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Marangoni instability of a liquid film flow with viscous dissipation
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A linear stability analysis of a thin liquid film flowing over a plate is performed. The plate is considered as
impermeable and adiabatic. The upper surface of the film is assumed to be a free boundary with a non-negligible
surface tension, characterized by a Robin thermal boundary condition. The thermoconvective instability is
generated by the interplay between the heating due to viscous dissipation and the temperature-dependent surface
tension at the free boundary. A basic parallel flow, arbitrarily oriented, is assumed and the basic temperature
profile is determined analytically. In order to investigate the linear stability of the system, the normal mode method
is employed. A system of ordinary differential equations defining an eigenvalue problem is thus obtained. The
case of longitudinal rolls, where the base flow velocity is parallel to the axis rolls, is solved both analytically
and numerically. Other possible inclinations of the base flow are investigated by means of a numerical procedure
based on combining the Runge-Kutta and the shooting methods.
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I. INTRODUCTION

The flow generated by density variations induced by heating
from below is the well-known Rayleigh-Bénard convection [1]
and it represents one of the most studied problems in natural
convection. In such cases, buoyancy is the main mechanism
responsible for triggering the instability that drives the flow.
However, there are two important exceptions where buoyancy
is essentially negligible: microgravity and microscale fluid
systems. Under either of these conditions, surface tension
gradients at the interface between different fluids induced by
temperature variations drive the flow instability. This phe-
nomenon, known as Marangoni convection, was discovered
in an experimental study [2] that was explained theoretically
using linear stability analysis soon afterward [3]. In fact, both
mechanisms have already been included simultaneously to
analyze their combined effect on the onset of what is known
today as Rayleigh-Bénard-Marangoni convection [4]. These
studies led to the conclusion that the convection patterns
observed earlier [1] in thin, heated liquid films were apparently
due to surface tension gradients instead of density gradients.

One of the simplest models for Marangoni convection is
employed in these studies. It considers a single layer of liquid
that shares an immiscible and nondeformable interface with
another layer of gas whose bulk effects are negligible [3,4].
Extensions to include a deformable interface have been
considered, where both stationary [5] and oscillatory [6] onsets
of convective instability were analyzed. These linear stability
studies have been extended to include heat conduction from the
finite-width plate that supports the fluid layer [7], the effects
of a bounding wall placed above a thin air layer that interfaces
with the liquid film [8], and many other effects. Single-
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layer models provide useful results, especially when used to
predict the behavior of short-wavelength disturbances [9]. An
extensive review of such models can be found in any of several
books published on this topic [10–12].

Despite being a well-known research topic, there are still
many important features to be investigated. For instance, only
very recently has the effect of a mean flow been included to
enable the investigation of mixed convection [13], in what is
known as Poiseuille-Bénard-Marangoni convection. This work
still used the classical single-layer model with an immiscible
and nondeformable interface. A quite recent investigation of
Bénard-Marangoni instability in an annular fluid region has
been presented by Hoyas et al. [14]. Experimental studies
of this physical effect have been carried out by Riley and
Neitzel [15] and by Minetti and Buffone [16].

The present paper proposes yet another extension for this
model, which is the onset of Poiseuille-Marangoni convec-
tion driven by viscous dissipation. Both Poiseuille-Rayleigh-
Bénard [17] and Couette-Rayleigh-Bénard [18] convection
induced by viscous dissipation have been studied in the
literature. However, consideration of viscous dissipation as
a driver for interface instabilities is lacking. We mention that,
although the effect of viscous dissipation can be considered
as negligible in purely buoyant flows described according to
the Oberbeck-Boussinesq approximation [19], in the presence
of an externally imposed throughflow (mixed convection),
viscous dissipation may be an active source of thermal
instability [20].

In the forthcoming sections, the flow of a Newtonian fluid
film on an impermeable adiabatic plate is studied by taking into
account the internal heating by viscous dissipation. The upper
free boundary of the flowing film is subject to a temperature-
dependent surface tension, so the Marangoni effect arises as
a possible cause of thermoconvective instability. The linear
stability analysis of a basic stationary and parallel flow is
carried out relative to longitudinal, oblique, and transverse
normal modes.
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II. MATHEMATICAL MODEL

A Newtonian fluid film flowing over a plate is studied.
The thermoconvective instability of this flow is assumed to be
generated by the temperature-dependent surface tension acting
on the upper surface. The effect of viscous dissipation is taken
into account as an internal heat source. The plate, i.e., the
lower boundary, is considered as impermeable and adiabatic.
The upper boundary is a free surface thermally constrained by
a Robin boundary condition. On assuming a constant density
ρ, the governing equations of local mass, momentum, and
energy balance are given by

∇ · u = 0,

∂u
∂t

+ (u · ∇)u = −∇P

ρ
+ ν∇2u, (1)

∂T

∂t
+ u · ∇T = α∇2T + 2ν

c
DijDij ,

where summation over repeated indices is implied, u =
(u,v,w) is the velocity vector, t is the time, P is the pressure, ν
is the kinematic viscosity, T is the temperature, α is the thermal
diffusivity, and c is the specific heat. The viscous dissipation
contribution in the local energy balance is expressed by means
of the strain tensor Dij , namely,

Dij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
, (2)

where x = (x,y,z) is the position vector expressed by Carte-
sian coordinates. The hydrodynamic boundary conditions on
the free boundary are thus expressed by equating the shear
stress and the surface tension gradient

τzx = ∂S

∂x
, τzy = ∂S

∂y
for z = H, (3)

where τ is the shear stress, H is the film thickness, and
the surface tension S is assumed to be a linear function
of the temperature S = S0 − σ (T − T0). The symbol σ is a
parameter defined as the negative surface tension variation with
temperature −∂S/∂T . Since the upper boundary is assumed to
be an impermeable and nondeformable interface, the boundary
conditions that characterize the system are

u = v = w = 0,
∂T

∂z
= 0 for z = 0

∂u

∂z
= −σ

μ

∂T

∂x
,

∂v

∂z
= −σ

μ

∂T

∂y
, w = 0 for z = H,

∂T

∂z
+ h

k
(T − T∞) = 0 for z = H, (4)

where μ is the dynamic viscosity, h is the external heat
transfer coefficient, k is the thermal conductivity, and T∞ is
the temperature of the fluid outside the liquid film at a large
distance from the film itself. A sketch of the geometry of
the system and a description of the boundary conditions are
illustrated in Fig. 1.

The governing equations and boundary conditions
can be rewritten in a dimensionless form,

FIG. 1. Sketch of the geometry and the boundary conditions.

namely,

∇ · u = 0,

∂u
∂t

+ (u · ∇)u = Pr(−∇P + ∇2u),

∂T

∂t
+ u · ∇T = ∇2T + 2 Dij Dij ,

u = v = w = 0,
∂T

∂z
= 0 for z = 0, (5)

∂u

∂z
= −Ma

∂T

∂x
,

∂v

∂z
= −Ma

∂T

∂y
,

w = 0 for z = 1,

∂T

∂z
+ BiT = 0 for z = 1.

Here Bi is the Biot number, Pr is the Prandtl number, and Ma
is the Marangoni number

Bi = Hh

k
, Pr = ν

α
, Ma = σH�T

αμ
, (6)

with �T = να/H 2c. The scaling employed to obtain the
dimensionless formulation is

α

H 2
t → t,

x
H

→ x,
H

α
u → u,

T − T∞
�T

→ T ,

H 2

μα
P → P,

H 2

α
Di,j → Di,j , H∇ → ∇, (7)

H 2∇2 → ∇2.

We mention that Bi → ∞ defines the limiting case of a
perfectly isothermal upper boundary, while Bi → 0 defines
a perfectly insulated upper boundary.

III. BASIC SOLUTION: PARALLEL FLOW

A basic stationary parallel flow in the (x,y) plane inclined
an angle φ with respect to the x axis and driven by a constant
pressure gradient is considered. The basic flow is assumed to
be dynamically and thermally developed. It must be mentioned
that the term ∇P in Eq. (5) is, rigorously speaking, a dynamic
pressure gradient, namely, the difference between the pressure
gradient and the gravitational body force. The latter force is
uniform and parallel. Thus, the basic parallel flow considered
here can be driven either by a constant pressure gradient or,
equivalently, by the gravitational body force. In the latter case,
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the thermally insulated plate is to be considered as inclined to
the vertical, thus allowing a falling film flow.

In the basic parallel flow, the stationary velocity and
temperature fields depend only on the z coordinate, so the
solution of Eq. (5) is given by

Pb = Ax cos φ + Ay sin φ + const,

ub = Az

2
(z − 2)n̂, (8)

Tb = A2

12

(
3 − 6z2 + 4z3 − z4 + 4

Bi

)
,

where n̂ = (cos φ, sin φ,0) and the subscript b identifies the
basic state. The angle φ can be chosen arbitrarily, so 0 � φ �
π/2. The coefficient A can be determined by assuming the
Péclet number to be equal to the average value of the basic
flow velocity over the film section

Pe =
∫ 1

0
ub · n̂ dz =⇒ A = −3 Pe. (9)

It should be noted that, because of the assumptions just made,
the case of an adiabatic upper boundary can here be treated
only as a limiting case. In fact, the proper investigation of
the double-adiabatic case requires a totally different basic
temperature profile: Temperature must grow in the n̂ direction
in order to convect downstream the excess heat generated by
viscous dissipation. A nonvanishing streamwise temperature
gradient allows one to obtain a stationary solution for this
special case, which will not be treated here.

Another important aspect to be noted is that the basic
solution (8) does not describe any influence of the temperature
field on the velocity field. In general, Eq. (5) models such
an influence through the Marangoni effect, namely, through
the boundary conditions constraining ∂u/∂z and ∂v/∂z at
z = 1. Whenever the temperature field is uniform along x

and y, actually there is no Marangoni effect. This means that
both ∂u/∂z and ∂v/∂z vanish at z = 1. This condition is that
observed with the basic solution (8), where Tb is just a function
of z. In fact, Eq. (8) does not contain the Marangoni number.
The action of the Marangoni effect in producing a thermal
influence on the velocity field is expected when the basic
solution is perturbed. The perturbed temperature depends on
all three coordinates, so in general both ∂u/∂z and ∂v/∂z

are expected to be nonzero at z = 1. Thus, the perturbed
fields should produce a Marangoni effect and hence a possible
convective thermal instability of the basic flow. There is an
evident exception to this argument taking place in the limiting
case Bi → ∞ (perfectly isothermal upper boundary). When
Bi → ∞, the boundary condition for T at z = 1 implied by
Eq. (5) is T = 0, which means ∂T /∂x = 0 and ∂T /∂y = 0
at z = 1 and, as a consequence, no Marangoni effect both in
the basic flow and in the perturbed flow. We thus infer that, in
the limiting case Bi → ∞, no convective thermal instability
of the basic flow is possible. We mention that the behavior
described above is a well-known feature arising also in the
analysis of the Marangoni-Bénard problem, as pointed out, for
instance, by Koschmieder [21].

IV. LINEAR STABILITY ANALYSIS: HIGHLY VISCOUS
FLUIDS

The main goal of the analysis proposed here is understand-
ing more clearly the role played by the viscous dissipation
in the onset of thermal convection driven by surface tension.
We note that the effect of viscous dissipation is enhanced
if the fluid has a very high viscosity. Highly viscous fluids
are characterized by high Prandtl numbers, so a sensible
assumption is taking Pr → ∞. This assumption allows us to
simplify the momentum balance equation by neglecting the
contribution of the total derivative with respect to time. The
local balance equations (5) may thus be rewritten as

∇ · u = 0,

∇2u = ∇P, (10)

∂T

∂t
+ u · ∇T = ∇2T + 2 Di,j Di,j .

In order to perform a linear stability analysis we now redefine
the velocity, pressure, and temperature fields as composed of
a basic stationary state plus an arbitrary small perturbation,
namely,

u = ub(z) + εU(x,t),

P = Pb(x,y) + εP(x,t), (11)

T = Tb(z) + ε�(x,t),

where ε is a constant assumed to be small enough to neglect
the contributions of the terms of order ε2, i.e., the nonlinear
terms in the disturbances. After the substitution of Eq. (11)
into Eq. (10), the perturbed equations are linearized and the
basic state is subtracted so that we obtain

∇ · U = 0, ∇2U = ∇P,

∂�

∂t
+ W

dTb

dz
+ ub

∂�

∂x
+ vb

∂�

∂y

= ∇2�+2
dub

dz

(
∂U

∂z
+ ∂W

∂x

)
+2

dvb

dz

(
∂V

∂z
+ ∂W

∂y

)
.

(12)

We are considering a basic flow arbitrarily inclined in the
(x,y) plane. In order to carry out a normal mode analysis,
based on plane-wave solutions, we can assume invariance of
the perturbations in an arbitrarily fixed direction in the (x,y)
plane, say, the y axis. We can thus reduce, without any loss of
information, the dimension of the problem, setting to zero all
the derivatives with respect to y. We note that, by considering
the y component of the local momentum balance equation (12)
and keeping in mind that ∂P/∂y = 0, one obtains

∇2V = 0, V (x,0,t) = 0,
∂V

∂z
(x,1,t) = 0. (13)

The only possible solution of (13) is V = 0. We can now
introduce a stream-function formulation for the velocity field
components (U,W ),

U = ∂

∂z
, W = −∂

∂x
, (14)

and take the curl of the local momentum balance equation (12).
Thus, the set of governing equations and boundary conditions
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can be written as

∇4
2 = 0,

∂�

∂t
− dTb

dz

∂

∂x
+ ub

∂�

∂x

= ∇2
2� + 2

dub

dz

(
∂2

∂z2
− ∂2

∂x2

)
,

(15)
∂

∂x
= ∂

∂z
= 0,

∂�

∂z
= 0 for z = 0,

∂2

∂z2
= −Ma

∂�

∂x
,

∂

∂x
= 0 for z = 1,

∂�

∂z
+ Bi� = 0 for z = 1,

where

∇4
2 = ∂4

∂x4
+ ∂4

∂z4
+ 2

∂4

∂x2∂z2
, ∇2

2 = ∂2

∂x2
+ ∂2

∂z2
. (16)

The disturbances can be expressed as plane waves having the
form {

(x,z,t)
�(x,z,t)

}
=

{
if (z)/Pe2

g(z)

}
ei[ax−(ω+iλ)t], (17)

where a is the wave number, ω is the angular frequency,
and λ is the growth rate of the disturbance. When positive,
λ yields an unstable mode, while λ < 0 describes a mode
damped in time and hence stable. After substituting Eq. (17)
into the governing equations (15), we look for the neutrally
stable modes, i.e., we set λ = 0. The neutrally stable modes
are in fact the modes that define the threshold between stability
and convective instability. The following set of governing
equations is obtained:

f ′′′′ − 2a2f ′′ + a4f = 0,

g′′ − (a2 + iaub − iω)g

+2iu′
b

Pe2 f ′′ + a

Pe2 (2iau′
b − T ′

b)f = 0,

(18)
f = f ′ = 0, g′ = 0 for z = 0,

f = 0, f ′′ = −a Ma Pe2g for z = 1,

g′ + Big = 0 for z = 1,

where primes denote derivatives with respect to z. One may
note that the first of Eqs. (18) does not contain g and can
be solved analytically to determine f up to an arbitrary

multiplicative constant as follows:

f (z) = sinh(az)(sinha − z sinha + az cosha)

2a(a cosha − sinha)

− az sinha cosh(az)

2a(a cosha − sinha)
. (19)

Equation (19) satisfies the boundary conditions f (0) =
f ′(0) = 0 and f (1) = 0. In Eq. (19), the arbitrary multiplica-
tive constant is fixed by normalizing f so that f ′′(0) = 1. We
note that this normalization breaks the scale invariance of the
boundary value problem (18), thus allowing a unique solution
for g. The evaluation of g is accomplished by solving the
second of Eqs. (18), using Eq. (19), and prescribing the bound-
ary conditions g′(0) = 0 and g′(1) + Big(1) = 0. Finally, the
remaining boundary condition, i.e., f ′′(1) = −a Ma Pe2g(1),
is used to provide the dispersion relation, which completely
characterizes the parametric condition of neutral stability.

V. LONGITUDINAL ROLLS

The inclination angle φ = π/2 defines the longitudinal
rolls. These rolls are called longitudinal since the basic flow
is parallel to their axes. We start the present investigation
with the longitudinal rolls, leaving the analysis of the oblique
and transverse rolls for the next section. Due to the principle
of exchange of stabilities, the boundary value problem for
longitudinal rolls can be solved with ω = 0 and Eq. (18)
simplifies to

g′′ − a2g + 3az[3 + (z − 3)z]f = 0,
(20)

g′ = 0 for z = 0,

g′ + Big = 0 for z = 1,

with the function f given by Eq. (19). One may note that
Eq. (20) can be solved analytically. The function g(z), with
given (a,Bi), will not be written here explicitly for the sake of
brevity. The number of governing parameters decreases if we
define

� = Ma Pe2. (21)

In order to obtain a dispersion relation for the neutrally stable
modes, we now invoke the boundary condition

f ′′(1) = −a�g(1). (22)

Thus, one obtains the dispersion relation

� = 80

3

a4(a − sinha cosha)(Bi cosha + a sinha)

(9a4 + 5a2 − 45)a2 sinha + 30 sinh3a − 5a3 cosha[2a2 + cosh(2a) − 4]
. (23)

Equation (23) allows one to draw the neutral stability curve
�(a) for a given value of the Biot number. Figure 2 shows
some neutral stability curves for different values of Bi. For
nonvanishing values of Bi, the curves reported in Fig. 2 have
the upward concave shape, with an absolute minimum, typical
of thermal instability. The limiting case Bi → 0 is peculiar,
as the neutral stability curve is monotonically increasing. In

this case, the absolute minimum of �(a) is with a → 0. We
must keep in mind that the behavior in the limit Bi → 0
is to be intended just as an asymptotic regime. In fact, as
we have already pointed out, a setup with both the lower
and the upper wall kept perfectly adiabatic is incompatible
with a basic stationary temperature varying only along the z

axis. This feature is clearly displayed in Eq. (8), where the
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FIG. 2. Longitudinal rolls: neutral stability curves for different
values of the Biot number.

expression of Tb becomes singular when Bi → 0. Figure 2
also shows that the neutral stability curve �(a) moves upward
as Bi increases. As evident also from the right-hand side of
Eq. (23), when Bi → ∞, the neutral stability curve jumps to
infinity. The physical meaning of this result is that the basic
flow where the lower boundary is thermally insulated and the
upper boundary is kept isothermal turns out to be linearly
stable versus longitudinal rolls. In order to find the minima of
the governing parameter � as a function of a, i.e., the critical
value �cr and the corresponding critical wave number acr , we
evaluate the derivative of � with respect to a, by employing
Eq. (23), and we set it to zero. Figure 3 shows the critical values
of the parameter � and of the wave number a as functions of
Bi. Figure 3 shows in particular the asymptotic behavior of
the critical values acr and �cr as the Biot number tends to
infinity. In this limit, acr tends to a constant value, namely,
acr = 2.859 36, while �cr approaches a linearly increasing
trend. Thus, by employing Eq. (23), when Bi � 1 one obtains
the asymptotic expressions

acr = 2.859 36, �cr = 30.5750 + 10.7634 Bi. (24)

On the other hand, in the limit Bi → 0, one has the power
series expansion of Eq. (23) in the neighborhood of a = 0
given by

� = 560

31
+ 2632a2

2883
+ O(a4). (25)

One may question the feasibility of the values of � as large
as 560/31 ∼= 18 in real life systems. An example can be made
relative to an engine oil film with σ ∼= 4 × 10−5 N/mK, ρ0

∼=
9 × 102 kg/m3, c ∼= 2 × 103 J/kg K, α ∼= 7 × 10−8 m2/s, and
H ∼= 10−2 m. On account of Eqs. (6), (7), and (21), one may
evaluate � = 40U 2

0 , where U0 is the dimensional average
velocity of the basic flow. In order to obtain an instability
(� ∼= 18) one should have U0 not smaller than 0.6 m/s. Such
values of U0 are definitely conceivable in practical cases [22].
A review with several examples of applications involving
liquid film flows can be found in [23]. As already mentioned
in the Introduction, another important point to be made here is

FIG. 3. Critical values, relative to the longitudinal roll case, of the
governing parameter � and the wave number a as functions of Bi.

that the critical value of the Reynolds number associated with
� can be smaller than the classical critical Reynolds number
for a transition to turbulence. In order for this to occur, the
Prandtl number must be high enough, as discussed in [17].

VI. OBLIQUE AND TRANSVERSE ROLLS

Oblique rolls are wavelike disturbances with an orientation
such that 0 < φ < π/2, while transverse rolls are obtained
when φ = 0. Departure from longitudinal rolls (φ = π/2)
is a consequence of the governing differential equation not
having constant coefficients, so its solution must be sought
numerically. In fact, the differential problem to be solved is

g′′ − (a2 + iaub − iω)g + 2iu′
b

Pe2 f ′′

+ a

Pe2 (2iau′
b − T ′

b)f = 0,

(26)
g′ = 0 for z = 0,

g′ + Big = 0 for z = 1,

where the function f is defined by Eq. (19). Problem (26) is
complemented by the additional condition given by Eq. (22).
Equations (26) are solved numerically by means of a
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FIG. 4. Critical values of � as functions of φ for different values
of the Biot number, relative to the cases Pe = 1 (top), Pe = 5 (middle),
and Pe = 10 (bottom).

Runge-Kutta method coupled with a shooting method. This
numerical procedure is implemented with the software Math-
ematica 10 by using the built-in functions NDSolve and
FindRoot.

The investigation of the transition from longitudinal rolls
to transverse rolls, obtained by changing φ from π/2 to 0,

FIG. 5. Critical values of the wave number a as functions of φ

for different values of the Biot number, relative to the cases Pe = 1
(top), Pe = 5 (middle), and Pe = 10 (bottom).

is presented in Figs. 4–6. These figures show the behavior
of the critical values of the governing parameters (�,a,ω) as
functions of the inclination angle φ. Each frame of each figure
refers to a different value of the Péclet number and each curve
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FIG. 6. Critical values of the angular frequency ω as functions of
φ for different values of the Biot number, relative to the cases Pe = 1
(top), Pe = 5 (middle), and Pe = 10 (bottom).

refers to a different value of the Biot number. The value of
each critical parameter presented in these figures decreases
monotonically towards the value obtained for longitudinal
rolls. Higher Péclet numbers yield lower values of the critical

FIG. 7. Neutral stability curves of the oblique rolls as functions of
the inclination angle φ for the limiting case Bi → 0 (adiabatic upper
boundary) and Pe = 1. The solid lines refer to the lowest branch. The
dashed line is relative to the higher branch with φ = 0.39.

governing parameter �cr and of the critical wave number
acr , while they yield higher values of the critical angular
frequency ωcr . Higher values of the Biot number imply higher
values of all critical parameters (�cr,acr ,ωcr ). It is evident
that the longitudinal rolls turn out to be more unstable with
respect to any other possible normal modes. The Péclet number
influences the stability of longitudinal rolls only through
the parameter � = Ma Pe2. On the other hand, Pe appears
explicitly in the analysis of oblique and transverse rolls,
yielding a destabilizing effect. The influence of an increasing
Biot number is stabilizing. This behavior is consistent with
what we noted at the end of Sec. III, namely, that the limiting
case Bi → ∞ is not subject to any kind of instability.

Figure 7 is relative to the limiting case of an adiabatic top
boundary Bi → 0 for a specific value of the Péclet number,
namely, Pe = 1. The change of the neutral stability curves
versus the inclination angle φ is illustrated in Fig. 7. The lowest
curve is relative to the longitudinal roll case φ = π/2. Moving
upward from the lowest one, the curves refer to monotonically
decreasing values of φ. The continuous lines denote the lowest
branch for every prescribed φ. The dashed line corresponds to a
higher branch of neutral stability with φ = 0.39π . The neutral
stability curves depart from the upward concave shape while
φ decreases from π/2. One observes the detachment of two
branches when φ is within 0.39π and 0.4π . Then the lowest
branch displays a turning point. As pointed out above, the
longitudinal rolls turn out to be the most unstable disturbances.

The transverse rolls are defined by the inclination angle
φ = 0. No significant simplification of the governing equations
can be taken with respect to the general case of oblique rolls. In
Fig. 8 we report the critical values of the governing parameter
� as functions of Bi for fixed values of Pe and as functions
of Pe for fixed values of Bi. It should be noted that, similarly
to the case of longitudinal rolls, the value of �cr increases
almost linearly with Bi. On the other hand, the dependence of
�cr on Pe becomes weaker and weaker as the Péclet number
increases.
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FIG. 8. Critical values of the governing parameter � for trans-
verse rolls (φ = 0) as functions of Bi for fixed values of Pe (top) and
functions of Pe for fixed values of Bi (bottom).

VII. CONCLUSION

A linear stability analysis of a highly viscous thin liquid
film has been carried out. The liquid film flows over a
plate and it is internally heated by viscous dissipation. The
lower boundary, i.e., the plate, has been assumed to be
impermeable and adiabatic, whereas the upper boundary has
been modeled as a free nondeformable surface, subject to a
Robin temperature boundary condition. The thermoconvective
instability investigated here is generated by the interplay
between the heating due to viscous dissipation and the

temperature-dependent surface tension at the free boundary.
A basic fully developed flow inclined arbitrarily and parallel
to the plate is imposed such that the temperature and velocity
fields depend (nonlinearly) only on the transverse coordinate.
The dimensionless governing parameters are the Marangoni
number Ma associated with the surface tension, the Biot
number Bi relative to the Robin boundary condition at the free
surface, and the Péclet number Pe describing the basic flow
average velocity. First, the special case of longitudinal rolls is
investigated. The eigenvalue problem obtained by employing
the normal modes method has been solved analytically in
this case. The results have been reported in terms of neutral
stability curves �(a,Bi), where � = Ma Pe2. For a given Bi,
the absolute minimum of �(a,Bi) has been determined in order
to identify the critical values for the onset of instability. The
behavior of the critical values of � and a has been investigated
for different Biot numbers. The oblique and transverse rolls
have been studied also by solving numerically the eigenvalue
problem for neutral stability. The main results of this analysis
are the following.

(i) For every given set of values of the governing parameters,
the longitudinal rolls are always more unstable than the oblique
and transverse rolls.

(ii) The critical value of � for the onset of longitudinal rolls
is a monotonically increasing function of the Biot number.
When Bi → ∞, the critical value of � tends to infinity. This
finding is consistent with the expected stability of the basic
flow when the upper free surface is constrained to be perfectly
isothermal.

(iii) The critical value of the wave number for the onset of
longitudinal rolls in the case of an isothermal upper boundary,
i.e., in the limit Bi → ∞, tends to the value acr = 2.859 36.
A correlation has been derived for large values of Bi such that
�cr = 30.5750 + 10.7634 Bi.

(iv) In the limiting case of an adiabatic upper boundary, i.e.,
when Bi → 0, the critical values for the onset of longitudinal
rolls are acr = 0 and �cr = 560/31 	 18.0645. A series
expansion in the neighborhood of a = 0 has been performed
for small values of Bi, so the asymptotic expression �cr =
560/31 + 2632a2/2883 + O(a4) is obtained.
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