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Observations of spontaneous oscillations in simple two-fluid networks
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We investigate the laminar flow of two-fluid mixtures inside a simple network of interconnected tubes. The
fluid system is composed of two miscible Newtonian fluids of different viscosity which do not mix and remain as
nearly distinct phases. Downstream of a diverging network junction the two fluids do not necessarily split in equal
fraction and thus heterogeneity is introduced into network. We find that in the simplest network, a single loop
with one inlet and one outlet, under steady inlet conditions, the flow rates and distribution of the two fluids within
the network loop can undergo persistent spontaneous oscillations. We develop a simple model which highlights
the basic mechanism of the instability and we demonstrate that the model can predict the region of parameter
space where oscillations exist. The model predictions are in good agreement with experimental observations.
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I. INTRODUCTION

In piping networks where the fluid is composed of multiple
phases or constituents it has been observed that the phase
distribution within the network may exhibit unsteady or
nonunique flow. At the microscale, the flow of droplets
or bubbles through microfluidic networks can demonstrate
bistabilty, spontaneous oscillations, and nonlinear dynam-
ics [1–5]. On the macroscale, models of magma flow in
lava tubes have shown the existence of multiple solutions
on the pressure-flow curve which can lead to spontaneous
oscillations in the flow [6,7]. A well-studied network that
can exhibit complex dynamic behavior is microvascular blood
flow, where August Krogh first noted the heterogeneity of
blood flow in the webbed feet of frogs in 1921 [8]. Simulations,
analysis, and experiments with microvascular networks have
demonstrated the possibility of spontaneous oscillations in
flow rates and hematocrit distribution though direct validation
between model and experiment is lacking [9–15].

There are two fundamental phenomena in two fluid net-
works which differ from their single fluid counterparts. The
first effect is that the effective viscosity in a single pipe (or
vessel) depends upon the fraction of the different fluids in
the pipe. The second effect is that the phase fraction after a
diverging junction may differ in the two downstream branches.
Such phase separation at a node exists in numerous systems. In
microvascular blood flow, Krogh introduced the term “plasma
skimming” in order to explain the disproportionate distribution
of red blood cells at vessel bifurcations [8,16–21]. Another ex-
ample is industrially relevant gas-liquid flows where extensive
experimental work has been conducted [22–24].

Recent work by our group has focused on simple networks
containing two miscible Newtonian fluids of differing vis-
cosities. This fluid system provides controllable laboratory
experiments and the simple network geometries are amenable
to analysis. Through theory and experiment, we have shown
that the existence of phase separation at a single junction and
nonlinear mixture viscosity in this system can lead to multiple
stable equilibrium states within the network [25,26]. We
recently conducted a theoretical study of dynamics in networks
with this fluid system [27]. We used a combination of analytic
and numerical techniques to identify and track saddle-node

and Hopf bifurcations through the large parameter space.
We found predictions of sustained spontaneous oscillations
in the flow rates internal to the network for steady inlet
conditions.

In this paper we build upon our prior work and exper-
imentally verify predictions on the existence of spontaneous
oscillations within simple two-fluid networks. The fluid system
is two miscible Newtonian fluids of differing viscosities and
densities such that there is stratified flow within each tube [26].
The network is only a single loop with one inlet and one outlet.
The inlet to the network loop is held steady, yet we observe
under certain conditions that the contents of the branches
inside the loop are unsteady. We develop a simple model that
explains the underlying mechanism of this instability and we
demonstrate that the model is able to accurately predict the
region of parameter space where oscillations exist.

II. EXPERIMENTS

A top view schematic of the physical system is shown in
Fig. 1 (gravity points into the page). This network represents
perhaps the simplest case where the flow internal to the
network is not fully determined by the inlet conditions. Two
syringe pumps supply source fluids at a controlled and steady
flow rate. Inlet pump 1 contains water (denoted as fluid 1) and
inlet pump 2 contains an aqueous glycerol solution (fluid 2).
The mass fraction of glycerol in fluid 2 is measured to set
the desired viscosity. Circular tubing (1.6-mm inner diameter)
from the two inlet pumps meet at the inlet junction, where
the density difference of the two fluids is sufficient to create a
strongly stratified flow. The dense viscous solution is observed
to flow along the lower half of the tube and the water on
top. Food dye is added for visualization. The inlet tube then
approaches the inlet T junction to the network composed of a
single loop (see Fig. 1). The inlet flow rates on both pumps are
set to Q = 1 ml/min, which provides an inlet volume fraction
of fluid 2 of �in = 0.5. The T junction has outlet branches
which are 90◦ relative to each other and the orientation of this
diverging node as shown in Fig. 1 is important for the results
we obtain [26].

The content of vessel C is monitored by imaging every
5 s. Imaging allows us to monitor the location of the interface
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FIG. 1. (Color online) Top-view schematic of the experimental
setup (gravity points into the page). Syringe pumps push two different
fluids at controlled rates. Inlet pump 1 contains water while inlet pump
2 contains a viscous glycerol solution. The two fluids merge into a
stratified flow before entering a small three vessel network composed
of a single loop.

between the two fluids and thus infer the relative fraction of the
two fluids in the tube. If the flow rate inside the loop oscillates,
then the fraction of the two fluids in each tube will also change
with time. Thus, by simply monitoring the interface location
between the two fluids, we are able to determine whether the
flow is steady.

A disadvantage of syringe pumps is that they inherently
introduce periodic noise [28]. For our system the pumps
introduce a low-amplitude fluctuation with a period of approx-
imately 45 s which appears in all experiments and controls. In
order to ensure that any dynamics we observe are not driven by
the pumps we also conduct some experiments with a constant
pressure source. We use a pressure regulator and gravity to
set a steady inlet pressure from a reservoir of each inlet fluid.
The inlet hydraulic resistances to the network are tuned to
match the viscosity ratio of the two fluids to order to set an
inlet volume fraction of �in = 0.5. The disadvantages of the
pressure system is that we have only passive control over
the flow rate and as the reservoir drains the applied pressure
decreases very slowly with time. While the resulting dynamics
would be expected to differ for constant pressure or constant
flow conditions, the underlying existence of instability is
identical with either driving.

The sizing of the lengths and diameters in the network were
guided by the model predictions in our previous work [27]. The
diameters of the cylindrical vessels was set to dA = 0.8 mm =
1/32 in, dB = 0.51 mm = 1/50 in, and dC = 3.2 mm =
1/8 in. The length of the vessels are varied in each experiment,
but typical lengths are on the order of 100 mm.

III. MODEL

A complete model of this system was presented in our
previous paper based on a one-dimensional wave equation
for the volume fraction in each vessel [27]. In the model,
the boundary condition to the vessels downstream of the
inlet diverging node are provided by a constitutive law which
states the phase separation function. For our stratified flow
system, this phase separation behavior was measured in prior
work [26]. The phase separation function provides the volume
fraction in the downstream tubes as a function of the flow

into and out of the node, Qin and QA. When this system of
convection equations is linearized, the propagation of fluid
through the system manifests itself as a delay and we arrive at
a set of state-dependent delay equations. In network problems
if there is a change at the inlet node it takes time for that change
to propagate through to the exit.

To close this system of convection equations, we must
consider the pressure drop, �P , across any vessel which
is proportional to the flow, �Pi = QiRi . The hydraulic
resistance, Ri , is computed through Poiseuille’s law,

Ri(t) = μ̄i(t)

μ1
ri ; ri = 128�iμ1

πd4
i

, (1)

where ri is the nominal resistance and μ̄i is the integrated
value of effective viscosity over the tube’s length li . The local
effective viscosity depends upon the volume fraction of the
two fluids in the tube. Summing pressure drops around the
loop provides an equation for the flow inside the network’s
single loop, which is

QA(t)

Qin
= RB(t) + RC(t)

RA(t) + RB(t) + RC(t)
. (2)

Since the flow is incompressible, this flow equation must be
satisfied at each instance in time. In dimensionless terms this
convection model depends upon the ratio of the nominal resis-
tances, rC/rB and rA/rB ; the ratio of the volume of the vessels,
VA/VC and VB/VC ; the viscosity contrast, μ2/μ1; and �in.

In our previous theoretical paper, we found that the region of
parameter space where the convective model shows instability
is dominated by the case when the diameter of vessel C is
large relative to all others [27]. The large diameter introduces
a simplifying limit where rC/rB → 0, VA/VC → 0, and
VB/VC → 0. When C has a large diameter that vessel’s
resistance does not influence the flow equation, Eq. (2).
Further, the time delays associated with flow through vessels
B and A are so short that they can be assumed instantaneous
with respect to changes in C. In this limit, vessel C sets the
time delay for the system and vessels A and B are assumed to
always be in quasiequilibrium—namely the contents of those
two vessels are uniform along the length. These assumptions
remove the need for the full convective flow equations and
instead yield a simple implicit iterative map,

QA(t)

Qin
= RB(t − τC)

RA(t) + RB(t − τC)
. (3)

The resistance of branch B therefore lags that in A by the time
delay which is set by the flow through vessel C, τC = VC/QC .
Note that both RA and RB depend upon the contents of
those vessels respectively and therefore the flow QA. While
our equation is implicit, it is similar to the classic iteration
equations in discrete dynamical systems. The current value
of QA is substituted into this implicit algebraic equation
to determine the value of QA at the time, τC , later. If the
value of QA converges upon successive iterations of the
map, then system is stable. The value of the delay time,
τC = VC/QC , has no impact on the system stability but would
impact the resulting frequency of oscillations if the flow were
unstable. This model will be referred to as the iterative map
throughout.

023004-2



OBSERVATIONS OF SPONTANEOUS OSCILLATIONS IN . . . PHYSICAL REVIEW E 91, 023004 (2015)

The iterative map assumes that vessel C is critical for setting
the time delay between the state of vessels A and B, while
vessel B is critical for setting the resistance in the B-C branch.
If there is a change at the inlet T junction, then it takes time
for that change to propagate to vessel B. While the change
is propagating through C, the flow inside the loop does not
change since the resistance of C is unimportant. As soon as the
change enters vessel B, the change propagates quickly (relative
to the delay in C) and instantaneously changes the resistance in
B, thus feeding back to potentially change the state of the
network flow. In the iterative map, only the parameters rA/rB ,
μ2/μ1, and �in enter the problem.

The stability of the iterative map model can be determined
readily [29]. Here we focus on locating any bifurcations
in which the equilibrium flow loses stability to a period-2
oscillation. Following standard procedures, a little algebra
reduces this criterion to dF/dQA < 0, where the stability
function F is defined by

F = �PA�PB
(
1 − QA

Qin

)2 . (4)

IV. RESULTS

This analysis provides a simple methodology to predict the
stability from experimental data since the stability function
F can be measured directly. The exit network connection at
vessels A and B is removed and an additional syringe pump
is placed on the exit of tube A (or B) to withdraw fluid at a
controlled rate. As the inlet pumps are held steady at 1 ml/min
each, the outlet flow rate is varied and we measure the pressure
drop across both tubes A (blue) and B (red). We then plot this
experimental data as shown in Fig. 2(a). The unusual shape of
the curves is due to phase separation function at the network
inlet. With no phase separation and linear viscosity the plot
would look like two straight lines of opposite slope. Rather
than determining the phase separation and effective viscosity
functions separately through experiment, we determine their
combination in a single experiment. The flat region in the
pressure-flow curves (QA/Qin > 0.77) correspond to vessels
B and C essentially containing all water [26].

From the experimental data we can directly compute the
stability function F and determine whether it has a region
where the slope is negative, Fig. 2(b). The locations of the
maximum and minimum tell us the equilibrium flow rate, QA,
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FIG. 2. (Color online) (a) Raw data for the pressure-flow experiment where a pump is placed on the exit of vessel A or B to control the flow
in branch A. Vessels A and B are both 150-mm long and the viscous fluid is a 92% glycerol solution by mass with a viscosity of μ2 = 360μ1.
Blue is the pressure drop across A, and red is the pressure drop across B. (b) Stability function F as a function of the relative flow rate in
vessel A. Since the function has regions of negative slope, instability is possible in a network when 0.67 < QA/Qin < 0.77. (c) Stability
function F as a function of the length ratio. Instability corresponds to the region where this curve has positive slope, which in this case is
roughly 0.004 < LA/LB < 0.1. [(d)–(k)] Raw time series of the location of the interface between the two fluids of the network experiments.
Experiments in (d)–(g) were taken with the syringe pumps and (h)–(k) were taken with constant pressure.
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which bounds the region of instability in the network; 0.67 <

QA/Qin < 0.77 in this case.
When the exit pump is removed and vessels A and B are

connected as a network loop, the equilibrium state of the
network is given by the intersection of the two pressure-flow
curves in Fig. 2(a). The equilibrium state occurs where the
pressure drop in each tube is the same for a given QA. In this
example where the lengths of A and B are equal, QA/Qin ≈
0.6 and the network would be outside the instability region.
However, we expect the experimental pressure drop data to
scale linearly with tube length. Thus if the length of vessel
B is increased, the intersection point moves to the right and
into the region of instability. If we take our pressure drop data
with equal length vessels, then for each value of QA the length
ratio to give that flow rate is simply LA/LB = �PB/�PA.
Our data plotted in this manner are shown in Fig. 2(c). Under
this transformation, regions with positive slope are unstable.
Figure 2(c) describes the stability behavior for this network
for all length ratios. At this viscosity the critical length ratios
for instability are approximately 0.004 < LA/LB < 0.1.

We tested this analysis by building networks with different
lengths and monitoring their stability. Some sample results
of time series are shown in Figs. 2(d)–2(k). In some of the
experiments, we observe that the interface between the water
and glycerol solution oscillates in a regular pattern after an
initial transient. While we only show snapshots here, we
have recorded steady oscillations maintained for over 4 h
with a regular ∼5-min period. In the flow-controlled data the
pump noise is clearly seen; however, the low-frequency and
large-amplitude oscillations of the network are unmistakeable.
Under pressure control, the data are smoother; however, a
gradual drift is observed as the reservoirs drain and the overall
applied pressure decreases slightly over time. The stability
observations agree well with the analysis. When we are
solidly in the region of instability predicted by the model, the
network robustly shows spontaneous, sustained oscillations.
The observed instability region is, however, slightly narrower
than that predicted by our simple model.

We repeat the network experiment over a range of tube
lengths and a range of viscosity ratios. These data are shown
in Fig. 3. We find a distinct region of instability which is
repeatable over a range of parameters under both pressure and
flow control. Figure 3 captures the results of over 60 unique
experiments. We can understand this phase diagram using the
iterative map. We assume that the pressure-flow curves shown
in Fig. 2 can be approximated as a linear function between
0 < QA/Qin < Q∗, where Q∗ is the location of the abrupt
change in slope. For our data Q∗ ≈ 0.8. For QA/Qin > Q∗
we assume that �PA is a constant and for vessel B we assume
that its volume fraction is zero and only water is in that
vessel.

Using this empirical linear model and taking the limit as the
viscosity ratio becomes large yields a simple approximation.
With these assumptions the critical values of the equilibrium
flow rate are Q∗ and Q∗/(2 − Q∗) and the iterative map gives
the critical value of rA/rB on the left boundary as

rA

rB

= 1 − Q∗

μ
(

μ2

μ1
,�in,dA

) (5)
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FIG. 3. (Color online) Region of instability in the space of rA/rB

and μ2/μ1. The filled downward triangles are experimental points
where we observed oscillations with flow control, the filled upward
pointing triangles were oscillatory with pressure control, and the
open triangles are where we observed steady flow in the network
(downward is flow control and upward is pressure control). The solid
line is the instability boundary predicted by Eqs. (5) and (6).

and on the right boundary as

rA

rB

= (1 − Q∗)
μ

(
μ2

μ1
,�in,dB

)

μ
(

μ2

μ1
,�in,dA

) . (6)

These boundaries are shown, assuming Q∗ = 0.8 for all
viscosities, as the solid curves in Fig. 3 which capture the
general trend of the data. We obtained an approximate effective
viscosity function for our stratified flow from measuring the
pressure drop in single tubes. Note that we measure the ef-
fective viscosity in vessel B to be about half the effective
viscosity as vessel A for the same volume fraction due to vessel
B’s smaller diameter. Our observations show that the instability
disappears at viscosity contrasts below μ2/μ1 < 200. Previous
experiments show that as the viscosity contrast is reduced the
critical point Q∗ → 1 and eventually disappears [26]. Thus,
the assumption that Q∗ is constant is not true; however, the
basic trends are captured by this simple model. The stability
observations indicate the critical boundary on the right is
insensitive to viscosity contrast while the left boundary has
a slope inversely proportional to the viscosity.

V. CONCLUSIONS

We have demonstrated a simple piping network system
that shows spontaneous and sustained oscillations over a wide
range of parameters. The geometry of the network is perhaps
one of the simplest under which such oscillations could exist.
The network only has one diverging node at the inlet and
only one internal degree of freedom—the distribution of flow
between the two halves of the loop. The oscillations have been
observed under both pressure and flow control and robustly
exist over a wide range of experiments. The mechanism of the
oscillations is easily understood with an iterative map where
a single tube in the system introduces a delay for changes
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which propagate through the system. Since the fluid flow
in the system adjusts itself instantly, and everywhere within
the network loop at once, there is a delay in the feedback
mechanism to adjust the flow.

In this paper, our results are applied to a model system.
However, the analysis provides a simple way to probe whether
such instabilities could be observed in other physical systems.
If one has access to experimentally obtained phase separation
and effective viscosity data, one can easily use Eq. (4) to
determine whether this type of instability could be observed.
We note that other distinct types of oscillations may exist, such
as high-frequency ones where the assumptions of the iterative
map break down and which are not captured by the simple
criteria [27].

In microvascular blood flow, network oscillations have
been observed experimentally in complex geometries and
predicted theoretically in simple ones. These predictions often
lie in ranges of parameter space which are not experimentally
testable. Our results demonstrate that spontaneous oscillations
can emerge in simple network geometries and we provide
a laboratory system where theory and experiment are in
excellent agreement.
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