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Numerical investigation of dynamic effects for sliding drops on wetting defects
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The ability to trap or deflect sliding drops is of great interest in microfluidics, as it has several technological
applications, ranging from self-cleaning and fog harvesting surfaces to laboratory-on-a-chip devices. We present
a three-dimensional numerical model that describes sliding droplets interacting with wetting defects of variable
strength and size. This approach provides relevant insight if compared to simplified analytic models, as it allows
us to assess the relevance of the internal degrees of freedom of the droplet. We observe that the deformation of
the drop enhances the effective strength and range of the defect, and we quantify this effect by comparison to
a point-mass model. We also analyze the role of the steepness and strength of the defect on the drop motion,
observing that small, strong defects are more effective at trapping than large, shallow traps of same excess surface
energy. Finally, our results show quantitative agreement with previously reported electrowetting experiments,
suggesting a universal behavior in droplet trapping that does not depend strongly on the nature of the defect.
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I. INTRODUCTION

The interaction of sessile drops with microscopic chemical
or topological defects is of great interest, as the well-known
phenomenon of contact angle hysteresis is due to the pinning
of the contact line on such obstacles [1,2]. Different authors
have analyzed the onset of motion for sessile droplets under
the action of gravity [3—6], as well as the depinning transition
from defects in lubrication approximation [7]. The motion of
sessile drops on periodically patterned substrates [8—12] has
attracted a particular interest, since the ability to shed droplets
is one of the main design objectives for micropatterned, liquid
repellent surfaces [13]. Moreover, wetting defects can find
several applications in microfluidics devices as a means to
steer or retain droplets in microchannels [14—-16]. However,
such defects usually occur in a wide range of shapes, sizes, and
strengths, making a systematic analysis of the interaction with
a single defect complicated [17,18]. A significant step forward
in these directions is the “traps” designed by 't Mannetje
et al. [16], which exploit electrowetting to realize defects
of tunable strength. In order to extend our understanding of
the interaction of a sliding drop with a wetting defect, we
introduce here a three-dimensional numerical approach. Our
goal is to analyze in detail the kinematics and dynamics of
the interaction in order to assess the importance of different
parameters, such as surface tension, inertia, and the wettability
contrast of the substrate. Our model allows us to properly
account for internal degrees of freedom and deformations in
the drop, which play a significant role in determining the
escaping or trapping threshold for a given wetting defect.
This gives us relevant information which is not captured by
simplified analytic approaches. Another feature of our model
is the ability to address defects of different kind in a unified
framework, thus observing how different parameters (strength,
size, and steepness of the obstacle) affect the trapping. Finally,
after a simple normalization step, we are able to compare
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our simulations to previously reported electrowetting trapping
experiment, observing a quantitative agreement.

II. NUMERICAL METHODS

We implement our model using the open-source compu-
tational fluid dynamics software OPENFOAM. We choose the
volume-of-fluid solver “interFoam,” which implements the
incompressible Navier-Stokes equations for two immiscible
fluids, using a diffuse interface approach. Detailed information
about the implementation and performance of the solver can
be found in Ref. [19]. Briefly, we define a field 1(x,#), which
describes the fraction of each computational cell occupied by
the liquid phase:
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Here €2; is the volume of the i-th computational cell and
Xdrop(X,?) s the indicator function of the liquid phase, which is
equal to 1 inside the drop and O outside. The volume fraction
field is advected by the flow velocity u, resulting in the equation
of motion

ay

o T V-uy)=-V-(uyd—y)). 2
Equation (2) preserves the liquid and gas volumes inside the
simulation domain and generates smooth ¥ profiles, where the
transition from liquid (¢ = 1) to gas (¥ = 0) phase is smeared
over a finite thickness that can be tuned by the parameter u,
[19]. The dynamics described by Eqs. (1) and (2) has been
extensively applied to two-phase flow problems [19,20]. It
is worth mentioning that the diffuse interface is a numerical
approximation, meant to avoid discontinuous jumps in the
physical parameters. The dynamics of the system is, however,
not significantly affected, as long as the thickness of the
interface is small in comparison to the other length scales
in the simulation, i.e., comparable to the resolution of the
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interface as

P = 1proliq + (1 - w)pgam (3)
n = wﬂliq + - w)ﬂgaSa “4)

where pjiq and pgas and piq and (g, are the densities and
dynamic viscosities of the liquid and gas phases, respectively.
We can see that the bulk properties of the liquid and gas phases
are recovered by substituting ¥ = 1 and ¢ = 0, respectively,
inside Egs. (3) and (4). Once more, intermediate values of
density and viscosity at the liquid-gas interface are not physical
but required for numerical stability and will not affect the
outcome as long as the interface thickness is small. Aside
from Eq. (2), we need to solve the equations of motion dictated
by mass and momentum conservation for the whole system.
These are the continuity and Navier-Stokes equations,

V-u=0, (5)
dpu T
7+u~Vpu = —Vp+V.(u[Vu+Vu')) + pg
—i—/ ykn-dX. (6)
drop

Here p and p are defined according to Egs. (3) and (4); u
is the velocity field; p is the pressure field; g is the gravity
acceleration; y is the water-air surface tension; « is the local
mean curvature of the interface, which can be expressed in
terms of the volume fraction field as k =V  -n=V . %;
and n is the unit normal to the interface. The last term on the
right-hand side can then be recognized as the Young-Laplace
contribution to the fluid pressure.

III. GEOMETRY AND SETUP

In Fig. 1 we sketch the setup of our system. Unless
otherwise specified, we consider sessile water drops in air of
volume V = 40 pL. Our simulation domain is a rectangular
box of 1.5 x 0.5 x 0.5 cm. A stripe of width a= 0.5 mm
(in yellow in the sketch), whose wettability can be tuned,
runs along the z direction, across the domain. We exploit the
symmetry of the system with respect to the midplane of the
drop (z = 0) to simulate only half of it. We apply a periodic
boundary condition in the x direction (the striped boundaries
in the figure are mapped on each other). Finally, we impose
a no-slip boundary condition on all other (nonsymmetric,
nonperiodic) boundaries. The drop slides under the action of
the gravity force Fg = (mg sina,mg cos «,0), where « is the

FIG. 1. (Color online) Sketch of the computational domain.
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slope of the substrate. We start each computation by initializing
a hemispherical drop in the center of the domain and setting the
same contact angle 6y = 90° across the whole substrate. We let
the drop slide until it reaches terminal velocity (typically 1-2
s in simulation time or about six passages of the simulation
box). We then prescribe a different contact angle 6y, < 90°
inside the stripe and observe the interaction of the drop with
the defect.

IV. DYNAMIC CONTACT ANGLE MODELING

The choice of suitable boundary conditions for the contact
angle of the sliding drop plays a critical role in our simulations,
as the interaction with the substrate eventually determines
whether the drop will be trapped by wetting defects.

We developed an OPENFOAM implementation of the Cox-
Voinov boundary condition [21], which relates the dynamic
contact angle 6cy for a moving drop to the velocity of the

contact line v, through the capillary number Ca = “4* a5
3 3 Lmax
fcy =0y +9Ca ln — | @)

This relation can be derived in lubrication approximation. It
is based on a smooth transition from the static contact angle
Oy, on the nanometer scale L,, to the macroscopic value
Ocv at length scale L., which is observed experimentally.
However, applying Eq. (7) as our boundary condition results
in a systematic overestimation of the terminal velocity of the
droplets if compared to experimental measurements. This is
most likely due to neglected dissipation sources in our model,
such as adsorption and desorption processes at the molecular
level in proximity of the contact line. One way to account for
these effects is to define an alternative dynamic contact angle
Omicro, as suggested, among others, by Petrov [22]:

2k B T . Vel
Omicro = arccos | cos fy — ———arcsinh . (8
|: 2 ( 2via > ]

Here k3 T is the thermal energy of the system, A 4 is the distance
between adsorption centers on the substrate in proximity of
the contact line, y is the liquid-gas surface tension, and v is a
characteristic frequency of oscillation for the molecular motion
between absorption centers. It is also possible to combine the
two approaches: We then obtain the following expression for
the dynamic contact angle 6, [22]:

L
0} =030 +9Ca In <L> )

min

In Fig. 2(b) we plot the dynamic contact angle according
to the different models discussed for increasing values of
the static contact angle fy. The dynamic contact angle can
be larger or smaller than 6y, depending on the sign of the
contact line velocity: In this way, Eq. (9) describes the
dynamics of the contact line in a unified approach. It is
also worth noticing that in our model the advancing and
receding contact angles (for static droplets) are the same,
i.e., there is no prescribed static hysteresis. In Fig. 2(a),
we compare the terminal center-of-mass velocity v, of
the droplet, obtained implementing Eq. (9) in the simula-
tion, to experimentally observed values [16] for volumes
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FIG. 2. (Color online) (a) Values of terminal velocities for water
droplets of volume V = 20,40,60 uL (red, green, and blue sets, with
increasing line thickness) as a function of the sine of the slope angle
sina. The circles represents numerical results, while the crosses are
experimental measurements from Ref. [16] for water drops on a glass
slide covered with an ITO and oil layer, as discussed in the main text.
The lines are linear fits to the numerical data. (b) Dynamic contact
angles for increasing 6y, according to the different models described
in the main text.

V = 20,40,60 wL (red, green, and blue sets, respectively,
with increasing line thickness) as a function of the sine of
the slope angle «. By setting the relevant coefficients as in
Table I, we observe a good quantitative agreement. The main
difference between our model and the experimental values is a
vertical offset in the data. This means that the static hysteresis
in the experiments is larger than the one extrapolated from
our model. This is expected, as the advancing and receding
contact angles are the same in our model, and, consequently,
the hysteresis should be zero. The small intercept for the linear
fit to the numerical data (corresponding to a slope g =~ 1°) is
probably due to a nonlinear dependence of the velocity on
the slope angle for small «. The experiments in Ref. [16]
were carried out on a glass substrate covered with an ITO
layer and a thin oil film, with advancing and receding contact
angles of 04 = 95° and 6 = 92°, respectively. It is worth
stressing that, although derived from physical arguments, the
coefficients in Egs. (7) and (8) are effectively used as fitting
parameters: A microscopic description of the contact line
motion is outside the scope of this paper and should account
for the partial cloaking of the water drop by the oil film
in the experiments, which would generate extra dissipation
at the contact line. The justification of our approach resides
ultimately in the agreement with experimental observations.

J
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which can be computed as the difference between two
circular segments of opening angles ¢; , = arccos XJFI?/ 2 [see
Fig. 3(a)].

The change in energy AU (x) and force F'(x) acting on the
drop are therefore:

AU(x) = y[cos Oy — cos Oyap] A(X), (11D

B¢y — singy — ¢ + sings]
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In terms of numerical implementation, Eq. (9) is used to
set the interface normal n in each computation cell along the
contact line of the drop [23]. In order to implement the wetting
defects, we locally change the value of 8y in Eq. (9) from
By = 6y = 90° on the rest of the substrate to 6y = O, inside
the defect. As we are interested in discussing the fundamental
aspects of the drop-trap interaction, in this paper we address
a simple geometry (a stripe defect). It is, however, worth
mentioning that our code allows us to specify patches of
arbitrary shapes, which will prove useful for microfluidics
applications.

V. RESULTS AND DISCUSSION

Before discussing the numerical results, we can get a
qualitative understanding of the trapping force acting on the
drop by considering a simplified picture, i.e., a drop of fixed
shape (a hemispherical cap) moving over a patch of prescribed
wettability [see Fig. 3(a)]. More specifically, we consider the
energy landscape U(x) perceived by a drop sliding over a
stripe of width a and prescribed contact angle 0y, x being the
distance between the center of the drop and the center of the
stripe. In the following, we will denote with yy, v, the surface
tensions between the substrate and the liquid and gas phases,
respectively. The corresponding Young contact angle outside
the trap is then given by cos 8y = cosfy = 22 where y is
the liquid-gas surface tension already introduced in Eq. (6).
In the same fashion, we will indicate by yu, ¥ the surface
tensions between the trap and the liquid and gas phases,
which results in a contact angle cos Oy, = @ inside the
wetting stripe. In most practical applications, including the
modeling in this work, it is sufficient to know y and the contact
angles to describe the wettability of the system. Typical values
would be y ~ 70 mN/m for water droplets in air at room
conditions, while we will consider trap angles in the range
0° < Oyap < 90°. Let Uy now be the energy of the droplet
when it is completely outside the trap. Once the drop moves
over the stripe to a position x, its energy becomes:

Ux) = Up + [—va + Vsl AX) + [vu — Vgl A(x)
= Uy + y[cos Oy — €08 Oyap | A(X). (10)

A(x) is the position-dependent overlap between the drop and
the stripe,

—-R—35<x<-R+3
-R+5<x<R-7 ’
R—%<x<R+%

otherwise

dA(x)

e (12)

F(x) = —y[cos 8y — cos Oyyp]

As expected, for our system (6y = 90° and Oy, < 90°), it
is energetically favorable to maximize the overlap between
the drop and the stripe. The resulting energy landscape and
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TABLE I. Coefficients employed in the numerical simulation of the dynamic contact angle, as defined in Egs. (7)—(9).

Contact angle coefficients

Lmax

Lmin )"A

T v

5 x 1073 (m) 1 x 1072 (m)

2.5 x 10~ (m)

293.15 (K) 2 x 106 (s

force are shown in Figs. 3(a) and 3(b), respectively (red thick
lines). We can get a simplified expression by noticing that, for
thin stripes @ < R, we can approximate A(x) >~ 2a~/R? — x2,
from which we get F(x) = —y cos Gtrap% (blue thin
lines). The restraining force exerted by the hydrophilic stripe
is therefore similar to a non-Hookean spring of constant

_ 2ay cosbOup
K = " and it is In .
complete result, with the significant exception of the edges of

the drop, where this approximation predicts a divergent rate of
change for the droplet-stripe overlap. We also plot a truncated
harmonic approximation of the trap profile (green, dashed line)
as a reference. Based on Eqgs. (11) and (12), we can derive an
approximate dynamics for the position x of the center of mass
of the drop:

, and it is in very good agreement with the

mx +Ax + F(x) = F; =mg sina —mg sinag

. F,
x(0) = N x(0) = —(R +a). (13)
Here m is the mass of the drop; X is a dissipation coefficient,
accounting for contact line friction and viscous drag; F(x) is
the trapping potential defined in Eq. (12); and F is the gravity
force driving the motion, with an offset oy on the sliding angle
due to the static hysteretic force acting on the drop. The values
of A =0.0044 kg s~! and ap = 1.33° are derived from the
slope and intercept of the velocity fit reported in Fig. 7 (see also
Ref. [16]). This approximation will be useful to distinguish the
contribution of internal degrees of freedom to the dynamics of
the droplet, and it will allow us to normalize our simulation
results and compare them to experiments.

Numerical results

We will start this section by analyzing the kinematics of
the interaction between the sliding droplet and the defect.
Figure 4 shows snapshots from a typical simulation using

our model for two different combinations of slope o and trap
wettability 6y,p. In the top row, we consider a slope of & = 5°
and a defect of O,y = 30°. Under these conditions, the drop
is captured by the trap. As expected from the analytic model,
the drop accelerates until it is halfway across the stripe and
subsequently slows down, as the change in surface energy
opposes further movement. By looking at the footprint of the
droplet, we can observe a clear discrepancy with respect to
the spherical cap approximation, namely the drop stretches
along the stripe. This results in an increased effective cross
section. Consequently, the interaction of the drop with the
defect increases, which makes it harder to escape. In the bottom
row, we consider a slope of o« = 7° and a defect of O,, = 45°.
Under these conditions the droplet is able to escape thanks to
the higher initial velocity and reduced trap strength. However,
we still observe a strong pinning of the receding contact line on
the stripe, with the drop stretching significantly in the sliding
direction before snapping off of the defect.

In order to characterize the trapping or escaping transition,
in Fig. 5 we analyze the trapping process as a function of
the slope of the surface o and the strength of the defect,
which can be parameterized by the difference in contact angle
Abirap = 0y — Oirap- In all these simulations we keep the width
a of the stripe fixed. Green crosses represent droplets escaping
the trap, while red circles stand for trapped droplets. A clear
transition between the trapping and escaping regimes can be
observed, the former appearing for slow drops and strong
wetting contrast, while sliding is favored for fast drops or
weak defects. The red line represents the escaping or trapping
transition predicted by the approximated model of Eq. (13):
While qualitatively consistent with the numerical results, it
underestimates the strength of the trap and more so for strong
wetting defects. To explain this discrepancy, we can look at the
energy landscape experienced by the drop in the simulation,
which we extract by computing the overlap between the stripe
and the drop at different time steps. In Fig. 6(a) we compare

(b) . (c)
Energy profiles Force
0 0.3 —full solution
0.2 —non-Hookean
- ---harmonic fit
_ 0.05 01 L =
) =z
i -0.1 E 0
%01
-0.15
-0.2
“027 0 1 -1 0 1
|| Xx/R Xx/R

FIG. 3. (Color online) (a) Sketch showing the relevant geometric parameters for the energy and force calculations under the assumption that
the drop retains a spherical cap shape. (b) Energy landscape for a 40-uL water drop (spherical cap) sliding over a stripe of width a = 0.5 mm
of contact angle 6, = 45° as a function of the distance x between the center of the drop and the midpoint of the stripe. (c) Corresponding
force acting on the drop as a function of x.
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FIG. 4. (Color online) Selected snapshot and corresponding base profile for o = 5°, Oyap = 30° (top), and o = 7°, Oyap = 45° (bottom).

The wetting defect is represented by the red stripe.

this information for 6y, = 45° and @ = 6°,7° (orange dots,
fitted by the red dashed line) to the corresponding energy
profile derived from Eq. (11) (blue line). It can be seen that
the potential from the numerical simulation is deeper, which
is consistent with the drop stretching along the wetting stripe
in the 3D model, as observed in Fig. 4. Moreover, the range of
the defect in the simulation is larger and skewed towards the
escape direction (positive x values). This means that the drop
enters the defect approximately as predicted by the analytic
model, but on its way out it stretches significantly in the
sliding direction, remaining inside the range of the defect for a
longer time. Therefore, more kinetic energy will be dissipated
while inside the potential well, enhancing the chance of
trapping. We can further consider the phase-space plots in
Figs. 6(b) and 6(c), which compare the trajectories from the
point mass model (blue lines) and the full numerical simulation
(red dash-dotted lines) for o = 5° and 6°. In Fig. 6(b), we
observe a substantial agreement: the droplet is captured and
reaches approximately the same equilibrium position in both

models. We, however, observe more damping in the numerical
simulation, as part of the kinetic energy is lost to droplet
oscillations. The difference between the two approaches is,
however, clear in Fig. 6(c): Under these conditions, according
to Fig. 5, the point-mass approach predicts an escape, but the
simulation shows trapping. We then see again that the ability
of the droplet to stretch extends the effective range of the trap:
according to the point-mass model, the center of mass of the
droplet exits the defect, but the stretchable droplet is still held
back by the trap.

Interestingly, Musterd et al. [6] recently found in a
systematic study of the onset of drop sliding on inclined plates
that drop deformations can reduce the overall pinning force
on surfaces with finite contact angle hysteresis. This reduction
was found to be caused by local relaxations of the drop on
scales small compared to the drop size. In our present work,
the deformation is more global and leads to the opposite effect,
i.e., stronger pinning. This suggests the existence of a crossover
from reduced pinning to enhanced pinning depending on the
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FIG. 5. (Color online) Diagram showing numerical simulations
resulting in trapping (red circles) and escaping (green crosses) for a
40-uL water droplet, as a function of the slope « and the strength
of the trap, which is proportional t0 A8y, = 6y — Orap. The darker
shade of red represent the trapping region according to the analytic
“spherical cap” approximation.

length scale of the heterogeneity as compared to the drop
size. It is worth stressing, however, that the stripe defects we
consider always fall in the “macroscopic” category. While their
width may be small compared to the radius of the drop, they
extend across the whole droplet. This results in a coherent
deformation of the droplet and a finite energy barrier to the
displacement of the drop, as we have seen. Conversely, the
relaxation of the droplet in Ref. [6] relies on infinitesimal,
quasistatic displacements.

We now discuss how the shape and size of the defect affect
the energy landscape experienced by the drop. We start from

(a) (b)

) =50, =45
Energy profile 1 feenfit
0 z
>
0l-
-0.05
-1
. —0.1
5
2
w -0.15 3 ; (c)
. “.‘ 2
-0.2 e, o
= point mas_s L
~0.25 3D numeric g
-2 -1 0 1 2 ol

—e-point mass
—1 ||-e-3D numeric|
-~ Trap (force)

-1 0 1 2

FIG. 6. (Color online) (a) The energy landscape experienced by
the sliding drop in the numerical simulation (circles, red fit) is
compared to the prediction from the spherical cap approximation
(blue solid line). (b) Phase-space plot for a = 5° and 0y, = 45°:
Both the spherical cap model (blue full lines) and the simulation
(red thick dashed lines) predict trapping. (c) Phase-space plot for
a = 6° and 6y,, = 45°: Thanks to stretching in the sliding direction,
the drop is retained in the numerical simulation, while the spherical
cap approximation predicts escaping. In (b) and (c), the green dashed
line shows the range and magnitude of the force acting on ther drop
in the spherical cap approximation (arbitrary units).
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defects of fixed width a and different contact angle, as sketched
in Fig. 7(a). As already reported in Fig. 5, increasing the
wettability contrast results in deeper energy wells, while their
width is not affected. This is shown in Fig. 7(b), where we
plot the energy landscape according to the analytic model.
We can alternatively consider traps of fixed wettability and
different width a [Figs. 7(c) and 7(d)]. Increasing a results
in a larger maximum overlap between the droplet and the
stripe. Moreover, the range over which the droplet touches the
defect also increases. Therefore, the energy well perceived by
the droplet becomes wider and deeper. Another observation
is that the assumption of an overall hemispherical shape for
the droplets does not hold anymore for wide traps. The drop
assumes an overall elongated shape, as can be seen in the
insert of Fig. 7(c), and the approximation of Eq. (10) is less
accurate. Based on the interfacial area between drop and trap
and drop and substrate, we estimate that the energy well in
the simulations is approximately 30% deeper than predicted
by the analytic model with hemispherical drops. For each of
the trap profiles described, we also performed a phase-space
orbits analysis analogous to the one reported in Fig. 6. These
results are shown in Fig. 8 and give us a better insight into the
dynamics of the interaction.

We clearly notice that the amplitude of the velocity
oscillations is larger for deeper energy wells, both if this
increase depends on wider traps [Figs. 8(a), 8(c), and 8(e)]
or smaller 0, [Figs. 8(b), 8(d), and 8(f)]. Notice also how,
in Fig. 8(c), the simulation shows trapping while the analytic
model predicts the escape of the droplet. Similarly, in Fig. 8(d),
the simulation captures the drop even if its center of mass is
outside the nominal width of the trap. These observations are
consistent with the discussion of Fig. 6 and constitute further
examples of a higher chance of trapping when the internal
degrees of freedom of the droplet are taken into account.
Another relevant property to consider is the sharpness of the
wetting defect. As shown by Joanny and de Gennes [1] this
parameter is highly relevant in determining whether a defect
pins a contact line or just deforms it. In Fig. 7(e). We then
consider a sequence of defects with same surface energy excess
but different steepness. According to Eq. (11), we can obtain
this by changing the trap width a while keeping a cos Oy
constant. For this class of defects, we observe that large contact
angle traps are not as effective in trapping drops, although their
action extends over a wider spatial range. This can be explained
by looking at Fig. 7(f), where we plot the energy landscape
for the droplet in the spherical cap approximation, including
the gravity contribution: As the trap gets wider, the energy
barrier to the escape of the droplet is progressively smeared
out and eventually disappears. It is worth mentioning that the
steepness of the defect cannot be increased arbitrarily while
retaining the same excess surface energy. This is because the
wetting contrast, i.e., the surface energy gain per unit length
of the stripe, cannot exceed y (for the system we consider, the
maximum wetting contrast is from 90° to 0°). If the maximum
wetting contrast is reached, further reducing the stripe width
results in a reduced trapping potential.

Finally, we would like to assess whether the nature of
the defect (chemical, electrical) affects the trapping. To
do so, we compare our simulations to previously reported
trapping experiments on electrowetting defects [16]. We use
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FIG. 7. (Color online) A comparison of defects of different size and shapes. Contact angle profiles for wetting defects of (a) fixed width a
and different contact angle 6y, () fixed contact angle 6y, and variable trap width a. (e) fixed excess energy, a cos 6, = const. The shape of
the trapped droplet for a wide and thin trap are also shown as an insets. In all pictures, red solid lines represent simulations in which the droplet
is captured, while for green dashed lines the droplet is only slowed down. [(b) and (d)—(f)] Corresponding energy landscapes in the spherical
cap approximation, including the gravity contribution for & = 5°. The profiles in (f) are shifted to ease the visualization.

the characteristic scales from the spherical cap approximation
to normalize our numerical results [Fig. 9(b)] and compare
them to experimental data [Fig. 9(a)] from Ref. [16].

On the y axis we plot the normalized driving force

~ F, . . . .
F, = Tor where Fi,, is the maximum trapping force acting

on the drop according to Eq. (12). If Fg > 1 (above the
gray line in Fig. 9), gravity is able to pull the drop out of
the potential minimum regardless of its kinetic energy. For
F, < 1, inertia plays a relevant role: To analyze it, on the
x axis we plot the product Q = %a)r\,isc of the characteristic
viscous time Tyjc = % and the “trap frequency” w =,/ %
If QO « 1, energy dissipation happens on a much smaller
time scale than the drop-trap interaction. Kinetic energy
is then lost while the drop crosses the trap, and we observe
trapping. If, instead, Q >> 1, the dissipation is slow on
the time scale that the drop spends inside the potential
well. The drop can then escape due to its stored kinetic energy.
The black line in the plot shows the boundary between the
two regimes in the spherical cap approximation. Once the
numerical results are normalized according to these units, we
observe a good quantitative agreement to the experimental
results described by ’t Mannetje [16]. This result is rather
interesting, as it corroborates the findings of 't Mannetje and
colleagues that the trapping of droplets on diverse obstacles
(chemical, electric, or topographical) can be described by a
unified approach. Concerning the scope of this paper, we
stress that both the numerical and experimental data show
an excess trapping at large Q, if compared to the spherical
cap approximation. This is consistent with the deformation

of the droplet enhancing the chance of trapping, as we
discussed.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we introduce a three-dimensional numerical
model to analyze the dynamic interaction of sessile drops with
tunable wetting defects. By comparison with a simplified an-
alytic model, we conclude that droplet deformations enhance
the effective strength and range of the trap. We also analyze
the effect of the strength, shape, and steepness of the defect
and observe that shallow traps are less effective at retaining
drops in comparison with localized defect of the same excess
surface energy. Upon normalization, our data show the same
scaling of previously reported electrowetting experiments: On
one hand, this validates our model, which can be employed
to design and test steering and trapping devices [15] based
on electrowetting or chemical patterning. On the other hand,
our analysis supports the idea, described in Ref. [16], of an
universal drop-trap interaction dynamics, independent on the
details of the defect.
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FIG. 8. (Color online) Phase-space plots for traps of increasing
width a and fixed Oy, [(a), (c), and (e)] and traps of fixed width a
and different O, [(b), (d), and (f)]. The colors are the same as in
Figs. 6(b)-6(c). As discussed in the main text, deeper energy wells
(see Fig. 7) result in wider oscillations of the droplet velocity. Notice
how in (c), once again, the numerical simulation shows trapping,
while the analytic model predicts escaping.

APPENDIX A: MESH DESIGN
AND CONVERGENCE CHECK

Even exploiting the symmetry of the system with respect
to the midplane of the drop, the three-dimensional, time-
dependent simulations we carry out are quite expensive in

° P oty

o
.
N
wr
o
N
w

FIG. 9. (Color online) Normalized trapping and escaping land-
scape for (a) the experiments in Ref. [16] and (b) the numerical
simulations in this work. As usual, (light) green represents sliding
droplets and (dark) red trapped ones. In (b), full dots represent
simulations with linearly varying contact angle, as in Fig. 11, and
triangles are traps with a constant static contact angle 6y,p. In both
cases, the black line represents the transition between trapping and
escaping in the spherical cap approximation, which underestimates
the trapping at large Q.
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AV (%)

3 4 5  6x10
No. cells

FIG. 10. (Color online) Convergence plot for freely sliding
drops. The blue circles are obtained for homogeneous resolution
meshes (as in the sketch in the top right corner). The green crosses are
obtained for locally refined meshes (sketched in the lower left corner).
The red square represents a reduced domain size, still showing good
agreement with the high-resolution simulation.

terms of computation time. We therefore took some measures
to optimize the execution, while trying to minimize the
size of the computational mesh. First, we obtain a steady-
state sliding drop profile only once for each slope o and
subsequently restart the simulation from the steady-state
sliding configuration, adding each time a different trap on
the path of the drop. We also employ orthogonal meshes
which are easily parallelized. We validated our mesh choice
by comparing the velocity of a 40-uL droplet for increasingly
high mesh resolution, while it slides down a slope of & = 10°.
In Fig. 10, we plot the cumulative deviation in the drop
i=imax [0(t)—Vrer ()]
i=0 v (ti)
with respect to v, the velocity obtained at the highest
(x,y,z) resolution considered, (300 x 100 x 100) cells. If the
mesh resolution is homogeneously increased (blue circles),
we observe a poor convergence to the high-resolution result.
If we instead locally refine the mesh in proximity of the
substrate (green crosses), we observe a much faster con-
vergence as a function of the number of cells employed.
This is not surprising, as we expect the dynamic of the
system to be significantly affected by the contact line motion,
i.e., the substrate-drop interaction. We therefore selected the
best locally refined mesh in Fig. 10 (~5 x 10° cells for a
(1.5 cm x 0.5 cm x 0.5 cm) domain, 2% deviation from the
high-resolution result) as our discretization scheme. The length
of the domain is chosen to avoid self-interference of the drop
with itself through the periodic boundary. We also tested a
smaller domain with the same resolution as the optimal mesh
(1 cm x 0.4 cm x 0.5 cm, red square in Fig. 10), observing no
significant discrepancy. The selected mesh is a compromise
between execution time and precision: The three-dimensional
nature of the system makes it computationally expensive
to achieve the typical resolution of a two-dimensional or
axisymmetric simulation. However, the consistent agree-
ment of our simulations with experiments for freely sliding
drops and drop-trap interaction supports our discretization
choices.

velocity over time steps 4 Avem =,/
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FIG. 11. (Color online) A comparison of defects of different size
and shapes for a cos 6,, = const (see also Fig. 7). In both pictures,
red solid lines represents simulations in which the droplet is captured,
while for green dashed lines the droplet is only slowed down.
(a) Contact angle profiles. (b) Corresponding energy landscapes in
the spherical cap approximation for o = 5°.

APPENDIX B: LINEARLY VARYING
CONTACT ANGLE TRAPS

Our choice of a constant contact angle inside the trap
allowed us to simplify the energy calculations in Egs. (11)
and (12). However, our numerical model and analytic con-
siderations hold quite generally. In this appendix we briefly
discuss a different wettability profile, shown in Fig. 11(a),
which is obtained by choosing the following parametrization

PHYSICAL REVIEW E 91, 023013 (2015)

for the Young contact angle:

(14 2)cosbrp —%<x<0
cosf(x) = 1 (1 — &) cosbyyp 0 <ux <%
0 otherwise

The equivalent of Eq. (10) for such traps reads:

3 2u
AU(x) = Uy — 2y €08 Oygp |:/ VR? — (x +u)? <1——>
0

a

0
X du—i—/ \/Rz—(x—l—u)z(l—i—za—u) a’u:|.

(BI)

The integration over the width of the stripe is due to the
fact that the contact angle is not constant: therefore, each
infinitesimal stripe of width du and length /R% — (x + u)?
contributes to AU (x) for y cos Gy,p(1 £ Za—”). The results we
observe are consistent with the traps discussed in the main text.
In Fig. 11, for example, we consider traps with a cos O,y =
const: The corresponding energy profiles in the spherical cap
approximation are shown in Fig. 11(b). We once again observe
the smearing out of the energy well as the width of the trap is
increased and the wettability reduced, as discussed in the main
text and Fig. 7.
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