063/1.3430726
http://dx.doi.org/10.1063/1.3430726
http://dx.doi.org/10.1016/0378-4371(94)90169-4
http://dx.doi.org/10.1016/0378-4371(94)90169-4
http://dx.doi.org/10.1016/0378-4371(94)90169-4
http://dx.doi.org/10.1016/0378-4371(94)90169-4
http://dx.doi.org/10.1063/1.3490664
http://dx.doi.org/10.1063/1.3490664
http://dx.doi.org/10.1063/1.3490664
http://dx.doi.org/10.1063/1.3490664
http://dx.doi.org/10.1063/1.4801033
http://dx.doi.org/10.1063/1.4801033
http://dx.doi.org/10.1063/1.4801033
http://dx.doi.org/10.1063/1.4801033



