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Wall-mode instability in plane shear flow of viscoelastic fluid over a deformable solid
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The linear stability analysis of a plane Couette flow of an Oldroyd-B viscoelastic fluid past a flexible solid
medium is carried out to investigate the role of polymer addition in the stability behavior. The system consists
of a viscoelastic fluid layer of thickness R, density ρ, viscosity η, relaxation time λ, and retardation time βλ

flowing past a linear elastic solid medium of thickness HR, density ρ, and shear modulus G. The emphasis is on
the high-Reynolds-number wall-mode instability, which has recently been shown in experiments to destabilize
the laminar flow of Newtonian fluids in soft-walled tubes and channels at a significantly lower Reynolds number
than that for flows in rigid conduits. For Newtonian fluids, the linear stability studies have shown that the wall
modes become unstable when flow Reynolds number exceeds a certain critical value Rec which scales as �3/4,
where Reynolds number Re = ρV R/η, V is the top-plate velocity, and dimensionless parameter � = ρGR2/η2

characterizes the fluid-solid system. For high-Reynolds-number flow, the addition of polymer tends to decrease
the critical Reynolds number in comparison to that for the Newtonian fluid, indicating a destabilizing role for
fluid viscoelasticity. Numerical calculations show that the critical Reynolds number could be decreased by up to
a factor of 10 by the addition of small amount of polymer. The critical Reynolds number follows the same scaling
Rec ∼ �3/4 as the wall modes for a Newtonian fluid for very high Reynolds number. However, for moderate
Reynolds number, there exists a narrow region in β-H parametric space, corresponding to very dilute polymer
solution (0.9 � β < 1) and thin solids (H � 1.1), in which the addition of polymer tends to increase the critical
Reynolds number in comparison to the Newtonian fluid. Thus, Reynolds number and polymer properties can
be tailored to either increase or decrease the critical Reynolds number for unstable modes, thus providing an
additional degree of control over the laminar-turbulent transition.
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I. INTRODUCTION

The flow past compliant surface is of great practical
importance in medicine and bioengineering applications as
well as in microfluidic systems fabricated using soft materials.
Blood, the fluid in cardiovascular flows, is shear thinning
and viscoelastic. The viscoelasticity introduces an additional
time scale, the fluid relaxation time, which significantly alters
the flow dynamics. In microfluidic applications as well, we
encounter systems where the fluids are viscoelastic due to
polymeric additives. For a flow through rigid pipes, an addition
of small amount of polymer to otherwise Newtonian fluid
is known to suppress the turbulence, leading to significant
drag reduction at high Reynolds number. Similarly, it might
be expected that addition of small amounts of polymers, to
render the fluid viscoelastic, could play a significant role in the
laminar-turbulent transition. The Newtonian flow past through
deformable channels or tubes at high Reynolds number is
known to undergo transition when the wall shear modulus is
lower than a certain critical value [1–3]. It would be interesting
to examine how this instability will be affected by addition of
small amount of polymer. The complete suppression of the
instability or delay in flow transition like in a rigid tube could
be highly beneficial in designing the flow channels with a
flexible wall.

The dynamics of fluid flow past a deformable surface
qualitatively differs from that of rigid surface because of
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the coupling between the fluid and wall dynamics, and the
elasticity of the surface could affect the fluid flow. This elas-
tohydrodynamic coupling could influence the transition from
laminar to turbulent flow in such systems. The experiments
conducted by Krindel and Silberberg [4] indicated that the
onset of laminar-to-turbulence transition in Newtonian flow
through gel-walled tube can occur at Reynolds number much
smaller than 2100, the critical Reynolds number for the flow
through rigid tube. Motivated by this observation, extensive
studies pertaining to the linear stability analysis of fluid flow
in tubes and channels bounded by flexible walls have been
carried out. The results of theses studies indicated that there
are at least three modes of instability in flexible-walled tubes
and channels which qualitatively differ from those in rigid
tubes and channels, namely viscous modes, wall modes, and
inviscid modes, depending upon the regime of flow operation.
An excellent review and classification of these instabilities has
been covered by Kumaran [5].

The relevant studies for the Newtonian fluid will be
reviewed first. With the help of linear stability analysis,
Kumaran et al. [6] predicted that the coupling between fluid
flow and wall dynamics renders the flow unstable even in the
absence of inertia. For plane Couette flow with shear rate V/R,
the viscous instability sets in when the dimensionless shear rate
V η/GR exceeds a critical value. Here η is the viscosity of the
fluid, R is the channel width, and G is the shear modulus of the
gel wall. Similar analysis of viscous instability mode in flow
past flexible surface has been carried out for Hagen-Poiseuille
flow through tube [7] and plane Poiseuille flow through
channel [8]. Experiments conducted using a layer of silicon
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oil supported on cross-linked polydimethylsiloxane gel in
a parallel-plate rheometer have quantitatively confirmed the
presence of instability [9–11]. The destabilizing mechanism is
proposed to be the transfer of energy from the mean flow to
the fluctuations due to the shear work done by the mean flow
at the interface.

At very high Reynolds number, there exists a class of
solution to the stability problem, known as “wall modes,”
where the vorticity in the fluid is confined to a thin layer near
the fluid-solid interface. Simple scaling arguments show that
the thickness of this wall layer is O(kRe)−1/3 smaller than that
for large values of kRe, where k is the axial wave number
scaled with the channel width and the Reynolds number,
Re, is defined based on maximum fluid velocity. For k ∼ 1,
which is the regime of investigation in the present study, the
time rate of damping or growth of these modes is O(Re−1/3)
smaller than the strain rate in the fluid. These modes were first
studied by Corcos and Sellars [12], Gill [13], and Gill [14]
for Hagen-Poiseuille flow of in rigid tube and their asymptotic
studies of linear stability showed that wall modes are always
stable in rigid tube. Since the disturbance is confined to a layer
close to the wall that is much smaller than the pipe diameter, the
wall of the pipe can be well approximated as a flat surface and
the linear velocity profile can be assumed for the mean flow in
the wall layer. Therefore, wall modes in plane Couette flow are
same as that in pipe flow and hence are stable to infinitesimal
disturbances. Based on the expectation that the influence of
wall elasticity should be strong on the wall layer, Shankar and
Kumaran [15] and Shankar and Kumaran [3] carried out the
asymptotic analysis using O(Re−1/3) as small parameter in
the regime Re � 1 and showed that wall modes are unstable
for flow past a flexible surface. This analysis captures all the
modes obtained by numerical solution [2,16,17] and estimates
the critical Reynolds number, Rec, for a given fluid-gel wall
system specified by a velocity-independent dimensionless
parameter � = ρGR2/η2. The neutral stability curve in the
Re-� plane follows the power-law relation Re ∼ �α . In the
limit of � � 1, it has been shown that exponent α ≈ 3/4.
Recent experiments by Verma and Kumaran [18] and Verma
and Kumaran [19] demonstrate that the flow through flexible
tube undergoes transition from a parabolic laminar profile to a
complex profile at Reynolds number around 500, suggesting a
strong influence of flexible wall on flow transition.

The role of fluid viscoelasticity in the above-mentioned
instability modes due to a flexible surface has received
little attention. Earlier work was restricted to the role of
viscoelasticity on the viscous mode in the limit of Re → 0.
In most studies, the viscoelastic fluid is described either by
the upper convected Maxwell (UCM) model or the Oldroyd-B
model. For the creeping flow over a flexible surface, the fluid
elasticity tends to either stabilize (suppression of instability)
or delay the flow instability depending upon the values of
viscoelasticity parameters [20–23]. Thus, introducing fluid
elasticity is found to have a stabilizing influence on the
Newtonian instability mode for Re → 0. The role of polymer
addition in wall-mode instability at high Reynolds number for
a flexible surface, as far as we know, has not been studied
previously and is the subject of the present work.

In the present study, we investigate the wall-mode instabil-
ity in flow of dilute polymer solution past a deformable solid in

the limit of high Reynolds number. The linear stability analysis
is carried out for the plane Couette flow of Oldroyd-B fluid past
flexible surface. The rest of the paper is organized as follows.
Section II provides the formulation for the stability analysis.
The results for the viscoelastic wall modes are discussed in
Sec. III A. In Sec. III C, the wall mode is continued to small
Re in order to establish relationship between the viscous mode
and the wall mode. Finally, the conclusions are summarized in
Sec. IV.

II. PROBLEM FORMULATION

A. Governing equations

The base-flow configuration is linear velocity profile shown
in Fig. 1. We nondimensionalize velocity with

√
G/ρ, distance

with R, time with R
√

ρ/G, and pressure and stresses in fluid
and wall with shear modulus G. The nondimensional fluid
continuity and Cauchy momentum balance equations are

∇ · v = 0, (1)

Dtv = −∇pf + ∇ · τ , (2)

where v denotes the fluid velocity field and pf is the fluid
pressure. For the viscoelastic fluid modeled as an Oldroyd-B
fluid, the total stress tensor τ consists of viscous stress due
to solvent τ s and the polymeric stress τp, τ = τ s + τp. The
viscous stresses arising due to the solvent viscosity ηs is given
by the Newtons law of viscosity:

τ s = β
�

Re
[∇v + (∇v)T ], (3)

where � =
√

ρV 2/G is the dimensionless top-plate velocity.
Physically, � is the ratio of inertial stresses in the fluid to
the elastic stresses in the solid. The parameter β = ηs/η,
known as the retardation parameter, is introduced to indicate
the solvent contribution to the solution viscosity: η = ηs + ηp,
where ηp is the measure of polymer contribution to the solution
viscosity, indicated by (1 − β) = ηp/η. The polymeric stress
τp is expressed with the help of dimensionless Oldroyd-B
constitutive model:

τp + WeDtτ
p = (1 − β)

�

Re
[∇v + (∇v)T ], (4)

where T indicates transpose and Weissenberg number We =
(λ/R)

√
G/ρ is the dimensionless relaxation time and is the

v*= 

Gel

x*

y*

x

Fluid

V

y*=−H R 

y*=0

y*=R

FIG. 1. (Color online) Schematic of plane Couette flow over a
flexible surface showing a dimensional coordinate system.
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measure of the elasticity of the viscoelastic fluid. Here λ is
dimensional relaxation time of polymer solution. The material
time derivative Dtτ

p is upper convected time derivative
defined as

Dtτ
p = ∂τp

∂t
+ v · ∇τp − τp · (∇v) − (∇v)T · τp. (5)

Substituting the expressions of τ s and τp in the momentum
conservation equation (2), we get:

Dtv = −∇pf + β�

Re
∇2v + ∇ · τp. (6)

One recovers the governing equation for the Newtonian fluid
in the limit either We → 0 or β = 1. The upper convected
Maxwell model (suitable for polymer melt) is obtained by
setting β = 0.

The dynamics of the wall material is governed by the
Hookean model for incompressible linearly elastic solid. The
dynamics of the elastic solid medium is described by the
displacement field u, scaled by fluid thickness R, which rep-
resents the deviation of material points from their equilibrium
position due to the fluid stresses. The dimensionless governing
equations for solid continuum (referred to as gel) are

∇ · u = 0, (7)

D2
t u = −∇pg + ∇ · σ . (8)

Here pg is the pressure in the solid material and σ the stress
tensor for the wall. The stress tensor in wall medium is
scaled by G, the shear modulus. The solid stress tensor in
dimensionless form is given by the linear elastic constitutive
model:

σ = [∇u + (∇u)T ]. (9)

Here the viscous dissipation in the solid medium is ignored.
While a nonlinear neo-Hookean model has been employed in
previous studies on viscous instability [8,24,25], the nonlinear
contribution is significant only when the base-state shear strain
in the solid is greater than 1. In the present study, the strain
in the elastic solid is of the order �2/Re. For the wall-mode
instability in the Newtonian fluid, the critical shear rate �c

scales as Re1/3 in the limit Re � 1 [3], thus the magnitude
of strain in the solid scales as Re−1/3, very small for Re � 1.
Hence, the linear elastic model can be used for wall-mode
analysis. Indeed, the wall-mode analysis for the Newtonian
fluid carried out by Chokshi and Kumaran [26] shows that
the results for a neo-Hookean model are found to be same as
that for the linear elastic model. As will be seen later, even
for the polymeric fluids, the magnitude of shear strain in the
solid medium remains smaller than 1, thus justifying the use
of linear elastic model for the solid wall.

B. Base state

For the steady-state linear velocity profile, the fluid velocity,
gel displacement, and stresses are given as:

v = (�y,0,0)

ux = �2

Re
(y + H ), uy = 0, uz = 0

τ xy = �2

Re
, τ yy = 0 τ xx = 2(1 − β)We

�3

Re

σxy = �2

Re
, σ xx = 0, σ yy = 0,

pf = pg = const.

The base-flow solution satisfies the normal and tangential
velocity and stress continuity conditions at the interface,
which, for the base state, is flat at y = 0. Also, the no-slip
condition for fluid velocity and zero displacement condition
for solid are satisfied at top and bottom planes, respectively:
v = (�,0,0) at y = 1 and u = (0,0,0) at y = −H .

C. Linear stability analysis

Two-dimensional perturbations of the following form are
superimposed on the base-state flow:

φ′ = φ̃(y)eik(x−ct), (10)

where k is streamwise wave number, c is complex wave speed,
and φ represents any of the perturbation variable in fluid and
solid, φ = [v,pf ,τ ,u,pg].

The linearized mass and momentum conservation equations
for the fluid perturbation quantities ṽ,p̃f are

Dṽy + ikṽx = 0, (11)

ik(�y − c)ṽx + �ṽy

= −ikp̃f + β
�

Re
(D2 − k2)ṽx + dyτ̃

p
xy + ikτ̃ p

xx, (12)

ik(�y − c)ṽy = −Dp̃f + β
�

Re
(D2 − k2)ṽy + Dτ̃p

yy + ikτ̃ p
xy.

(13)

Here D indicates d/dy. The disturbance in polymeric stress
components τ̃

p

ij is governed by the linearized form of the
Oldroyd-B equations:

τ̃ p
xx + We

[
ik(�y − c)τ̃ p

xx − 4ikWe(1 − β)
�3

Re
ṽx

− 2(1 − β)
�2

Re
Dṽx − 2�τ̃p

xy

]

= 2(1 − β)
�

Re
ikṽx, (14)

τ̃ p
yy + We

[
ik(�y − c)τ̃ p

yy − 2ik(1 − β)
�2

Re
ṽy

]

= 2(1 − β)
�

Re
Dṽy, (15)

τ̃ p
xy + We

[
ik(�y − c)τ̃ p

xy − 2ikWe(1 − β)
�3

Re
ṽy − �τ̃p

yy

]

= (1 − β)
�

Re
(Dṽx + ikṽy). (16)

Substituting the expressions of the components of poly-
meric stress into the momentum conservation equations (12)
and (13) and eliminating pressure, we get a single fourth-order
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differential equation:

(1 − β)[(S2D2 − 2ikWe�SD − 2k2We2�2 − k2S2)

× (D2 − k2 + 2ikWe�D − 2k2We2�2)ṽy]

+βS3(D2 − k2)2ṽy − ik
Re

�
(�y − c)S3(D2 − k2)ṽy

= 0, (17)

where S = 1 + ikWe(�y − c).
The perturbation equations for the displacement field in the

solid are

dyũy + ikũx = 0, (18)

− k2c2ũx = −ikp̃g + (D2 − k2)ũx, (19)

− k2c2ũy = −Dp̃g + (D2 − k2)ũy, (20)

which can be combined to eliminate the pressure leading to a
single equation:

(D2 − k2)2ũy + k2c2(D2 − k2)ũy = 0. (21)

The above governing equations are accompanied by the
boundary conditions, vanishing perturbations of fluid velocity,
and gel displacement field at the top and bottom rigid plates:

ṽy(1) = ṽx(1) = 0

ũy(−H ) = ũx(−H ) = 0.
(22)

At the perturbed interface with linearized unit normal n =
(− ∂u′

y

∂x
,1,0), the normal and tangential velocity and stress

continuity conditions hold. These conditions upon expanding
in Taylor series around the flat interface (y = 0) give the
following linearized interface conditions to be imposed at
y = 0:

ṽy = −ikcũy, (23)

ṽx + �ũy = −ikcũx, (24)

τ̃xy − 2ik(1 − β)We
�3

Re
ũy = σ̃xy, (25)

− p̃f + τ̃yy = −p̃g + σ̃yy . (26)

In axial velocity continuity condition (24), the second term
on the left-hand side is due to the jump in the steady-state
shear rate across the fluid-solid interface. This term is known
to be responsible for the low-Reynolds-number instability in
flow past an elastic solid. The second term on the left-hand
side of tangential stress continuity condition (25) is due to
the jump in the first normal-stress difference N1 across the
fluid-solid interface. While normal stresses in the elastic solid
are zero (for Hookean model), the Oldroyd-B viscoelastic fluid
exhibits nonzero first normal-stress difference N1 = (τ xx −
τ yy) = 2(1 − β)We�3/Re (refer to Sec. II B).

III. RESULTS AND DISCUSSION

A. Viscoelastic wall modes for Re � 1

The shooting technique is applied to obtain the numerical
solution of the fluid and solid governing equations [(17)
and (21)] to be consistent with the top- and bottom-plate
boundary conditions (22). The dispersion relation obtained by

imposing the interface conditions [(23)–(26)] on the numerical
solution results in a characteristic equation in terms of complex
eigenvalue c, of the form:

F(c,k,Re,�,β,We,H ) = 0, (27)

where � = ρGR2/η2 is the flow independent dimensionless
parameter characterizing the fluid-solid system. For a given
fluid-solid system described by �, β, We, and H , setting the
neutral stability condition of ci = 0, we estimate the critical
Reynolds number, Rec, and disturbance wave speed, cr :

(Rec,cr ) = G(k,�,β,We,H ). (28)

Next, the critical Reynolds number for the most unstable
disturbance is obtained by finding the point of minimum Rec

in the Rec-k plane. Finally, the neutral stability diagram is
constructed in the Rec-� plane.

First, we study the effect of fluid elasticity on Rec

corresponding to the most unstable Newtonian wall mode
reported by Shankar and Kumaran [3] for � = 5000, β = 0.5,
k = 1 and for different solid thickness H , as shown in Fig. 2.
Upon continuation of the Newtonian wall mode for H = 2,
the critical Reynolds number increases with We, indicating
the stabilizing role of fluid elasticity for low values of the
Weissenberg number. For highly elastic fluid with We � 1,
Rec becomes independent of Weissenberg number and attains
a plateau value. This stabilizing effect of fluid elasticity for
H = 2 is in stark contrast to the destabilizing influence of
an increasing Weissenberg number for H = 3, as shown in
Fig. 2. Here the Rec for the Newtonian wall mode first
decreases upon increasing We, indicating the destabilizing
influence of fluid elasticity. This viscoelastic wall mode with
reduced value of Rec exists up to a Weissenberg number
(We ≈ 30). The numerical continuation of the lower branch
for different thickness ratio H reveals a complex dependence
on the parameters in the stability diagram. As seen in this
figure, for H = 2, there exist two disconnected parts in the
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FIG. 2. (Color online) Effect of fluid elasticity on Newtonian
wall mode: critical Reynolds number Rec as a function of Weissenberg
number We for � = 5000, β = 0.5, k = 1 and different values of
solid thickness H . S denotes a stable region and U denotes an unstable
region.
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Rec-We plane. While the upper part is a continuation of the
Newtonian wall mode for viscoelastic fluid, the lower isolated
domain of instability is constructed by continuation of the
lower part for H = 3. The lower domain shrinks upon reducing
the gel thickness. It is important to note here that the stability
diagram in Fig. 2 is constructed for disturbance with wave
number k = 1. As this disturbance may not be the most critical
disturbance for transition, the quantitative findings will not be
useful in later analysis. However, the important finding is that
there exist two kinds of modes, one stabilizing (Rec greater
than Newtonian value) and the other destabilizing (Rec less
than Newtonian value), depending upon the thickness ratio H

and Weissenberg number We.
It is more informative to estimate the value of critical

Reynolds number Rec corresponding to the most critical
disturbance with wave number k = kc. The critical point
(kc,Rec) is obtained by locating the point of minimum Re when
plotted against k. Figure 3 shows a typical plot. For Newtonian
fluid with β = 1, the neutral stability curve has a clear point of
minimum Rec. Interestingly, for β = 0.95, indicating a dilute
solution, the minimum Rec is higher than its Newtonian value,
highlighting the stabilizing effect of polymer addition with
negligible change in solvent viscosity. For β = 0.5, the two
dissociated parts of the neutral stability curve correspond to the
upper instability curve and lower isolated domain of instability
shown earlier in Fig. 2. As seen, the lower part encloses with
itself and does not exist beyond a range of wave numbers.
Clearly, the critical point in the Rec-k plane occurs in the
lower domain, where it exists, and the critical perturbation
has wave number kc ∼ O(1). Thus, for β = 0.5, the critical
Reynolds number for instability Rec is lower than its value
for the Newtonian fluid, indicating the destabilizing role of
polymer addition for a concentrated solution. On the other
hand, for dilute solution, represented by parameter β = 0.95,
the lower isolated domain does not exist for � = 5000, hence,
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FIG. 3. (Color online) Variation of critical Reynolds number Rec

with disturbance wave number for � = 5000, H = 2.0, We = 1.0,
and different values of β. The point of minimum �t on this curve
represents the critical point (kc,�c). The curve for β = 1 represents
the Newtonian wall mode.
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FIG. 4. (Color online) Neutral stability curve showing the critical
Reynolds number as function of dimensionless parameter � for H =
5 and for varying values of β. Polymer addition (decreasing β below
unity) tends to reduce Rec for a given value of �. Viscoelastic wall-
mode instability follows the scaling law Re ∼ �3/4.

the polymer addition tends to increase Rec, a stabilizing effect.
Thus, the polymer addition plays a dual role on the critical
Reynolds number for instability. While the dilute solution
(β = 0.95) tends to increase Rec, the concentrated solution
reduces the critical Reynolds number from its Newtonian
value.

The critical Reynolds number Rec obtained for � = 5000
is now continued to higher values of � and the neutral
stability diagram is constructed in the Rec-� plane such that
all along the stability curve the Reynolds number is Rec and
the wave number is kc, the point of the global minimum
in the Re-k plane. Figure 4 shows one such diagram for
H = 5 and different values of β. In this figure, we use H = 5
in place of H = 2 used in previous plots, only for clarity,
as for thicker solids the role of polymer addition becomes
more pronounced. The curve for β = 1 is for the Newtonian
wall mode and is shown for comparison. It is evident that
for β � 0.9, the stability curve for the polymeric fluid lies
below the curve for the Newtonian fluid. Thus, for a given
fluid-solid system characterized by �, the critical Reynolds
number for instability, Rec, decreases upon reducing β from
β = 1 to β = 0.9 and 0.5. Thus, increasing the concentration
of polymer has a destabilizing influence on the wall mode of
instability. Moreover, the critical Reynolds number is found to
follow the Newtonian scaling Re ∼ �3/4. This shows that the
viscoelastic wall mode is qualitatively similar to the Newtonian
wall mode. Figure 5 shows stability curves for different values
of Oldroyd-B model parameters β and We for H = 5. It is seen
that for varied values of β and elasticity, the neutral stability
curve for the viscoelastic fluid follows the universal scaling
of Re ∼ �3/4. Also, the destabilizing role of viscoelasticity is
evident as stability curves for the viscoelastic wall mode stay
below that for the Newtonian wall mode. Figure 6 shows the
stability diagrams for different values of solid thickness.
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FIG. 5. (Color online) Stability diagram in the Rec-� plane for
H = 5 and varying values of β and We. The destabilizing role of fluid
elasticity is evident. For different values of viscoelasticity parameters
Rec scales as �3/4.

As discussed earlier with the help of Figs. 2 and 3,
the viscoelasticity exhibits two kinds of unstable modes:
one attributed to the lower isolated domain (which has a
destabilizing role of polymer) and the other which shows
the stabilizing effect of elasticity. The latter mode exists in
most cases. In cases where the lower domain exists, the
critical mode lies below the Newtonian wall mode, suggesting
the destabilizing influence of viscoelasticity as shown in
the above-discussed stability diagrams. To demonstrate the
opposite role of viscoelasticity, Fig. 7 shows the stability
diagram for H = 0.5 and β = 0.95 for which case the lower
isolated domain disappears at least for low Reynolds number
(around 1000). In this case, the upper structure is the only
mode and hence critical. Upon continuing this mode to
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FIG. 6. (Color online) Effect of wall thickness H on critical
Reynolds number for β = 0.9 and We = 10. Thicker the solid the
lower the critical Reynolds number.

10
2

10
4

10
6

10
8

10
10

10
3

10
4

10
5

10
6

10
7

Σ

R
e c

 

 
β=1.00, H=0.5
β=0.95, H=0.5

Re
c
 ~ Σ3/4 line

Re
c
 ~ Σ line

FIG. 7. (Color online) Neutral stability curve in the Rec-� plane
for H = 0.5. The broken lines are for β = 0.95, representing a very
dilute solution. The dual role of polymer addition is visible. The upper
branch which follows Rec ∼ � exists for all Reynolds number. At
Re ≈ 7760, the lower branch appears and it is the most critical mode
higher Reynolds number. For Re � 7760, the role of the polymer is
strongly stabilizing.

higher Reynolds number, the stability curve remains above
the Newtonian curve. Interestingly, this mode of instability
follows the scaling Rec ∼ �, a departure from the Newtonian
wall mode behavior. Upon increasing Re, the lower isolated
domain first appears at Re ≈ 7760. Hence, the stability curve,
constructed by the loci of the global minimum on the lower
isolated domain at a Reynolds number higher than Re ≈ 7760,
determines the stability of the system. This curve, as shown in
Fig. 7, lies marginally below the Newtonian curve and follows
the Newtonian scaling law of Re ∼ �3/4. Thus, of the two
curves shown for β = 0.95, the bottom one, indicating the
destabilizing influence of polymer addition, is the real critical
stability curve for any Re � 7760. For β � 0.95, the lower
isolated domain is present even at Re = 1000. Thus, the neutral
stability curves for β < 0.95 would stay below the Newtonian
curve (not shown). It is observed that the lower isolated domain
grows bigger upon increasing the Reynolds number, and it
shrinks and disappears upon reducing the Reynolds number.

To summarize, the continuation of the most unstable
Newtonian wall mode for shear flow past a compliant surface
of a viscoelastic fluid reveals that, for thick solids (H � 1),
the fluid elasticity has a destabilizing effect on the Newtonian
wall mode for full range of parameter β (all concentration
levels of polymer addition) and the viscoelastic wall mode
follows the scaling law of Rec ∼ �α for Re � 1 with exponent
α ≈ 3/4. On the other hand, for thin solids (H � 1), the
fluid elasticity has stabilizing influence on the Newtonian
wall mode for very dilute polymer solution (0.8 � β < 1) and
the influence is destabilizing for β � 0.8. Here the stabilizing
influence is accompanied by the power-law exponent α ≈ 1,
and the destabilizing effect by α ≈ 3/4. This summary holds
for most practical dilute polymeric solutions with We � 100.
Figure 8 shows the schematic illustration of this summary
in the β-H domain, plotted for Re ≈ 1100. As mentioned
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before, the lower isolated domain grows upon increasing the
Reynolds number, hence the region in the β-H space with a
destabilizing influence also grows with the Reynolds number.
The stabilizing role of polymer addition, on the other hand,
can be seen in a region of dilute polymer solution, which
grows upon decreasing the Reynolds number. It should be
noted that the words “stabilizing” and “destabilizing” mean
respective increase or decrease of the critical Reynolds number
by polymer addition in comparison to the Newtonian value of
Rec.

B. Viscoelastic wall-mode scaling

In this section, we comment on the scalings observed for
the viscoelastic wall modes. The two characteristic scalings
for the most unstable wall mode are Re ∼ �3/4 and Re ∼ �

in the limit Re � 1. The former is the characteristic scaling
for the wall modes for Newtonian fluids [3]. Here there exists
a thin layer of thickness δ ∼ Re−1/3 close to the fluid-solid
interface where the disturbance vorticity is confined. In the
leading order, the viscous, polymeric and inertial stresses
are of comparable magnitude within this wall layer, giving
viscoelastic wall modes as solution for the disturbance growth
rate. The unstable wall modes for the polymeric fluids are
qualitatively similar to the Newtonian wall modes confining
the role of polymer to quantitative modification of the critical
Reynolds number, which is found to be the reduction in Rec

(destabilizing role).
The other scaling of Re ∼ � for Re � 1 suggests a thin

layer of thickness δ ∼ Re−1/2 located on the fluid side of
the fluid-solid interface. A balance of various terms in the
disturbance momentum balance equation shows that at the
leading order the viscous and polymeric stresses within this
layer are comparable and are O(Re1/2) larger than the inertial
forces. We refer to this layer as the elastic layer. Therefore,
while inertial, viscous, and polymeric forces are comparable
within a wall layer of thickness l ∼ O(Re−1/3), there exists an
elastic sublayer of thickness O(Re−1/2) within this wall layer

where the viscous and polymeric forces are comparable and are
stronger than the inertial forces. Since the polymeric stresses
are time dependent, the leading-order growth rate can be found
by solving the inertialess equation at the leading order. These
modes qualitatively differ from the Newtonian wall modes and
exist only for the viscoelastic fluids.

C. Relationship between the wall mode and the viscous mode

The viscous mode analysis for the Oldroyd-B fluid past a
Hookean solid in the limit Re 	 1 had been carried out by
Chokshi and Kumaran [22]. In this section, we endeavor to
relate the wall modes analyzed in Sec. III A for Re � 1 to
the viscous mode instability for Re 	 1. It is obvious that
one cannot use the same nondimenionalization scheme in both
regimes. For viscous flow, the appropriate time scale is η/G

obtained by balancing viscous stresses in fluid with the elastic
stresses in the solid. This gives the dimensionless shear rate,
which is the critical parameter for instability, to be defined as
� = V η/(GR), and flow Weissenberg number We = λG/η.
These quantities are related to � and We using the equalities
� = �2/Re and We = WeRe/�.

Figure 9(a) shows the transition shear rate �t (may also be
termed as the critical shear rate) for varying fluid elasticity
at Re = 1000 (the wall mode), which is similar to the plot in
the Re-We plane shown in Fig. 2. A similar curve for Re → 0
(the viscous mode) is shown in Fig. 9(b) for the same set
of parameters [22]. One can see that the upper part of the
plot for wall mode has nearly the same value of �t as that
shown in the plot for viscous mode. Thus, the upper branch,
which signifies the stabilizing effect of viscoelasticity, at high
Reynolds number is simply the continuation of the viscous
mode. Interestingly, the numerical value of �t is not much
affected as Reynolds number is decreased from 1000 to close to
zero. Now, the lower isolated domain for the wall mode, which
shows the destabilizing effect of fluid elasticity, appears to
shrink upon decreasing Reynolds number, such that it is absent
in the limit Re → 0. Thus, for any given set of parameters, the
lower isolated domain always shrinks and ceases to exist at
a certain low value of Reynolds number, where as it always
exists in the limit Re � 1. A typical case is for H = 0.5 shown
earlier in Fig. 7, where the lower isolated domain disappears
below Re ≈ 7760. It is observed that the thicker the solid, the
lesser is the value of Reynolds number where the lower branch
disappears. Note that the lower branch, whenever it exists,
represents the most unstable mode with lowest transition shear
rate and it exhibits the destabilizing effect of fluid elasticity.
For this mode, Rec ∼ �3/4 in the limit Re � 1 (see Fig. 8), and
it does not continue for Re 	 1. Thus, the most unstable wall
mode for the viscoelastic fluid does not continue to the viscous
mode. This finding is contrary to the Newtonian fluid for which
case the most unstable wall mode is numerical continuation of
the unstable viscous mode [3].

To further confirm the above arguments, the numerical
continuation of wall mode to small Reynolds number is shown
in Fig. 10(b) for We = 100. As expected, the upper branch
continues to small Re with �t independent of Re, whereas
the two branches corresponding to the lower isolated domain
merge with each other and hence do not continue to small Re.
Thus, the lower part in the diagram for wall mode, which,
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at very high Re, accounts for, first, the destabilizing effect
of polymer addition and, second, the exponent α ∼ 3/4 in
the power-law relation Rec ∼ �α disappears upon reducing
the Reynolds number. This is consistent with the observation
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FIG. 10. (Color online) Continuation of wall mode in Fig. 9 to
Re 	 1. (a) For We = 1; (b) for We = 100. Two lower branches
merge and disappear while upper branch continues to viscous mode.

made in Sec. III A that the lower isolated domain shrinks
and disappears upon reducing the Reynolds number. Hence,
at small Re, the polymer addition has only the stabilizing
effect on the Newtonian mode, whereas for Re � 1, the lower
isolated domain appears, indicating destabilizing effect of
polymer on Newtonian wall mode.

D. Inviscid instability

Before concluding our present study on wall-mode insta-
bility, we present a brief note on an observation made during
the present analysis. The observation is about the inviscid
instability for the flow of a Newtonian fluid past a flexible
surface. In the inviscid instability, there exists a wall layer
of thickness O(Re−1/2) smaller than the channel width in
the regime Re � 1. In this layer, the inertial stresses in the
fluid are balanced by the elastic stresses in the wall, such that(
ρV 2/G

) ∼ 1. The viscous stresses in this layer are O(Re−1/2)
smaller than the inertial stresses. This class of modes are
referred to as inviscid modes. It is important to note that the
wall modes are qualitatively distinct from the inviscid modes.
Based on the asymptotic analysis [1,27], it is shown that the
inviscid modes are always stable for the plane Couette flow
and also for the parabolic profile in a flexible tube. If found
unstable, the critical Reynolds number for the inviscid modes
scales as Rec ∼ �1/2 in the limit Re � 1 which is lower than
that for the wall-mode instability, Re ∼ �3/4. Therefore, the
inviscid modes are more unstable than the wall modes.

While the asymptotic analysis suggests stable inviscid
modes, the numerical calculations performed in the present
study found an instability which follows the typical scalings of
inviscid modes. Figure 11 plots the critical Reynolds number
against � for the Newtonian fluid. The most unstable wall
mode follows the scaling of Rec ∼ �3/4. However, there exists
another stability curve, lying below the wall-mode curve,
which follows the scaling Rec ∼ �1/2, indicating an “inviscid”

023007-8



WALL-MODE INSTABILITY IN PLANE SHEAR FLOW OF . . . PHYSICAL REVIEW E 91, 023007 (2015)

10
0

10
2

10
4

10
6

10
8

10
10

10
1

10
2

10
3

10
4

10
5

10
6

Σ

R
e c

 

 
Wall mode, Newtonian
Inviscid mode, Newtonian
Inviscid mode, β=0.90, We=1
Inviscid mode, β=0.90, We=50

Re ~ Σ1/2 line

Re ~ Σ3/4 line

FIG. 11. (Color online) Stability diagram for the unstable invis-
cid mode for H = 5. The inviscid instability mode is seen to be more
unstable than the most unstable wall mode and follows the scaling law
Re ∼ �1/2. The inviscid instability is unaffected by fluid elasticity.

instability mode. Since the mechanism of inviscid instability
is due to Reynolds’s stresses and pressure forces acting on
the fluid-solid interface, the polymeric stresses are expected to
play no role. This is shown in Fig. 11, where the fluid elasticity
has a negligible effect on the inviscid instability.

To further examine the occurrence of inviscid instability
before the wall-mode instability, we plot in Fig. 12(a) the
disturbance growth rate (which is the imaginary part of
complex wave speed, c) against the dimensionless shear rate
�. As shown, the growth rate first becomes positive for
� ≈ 2, which is the inviscid instability. However, upon further
increasing the shear rate, the growth rate turns negative and
for � ≈ 100, the wall-mode instability sets in, making the
growth rate again positive. The wall-mode instability persists
for any large value of �. Importantly, the value of growth
rate for inviscid instability is very small in comparison to
the wall-mode instability. For high Reynolds number, the
growth rate, however positive, becomes very small, indicating
marginal (or weak) instability.

In order to confirm the numerical existence of the inviscid
instability, we have carried out an asymptotic analysis in the
limit Re � 1 using δ = Re−1/2 as the small parameter. The
methodology is similar to that explained in Kumaran [1].
The details are omitted for brevity. At the leading order, the
complex wave speed comes out to be a real quantity, with a
zero imaginary part, indicating that the flow is neutrally stable.
At the first order, O(δ), the complex wave speed has a negative
imaginary part for all values of imposed shear rate �, as shown
in Table I. Thus, the flow is stable to the inviscid mode. The
second-order correction to the growth rate, however, becomes
positive at a certain value of �. The complex wave speed is
given by an asymptotic expansion: c = c(0) + δc(1) + δ2c(2),
where δ = Re−1/2. Figure 12(b) shows a comparison of the
numerical results for growth rate ci with the asymptotic results
for Re = 106. While the trend is in qualitative agreement,
unlike the numerical results, the growth rate obtained from the
asymptotic analysis never becomes positive. The difference,
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FIG. 12. (Color online) Variation of growth rate with shear rate
� for Newtonian fluid flow at high Reynolds number for H = 1
and k = 1. (a) Numerical results for Re = 104 and Re = 106. Both
inviscid-mode and wall-mode instability are shown. (b) Asymptotic
results are compared with the numerical results for growth rate for
Re = 106. While the numerical growth rate is positive for a range
of �, the asymptotically calculated growth rate remains negative,
indicating stable inviscid mode.

however, is very small, of the order of 10−3. It should be
emphasized that the instability is not because of any numerical
error, as numerical results are independent of grid size as
adaptive step size control has been employed. Finally, since
the magnitude of the growth rate for inviscid instability is very
small, and the range of shear rate for which the growth rate
remains positive is very narrow, this instability may be termed
as marginal or weak, and its realization in physical setup is
questionable.

IV. CONCLUSIONS

The stability of plane Couette flow of an Oldroyd-B
viscoelastic fluid over a flexible surface has been analyzed
with the focus on dilute polymer solution at high Reynolds
number. In the limit Re � 1, there exists a wall layer of
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TABLE I. Inviscid-mode asymptotic analysis in the limit Re � 1; c = c(0) + δc(1) + δ2c(2), where δ = Re−1/2 and � ∼ 0(1). Numerical
value of c is provided for Re = 106.

� c(0) c(1) c(2) Numerical c

2.0 (2.15094 + 0i) (−0.87195 − 0.87195i) (0 − 0.16407i) (2.14919 − 0.0017034i)
2.3 (2.21781 + 0i) (−0.85225 − 0.85225i) (0 + 0.03340i) (2.21404 + 0.0029634i)
2.4 (2.24045 + 0i) (−0.84402 − 0.84402i) (0 + 0.11113i) (2.23853 + 0.0002700i)
2.5 (2.26325 + 0i) (−0.83513 − 0.83513i) (0 + 0.19446i) (2.26156 + 0.0000841i)
3.0 (2.37978 + 0i) (−0.78348 − 0.78348i) (0 + 0.68734i) (2.37836 − 0.0001336i)
4.0 (2.62458 + 0i) (−0.66636 − 0.66636i) (0 + 1.95874i) (2.62333 − 0.0000807i)
5.0 (2.88336 + 0i) (−0.55888 − 0.55888i) (0 + 3.42446i) (2.88220 + 0.0000499i)
6.0 (3.15380 + 0i) (−0.47968 − 0.47968i) (0 + 4.90115i) (3.15268 + 0.0001739i)
7.0 (3.43313 + 0i) (−0.44428 − 0.44428i) (0 + 6.20917i) (3.43199 + 0.0002602i)
8.0 (3.71742 + 0i) (−0.48642 − 0.48642i) (0 + 6.86338i) (3.71620 + 0.0002633i)
9.0 (3.99887 + 0i) (−0.73302 − 0.73302i) (0 + 4.11454i) (3.99739 + 0.0000282i)

thickness O(Re−1/3) smaller than the channel width in which
the inertial and viscous stresses in fluid are comparable to
the elastic stresses in the solid. This class of modes, known
as wall modes, are unstable for Newtonian fluid. The role of
fluid viscoelasticity, in terms of two Oldroyd-B parameters,
the Weissenberg number We and the retardation parameter β,
indicating the polymer concentration, are studied. For very
high Reynolds number flow, the critical Reynolds number
for the transition is lower for the viscoelastic fluid than
its value for the Newtonian fluid. Thus, the fluid elasticity
shows a destabilizing influence on the Newtonian wall mode.
Moreover, the critical Reynolds number scales with � =
ρGR2/η2, the parameter characterizing the fluid-solid system,
as Re ∼ �3/4 for Re � 1, the same as the Newtonian wall
mode. This scaling holds for all values of β and We. However,
for a moderate Reynolds number in the range of 103–104,
the role of fluid elasticity can be either destabilizing or
stabilizing in comparison to the the Newtonian fluid depending
upon the dimensionless solid thickness H and the polymer
concentration parameter β. For very dilute polymer solutions
with β = ηs/η just under unity (0.9 � β < 1) and for thin
solids with H � 1.1, the above-mentioned branch with scaling
Rec ∼ �3/4 (destabilizing role of polymer) disappears and the
most unstable branch follows the scaling Rec ∼ �, a departure
from the Newtonian wall-mode behavior. This implies that
the critical Reynolds number in this regime is higher for the
viscoelastic fluid than its value for the Newtonian fluid. Thus,
a very small addition of polymer molecules tends to delay the
transition, indicating a stabilizing role of fluid elasticity.

Except for a narrow region of parameters in β-H space,
increasing fluid elasticity renders the wall modes more
unstable. This destabilizing role of polymer at high Reynolds
number wall modes is contrary to the stabilizing effect of
elasticity in the viscous mode in the absence of inertia. It
has been shown that the most unstable viscoelastic wall mode
at high Reynolds number ceases to exist when the Reynolds

number is decreased, thus it does not continue to the viscous
mode. This behavior differs from the Newtonian case, where
the most unstable wall mode is numerical continuation of the
viscous mode.

The instability predicted in the present study can be realized
experimentally for a plane shear flow of polymeric fluid over
a deformable elastic solid. In similar experiments conducted
earlier [9,11,18,19], the shear modulus of flexible surface G is
around 103–104 N/m2. As the emphasis of the present study
is on the dilute polymer solution, the material properties can
be that of water or organic liquid, i.e., ρ ≈ 103 kg/m3 and
η ≈ 10−3 Pa s. A polymer concentration of less than 2%
vol does not significantly alter the viscosity, suggesting β ∼
0.7–0.9. For a channel width of 1 mm and solid thicknesses
of 1–5 mm, the parameter � ≈ 106–107. For � ≈ 106, the
critical Reynolds number for Newtonian fluid is around 104.
By adding a polymer chain in concentrations of 2% vol
(corresponding to β = 0.95) or higher, the instability can be
realized at Rec of around 1000 (an order of magnitude lower
than its Newtonian value). For this, a Weissenberg number
of around 50 corresponds to chains with relaxation time in
the range 0.01–0.05 s. Higher relaxation time will show a
further drop in critical Reynolds number below 1000. This
value of Rec is attainable in experiments, thus the dual role
of the polymer additive may be observed in experimental
conditions.

Interestingly, we also report the existence of series of
unstable modes for which the critical Reynolds number for
transition is much lower compared to that for the wall modes, of
the order of Rec ∼ �1/2 for � � 1. The eigenfunction for this
class of modes follows the scaling of inviscid modes, which
were reported to be stable for the plane Couette flow based on
asymptotic analysis [1,27]. However, the small magnitude of
the disturbance growth rate for these modes makes them only
marginally unstable and hence unlikely to be observed in a
channel of finite length with finite residence time.
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