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Evolution and stability of shock waves in dissipative gases characterized
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Previous experiments have revealed that shock waves driven through dissipative gases may become unstable,
for example, in granular gases and in molecular gases undergoing strong relaxation effects. The mechanisms
controlling these instabilities are not well understood. We successfully isolated and investigated this instability
in the canonical problem of piston-driven shock waves propagating into a medium characterized by inelastic
collision processes. We treat the standard model of granular gases, where particle collisions are taken as inelastic,
with a constant coefficient of restitution. The inelasticity is activated for sufficiently strong collisions. Molecular
dynamic simulations were performed for 30 000 particles. We find that all shock waves investigated become
unstable, with density nonuniformities forming in the relaxation region. The wavelength of these fingers is found
to be comparable to the characteristic relaxation thickness. Shock Hugoniot curves for both elastic and inelastic
collisions were obtained analytically and numerically. Analysis of these curves indicates that the instability is not
of the Bethe-Zeldovich-Thompson or D’yakov-Kontorovich type. Analysis of the shock relaxation rates and rates
for clustering in a convected fluid element with the same thermodynamic history ruled out the clustering instability
of a homogeneous granular gas. Instead, wave reconstruction of the early transient evolution indicates that the
onset of instability occurs during repressurization of the gas following the initial relaxation of the medium
behind the lead shock. This repressurization gives rise to internal pressure waves in the presence of strong
density gradients. This indicates that the mechanism of instability is more likely of the vorticity-generating
Richtmyer-Meshkov type, relying on the action of the inner pressure wave development during the transient
relaxation.
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I. INTRODUCTION

Shock waves driven into dissipative gases sometimes
develop instabilities. Granular media, which are characterized
by inelastic particle collisions, are one example. Previous
experiments have identified unstable formations of finger-like
jets in granular media dispersed by shock waves driven through
air [1,2] and for rapid granular flows down a chute [3]. Similar
pattern formations can be seen when granular media are
subjected to a vertically oscillating bed, both experimentally
and numerically [4,5]. In the latter, the periodic agitation of the
container walls drives strong shocks and expansion waves into
the nonuniform granular gas. The complex transient dynamics
involved in these past configurations have prevented the
authors from clearly identifying the mechanisms controlling
the instability. In the present study, we pose the problem in
the classical formulation of a piston suddenly accelerated at a
constant speed into a gas medium, as illustrated in Fig. 1.

Previous investigations of this canonical problem have
looked at the one-dimensional (1D) structure and evolution
of shock waves in granular gases, although instabilities had
not been identified [6,7]. Goldshtein et al. revealed that the
structure of shock waves driven by a piston into a granular
gas is composed of three distinct regions [6]. The first region
follows the shock front and is composed of a rapid increase
in granular temperature (region I). Due to the inelasticity and
increased rate of the collisions within this excited region, the
granular temperature of the material falling further behind
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the shock starts to decrease, while the density increases;
this marks the “relaxing” region (region II). Eventually,
the collision amplitudes become sufficiently weak such that
viscoelastic particles collide elastically. In this “equilibrium”
region (region III), the gas retains a finite granular temperature.
When all collisions are assumed to be inelastic, the equilibrium
region tends to zero granular temperature.

Kamenetsky et al. [7] investigated the evolution of such a
structure numerically by solving the 1D Euler equations for
granular media. The authors revealed interesting dynamics
prior to the shock wave attaining the developed structure
illustrated in Fig. 1. In particular, the authors found that the
lead shock front pulls back towards the piston for a short
period, before attaining a constant velocity. The dynamics of
this stage were not explained or further explored. Nevertheless,
as we show in the present article, these turn out to have a strong
bearing on the multidimensional shock instability.

Qualitatively, a structure similar to that shown in Fig. 1 is
observed for sufficiently strong shock waves driven into molec-
ular gases, whereby the shock is strong enough to bring about
inelastic collisions between molecules (i.e., via endothermic
reactions) [8]. Interestingly, these types of relaxing shock
waves have also been shown to sometimes become unstable.
Unstable shock structures have been observed experimentally
in sufficiently strong shocks leading to ionization [9–11] and
dissociation [11] and in gases with high specific heats [11–14].

Current models for predicting such shock instability are
mostly based on jump conditions between the initial and the
final equilibrium states, without knowledge of the kinetic
processes linking the two states. The D’yakov-Kontorovich
(DK) and the Bethe-Zeldovich-Thompson (BZT) mechanisms
require the shape of the Hugoniot curves to have anomalous
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FIG. 1. Temperature distribution for a thermally relaxing shock
wave traveling at velocity D.

properties (see, for example, Refs. [8] and [15]). The Hugoniot
curve is the locus of the equilibrium postshock state, usually
represented in the pressure-specific volume plane. While the
Hugoniot curves can be obtained experimentally for a given
substance, investigation of their properties in the context of
BZT and DK instabilities predicted stable shocks at experi-
mental conditions corresponding to unstable shocks [11,13].

Another mechanism of interest involved in shock insta-
bility is that of Richtmyer-Meshkov- and Rayleigh-Taylor-
type instabilities, although such instabilities have not been
reported in the cases above. In such a multidimensional
instability, misaligned gradients of density and pressure lead
to vorticity production [16]. This type of instability is a
universal physical phenomena encountered, for example, in
gases [17], plasmas [18], Bose-Einstein condensates [19], and
combustion [20].

Models for predicting the instability of relaxing shocks
involving the kinetics of the relaxation process have only very
recently been formulated. Direct numerical simulations at the
continuum level in the case of ionizing shocks have indeed
recovered the instability [21,22], suggesting that it is related to
the hydrodynamic coupling with the kinetics of the relaxation
process. This suggests that an account for the kinetics of
the relaxation process may be required to predict the shock
instability in relaxing media.

In the absence of bulk flow, it has been shown that such
dissipative gases are subject to clustering instabilities [23–25].
This clustering instability, first shown by Goldhirsch and
Zanetti [23], is seen in granular gases, where the collisions
can be assumed to remain inelastic for all impact conditions.
In such a medium, an initially homogeneous gas develops
clusters during its cooling, which takes the form of filamentous
structures. Gas is preferentially accelerated towards regions
of higher density, owing to the local higher rate of pressure
decay in these regions due to dissipation. Since the material
passing through the shock structure undergoes the same
cooling process, the clustering instability may be controlling
the local nonhomogeneities within the shock structure. This
link is further explored in the present paper.

To summarize, the goal of our present study is twofold.
First, we wish to isolate the shock instability in relaxing
media in a canonical problem, conducive to further analysis.
Second, we wish to determine the mechanism controlling the

instability. The qualitative correspondence of the structure
of granular gases and molecular gases suggests that both
problems can be studied by the same formalism, provided
the collision properties are modified to account for the finite
temperature equilibrium region of molecular gases.

To investigate the evolution and stability of such shock
waves, we adopt the simple kinetic model previously used
by Goldhirsch and Zanetti to describe dissipative granular
gases: the collision between “hard particles” of finite radius
is modeled deterministically using a constant coefficient of
restitution taken below unity. This model is the simplest kinetic
model that can mimic relaxation. In order to capture the
structure of relaxing gases more closely, we also assume that
the collisions are activated by an impact energy threshold.
Such a threshold is also applicable to granular media, which
has been used to better imitate the viscoelastic behavior of
colliding particles [26].

The paper is organized as follows: Section II outlines the
details of the molecular dynamics (MD) model used in this
study. Section III addresses the evolution and structure of shock
waves predicted by the molecular dynamic model. Section IV
provides further discussion and analysis of the mechanism
controlling the shock instability. Finally, Sec. V offers our
closing remarks.

II. DETAILS OF THE MOLECULAR DYNAMICS MODEL

The approach we use is a deterministic hard-particle dy-
namic approach in a 2D environment, akin to the probabilistic
approach of the direct simulation Monte Carlo (DSMC)
technique [27]. In such models, only the collision rules are
prescribed in order to capture a physical phenomenon (granular
gases, relaxation, chemical reactions, etc.). We employ the
standard deterministic method used for granular gases, both
in its kinetic theory and in particle-based simulations. Indeed,
much of the kinetic theory of dilute, idealized gases can be
obtained by treating molecules as hard spheres with no internal
structure [28,29].

The current model assumes that collisions with boundaries
are elastic, yielding a symmetry condition that is implemented
in order not to artificially introduce supplementary system size
effects. Each binary collision is elastic, unless an activation
threshold is reached. The postcollision velocities of two
particles are calculated as

�u′
i = �ui − 1

2 (1 + ε∗)�gn
ij ,

(1)
�u′

j = �uj + 1
2 (1 + ε∗)�gn

ij ,

where �gn
ij = �un

i − �un
j is the normal component of the relative

velocity of the two disks.
Activation is assumed to occur when the collision between

two disks is sufficiently strong. This mimics the excitation
of higher degrees of freedom (rotation, vibration, dissociation,
ionization, etc.) with increasing temperatures [29]. This is also
a simple model for granular media undergoing viscoelastic
collisions [26]. Quantitatively, the collision between two disks
is assumed to be elastic if �gn

ij is below a threshold u∗, a classical
activation formalism in chemical kinetics. For collisions with a
higher amplitude, we assume an inelastic dissipative collision,
which is modeled with a constant coefficient of restitution
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ε < 1; i.e.,

ε∗ =
{

1 if |�gn
ij | < u∗,

ε if |�gn
ij | � u∗, (2)

where the predefined u∗ and ε remain constant during each
simulation.

The problem we study is a classical shock propagation
problem, whereby the motion of a suddenly accelerated piston
driven in a thermalized medium drives a strong shock wave.
The driving piston is initially at rest and suddenly acquires
a constant velocity up. Collisions with the piston are elastic.
This model allows for the dissipation of the nonequilibrium
energy accumulated within the shock structure, which
terminates once the collision amplitudes fall back below the
activation threshold. In this manner, the activation threshold
also acts as a tunable parameter to control the equilibrium
temperature in the postshock media. Note that the model
assumed is also the standard model for granular gases [30],
allowing us to compare with the established hydrodynamic
description of this type of media.

The MD simulations thus reconstruct the dynamics of hard
disks. These are calculated using the event-driven molecular
dynamics (EDMD) technique first introduced by Alder and
Wainright [31]. We use the implementation of Pöschel and
Schwager [32], which we have extended to treat a moving wall
(piston). The particles were initialized with equal speed and
random directions. The system was let to thermalize and attain
Maxwell-Boltzmann statistics. Once thermalized, the piston
started moving at a constant speed. This code was implemented
and tested for nondissipative media in our previous study [33],
where the simulated shock jump conditions agreed with those
which were derived for hard disk mixtures.

The initial packing factor of the disks was chosen to be η1 =
(Nπd2)/4A = 0.012, where Nπd2/4 is the volume (area) of
the N hard disk with diameter d, and A = Lx × Ly the domain
area; the initial gas is thus in the ideal-gas regime [33]. All
distances have been normalized by the initial mean free path
of the system of disks λ1, which takes the form [30]

λ1 = 1√
2πdn1b2(η1)

, (3)

where b2(η) = (1 − 7η

16 )/(1 − η)2 is the Enskog factor for a 2D
system of hard particles, and n1 = N/A is the initial number
density of particles. All speeds are scaled by the initial root
mean squared velocity urms(1) of the disks, fixing the time
scaling by the initial mean free time τ1 = λ1/urms(1).

The numerical experiments were performed using 30 000
disks, unless otherwise noted. A domain size of Lx × Ly =
172.9 × 17.2 and disk radius σ = 0.019 were used to satisfy
the packing factor of η1 = 0.012. The dimensions of the do-
main, with 30 000 particles, was found to be an appropriate size
to investigate and capture instability, allowing for sufficiently
fast computing in order for results to be ensemble averaged.
Ensemble and coarse-grain averaging was implemented to
investigate the 1D shock structure. For each set of parameters,
an ensemble of 50 simulations was taken, with the macroscopic
properties taken in strips of width �x ≈ 0.5λ1 parallel to the
piston face.

All macroscopic properties are scaled by the initial state,
unless otherwise noted. The density ρ is taken by tracking the

number of disks within each strip, and the granular temperature
is taken with the rms velocity, i.e., T = 1

2u2
rms. The pressure

is approximated from the Helfand equation of state for elastic
disks [33]:

p = ρT

(1 − η)2
. (4)

To investigate the dynamics of the shock waves, the family
of characteristics was constructed. The particles paths (P ) and
forward (C+) and backward (C−) running characteristics on
an x-vs-t plane are given by

P,
dxp

dt
= u; C+,

dx+
dt

= u + c; C−,
dx−
dt

= u − c; (5)

where u is the local particle velocity normal to the piston and
c is the local speed of sound, at a given time. They represent
the trajectories of fluid particles, right running pressure waves,
and left running pressure waves, respectively [15]. The scaled
speed of sound for such a medium is approximated for an
elastic system of disks, taken as [33]

c

urms1

=
√

T

T1
(1 + (1 − η)−2 + 2η(1 − η)−1). (6)

The local packing factor is taken from the density jump,
η = η1ρ/ρ1.

The trajectories of the characteristics were obtained numer-
ically by integrating (5). The C+ characteristics are initiated
from the piston face at specified intervals in time, while C−
characteristics are initiated from the shock front at similar time
intervals. Particle paths are initialized at specified locations
away from the initial piston position, denoted ξ = x(t = 0)
for each path.

III. RESULTS

In this section we discuss the results obtained using the
described model. We compare the evolution of shock structure
and ensuing instability for varying properties. First, we look
at the evolution of shock structure in detail for a single case.
Next, we perform a parametric study to see how the evolution,
shock structure, and stability vary with up, u∗, and ε.

A. Evolution of the shock structure

The first case we look at is for up = 20, u∗ = 10, and
ε = 0.95. Figure 2 shows an example of the evolution of
the 1D temperature distribution. In addition to showing the

FIG. 2. Evolution of shock structure for up = 20, u∗ = 10, and
ε = 0.95.
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FIG. 3. (Color online) Evolution of (a) temperature, (b) density, and (c) pressure on an x vs t plane, in the piston frame of reference, for
up = 20, u∗ = 10, and ε = 0.95. Evolutions shown with select particle paths (solid white lines) and forward (solid black lines) and backward
[dashed (blue) lines] running characteristics.

instantaneous structure, the peak temperature and temperature
at the piston are tracked. Initially the temperature jump of the
shock is approximately u2

p ≈ 400, as predicted for a system of
elastic disks [33]. The temperature measured at the piston sur-
face decays until coming to a quasiequilibrium state, at which
point most inelastic collisions have subsided; note that the
kinetic model taken maintains an exponentially small fraction
of activated collisions as the temperature decays below the acti-
vation temperature. The peak temperature also decays initially,
which is followed by an oscillation before an equilibrium peak
temperature is reached. These dynamics are very similar to the
ones predicted by Kamenetsky et al. in inviscid hydrodynamic
simulations of granular gases with a constant ε [7].

Figure 3 shows the evolution of the averaged temperature,
density, and pressure fields in the x-t plane, in a frame of
reference moving with the piston. Selected particle paths, C+
characteristics extending from the piston, and C− from the
shock front are also shown in order to more clearly illustrate
the dynamics. For example, the shock is the locus along which
all forward-facing pressure waves C+ coalesce. The shock
wave driven by the piston generates an increase in the medium
pressure, density, and temperature. As the medium behind
the shock begins to cool, the lead shock is seen to decay. The
cooling of the gas and decay of the lead shock can be correlated
with the forward-facing pressure waves. The excess relaxation
behind the lead shock leads to an eventual pullback of the lead
shock towards the piston. A similar pullback was observed by
Kamenetsky et al. in their hydrodynamic simulations [7].

The cooling of the gas behind the lead shock, which can be
followed along the corresponding particle paths, eventually is
punctuated by an increase in density and a repressurization.
This can be clearly observed at t ≈ 2. The origin of this
repressurization is not clear at present but may be correlated
with the arrival of the rear-facing pressure waves (along the
C− characteristics shown), originating at the decaying shock.
Interestingly, the rear repressurization leads to a forward-
facing pressure wave, arriving at the lead shock at t ≈ 3. This
marks the reacceleration of the lead shock towards its final
equilibrium structure.

Figure 4 shows the evolution of shock morphology for this
case, obtained from a single realization. These results show
the birth of an unstable structure, which we distinguish by
density perturbations and corrugations appearing within the
shock structure. Initial stages of the evolution do not show
distinguishable instabilities, as seen at t = 0.3 and up to
t = 1.5. This is the point where the shock front stops
propagating ahead of the piston. For later times, instabilities
in the form of high-density clusters and corrugations appear at
the piston face. This is seen at t = 2.7, confirming that these
instabilities occur between t = 1.5 and t = 2.7.

Compared with the evolution of pressure shown in Fig. 3(c),
this range in time is when the early particle paths undergo
a repressurization event en route to attaining an equilibrium
state. This indicates that the origin of the instability may be
associated with this distinct feature of the relaxation process;
a possible mechanism is discussed in Sec. IV. Once the shock

FIG. 4. Evolution of shock morphology, for a single realization, at (a) t = 0.3, (b) t = 1.5, (c) t = 2.7, and (d) t = 3.9, with up = 20,
u∗ = 10, and ε = 0.95.
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FIG. 5. Particle distribution and coarse-grained streamlines for
a single realization (top), with ensemble and coarse-grained distri-
butions of temperature and density (bottom) after t = 8.13, with
up = 20, u∗ = 10, and ε = 0.95.

evolution enters the developed stage, the clusters begin grow-
ing from the piston, as demonstrated by the snapshot at t = 3.9.

Figure 5 shows the particle distribution in the shocked
material in relation to the mean temperature and density
distributions. Superimposed on the particle distribution plot
is the coarse-grained velocity vector field. This instantaneous
vector field is rendered using streamlines, in order to better
visualize the existence of coherent structures. The streamlines
were obtained by interpolating on the uniform grid of the
coarse-grained averaged velocity vector field. Results show
that substantial disturbances in speed are present in the region
of the high-density gradients. Streamlines converge toward the
high-density fingers, giving rise to convective rolls.

B. Parametric study of the shock structure and its evolution

1. Dimensional analysis and independent parameters

The macroscopic dynamics of the model introduced is
expected to have a relatively small number of controlling
parameters. Dimensional analysis permits us to determine
the number of parameters controlling the dynamics. The
initial thermodynamic state is uniquely defined by its granular
temperature T1, density ρ1, and packing fraction η1. The
shock dynamics depend on the piston speed up, the activation
threshold u∗, and the degree of inelasticity ε. Furthermore,
we are interested in conditions in which the strong shock
limit applies and the initial internal energy does not control
the dynamics [8,33]; this is the case where experimental
observations of shock instability have been made, for both
the granular and the relaxing molecular gases, as discussed
in Sec. I. Under the scaling of our variables, this reduces to
the limit where up � 1 and u∗ � 1. Under this limit, the
parameters of the problem reduce to up/u∗, η, and ε.

In order to validate the results of our dimensional analysis,
we varied both up and u∗ in the hypersonic limit up � u∗ � 1.
Figures 6(a) and 6(b) show results for the distributions of
density and kinetic energy, respectively, after equal piston
displacement while maintaining up/u∗ = 2.00 and ε = 0.95.
Figure 6(a) demonstrates that the distributions for density are
the same after equal piston displacement. Scaling the mean ki-
netic energy (temperature) by the activation energy EA = 1

2u∗2

in Fig. 6(a), we find that the postshock energy distributions
are similar, tending towards a similar quasiequilibrium state,
where the kinetic energy tends to 5%–8% of the activation
energy. This confirms that up/u∗ is a scaling parameter for the
dynamics. In our parametric study, we henceforth maintain
u∗ = 10 and vary only up and ε. We also set the initial
packing factor η1 = 0.12, a parameter we do not explore in
the present study; see Sirmas et al. for its effect on the shock
jump conditions in the case of nondissipative collisions [33].

2. Dependence on u p/u∗

It was found that up/u∗ controlled the type of dynamics
observed during the relaxation process. Figure 7 compares
the evolution of the temperature and pressure fields obtained
for up/u∗ = 1.0, 1.5, and 2.0, with ε = 0.95 for the case

FIG. 6. Ensemble and coarse-grained 1D shock structure of (a) the density and (b) the kinetic energy after a piston displacement of
xp = 138.7λ1 for varying up and u∗, with up/u∗ = 2, and ε = 0.95.
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FIG. 7. (Color online) Comparison of the shock evolution for temperature (top) and pressure (bottom) obtained from MD for (a) up/u∗ =
1.0, (b) up/u∗ = 1.5, and (c) up/u∗ = 2.02, with u∗ = 10, ε = 0.95, and η1 = 0.012. Selected particle paths (white) and forward running
characteristics (black) are shown, where ξ = x(t = 0).

up/u∗ = 1.0 shown in Fig. 7(a). In this case, the strong
initial shock wave is followed by a gradual decay of the
shock velocity. This decay does not cause the shock to pull
back towards the piston, and the early particle paths do not
experience a repressurization along the piston face. When
up/u∗ [Fig. 7(b)] is increased to 1.5, the shock front stalls with
respect to the piston and a moderate repressurization is seen
along the piston face. A further increase in the piston speed
leads to a more marked shock pullback and repressurization
event, such as that shown in Fig. 7(c) for up/u∗ = 2.0. The
threshold for oscillatory behavior for the front shock and
internal repressurization is approximately up/u∗ ≈ 1.

Figures 8(a) and 8(b) show a comparison of the developed
distributions of density and kinetic energy after equal piston
displacement for up/u∗ = 1.0, 1.5, and 2.0, with ε = 0.95.
Both distributions show that the distance of the shock front
decreases as up/u∗ increases. This is attributed to the decreas-
ing relaxation zone length for increasing up/u∗, which is seen
by the steeper slopes for increasing density and decreasing
kinetic energy. The peak energy increases with increasing
up/u∗, as expected for increasing up. All cases share a
common kinetic energy at the piston face, corresponding to
the quasiequilibrium state with a kinetic energy tending to
5%–8% of the activation energy.
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FIG. 8. Ensemble and coarse-grain averaged 1D shock structure of (a) density and (b) temperature after a piston displacement of xp =
138.7λ1 for different values of up/u∗, with ε = 0.95.
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FIG. 9. Ensemble and coarse-grain averaged 1D shock structure of (a) density and (b) temperature after a piston displacement of xp =
156.0λ1 for different values of ε, with up/u∗ = 2.0.

3. Dependence on ε

The effect of ε on the shock structure is to control the
relaxation rate. Figures 9(a) and 9(b) show the distributions
of the density and kinetic energy, respectively, for varying ε

and up/u∗ = 2.00. Results show that decreasing ε causes the
kinetic energy to be excited and relaxed over a shorter length.
This leads to a larger density gradient for lower ε. The peak
temperature decreases as ε decreases, owing to the increased
dissipation during the initial excitation. The quasiequilibrium
states at the piston face show that the kinetic energies are
similar, equal to approximately 5% of the activation energy
for ε = 0.80 and 8% for ε = 0.95. This lower kinetic energy
for decreasing ε leads to a somewhat higher density at the
piston face after equal piston displacement.

These trends are also seen by tracking the evolution of
shock front, as shown in Fig. 10. Results show that decreasing
ε generates a more rapid decay of the shock front. This is shown
by the shock pulling towards the piston after a shorter time.
These shocks are also closer to the piston, representing a more
tightly packed relaxing region. Although shocks develop more
rapidly with decreasing ε, all shocks tend to approximately the
same developed velocity.
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FIG. 10. Evolution of shock front for varying ε, with u∗ = 10
and up = 20.

To conclude the parametric study, we look at the developed
shock morphology and variation of shock instability for
varying up/u∗ and ε. These results are shown in Fig. 11 for
up/u∗ ranging from 1.00 to 3.00 and ε of 0.80, 0.90, and 0.95.
The morphologies are taken after equal piston displacements
of xp = 156.0λ1. Results show that the instabilities become
prominent for all ε with increasing up/u∗. As up/u∗ increases,
the frequency of these clusters extending from the equilibrium
zone increases. The number of these instabilities also increases
with decreasing ε. We find that the wavelength of these
instabilities is of the same order as the relaxation length
scales, as seen in the distributions presented in Figs. 8 and 9.
From these results, we see that the instabilities are noticeable
for up/u∗ � 1.00, with up/u∗ = 1.00 difficult to discern,
although this may be an artifact of the domain size.

C. End states

The variation of the end states for different shock strengths
provides the shock Hugoniot, which can be used to assess
whether the shock is unstable via the BZT and/or the DK
instabilities, as discussed in Sec. I. Figure 12 shows the
Hugoniot curve, on a pressure-specific volume (pv) plane,
for the case studied of u∗ = 10 and for ε = 0.95. Each point
was evaluated in the postshock medium near the piston.
As discussed above, the postshock state varies very slowly
after the main relaxation region [see, for example, Fig. 8(b)],
since an exponentially small fraction of the collisions remains
inelastic. For reference, we thus register the shock state as the
point where the kinetic energy is 8% of the activation energy.

Results show that at sufficiently low piston speeds, i.e.,
up/u∗ � 0.2, the postshock state follows the theoretical
Hugoniot expected for a system of elastic disks, derived using
Helfand’s equation of state [33],

p2

p1
=

1
2

(
1 − v2

v1

) + (1 − η1)2

v2
v1

(
1 − v1

v2
η1

)2 − 1
2

(
1 − v2

v1

) , (7)

where the jump in specific volume v2/v1 = ρ1/ρ2.
A transition occurs at approximately up/u∗ = 0.2–0.3,

corresponding to a piston velocity high enough to activate
the inelastic collisions. Above this transition, the final state

023003-7



N. SIRMAS AND M. I. RADULESCU PHYSICAL REVIEW E 91, 023003 (2015)

FIG. 11. Comparison of shock morphology for single realizations after a piston displacement of xp = 156.0λ1 for different values of up/u∗

and ε, where u∗ = 10 and η1 = 0.012.

lies along the isotherm set by the activation threshold. Using
Helfand’s equation of state [33] for the desired isotherm, here
taken as u2

rms/u
∗2 = 0.08, the final pressure is given by

p2

p1
= 0.08

v1

v2
u∗2

(
1 − η1

1 − v1
v2

η1

)2

. (8)

The evolution of the state from initial to final state across
the steady shock is the so-called Rayleigh line. For further
reference in our discussion of stability, Fig. 13 shows this path
for the unstable case of up/u∗ = 2.0 and ε = 0.95.

The speed of the shock waves was also determined by
tracking the displacement of the shock front over subsequent
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FIG. 12. Results for the shock Hugoniot of equilibrium states,
plotted with the elastic Hugoniot for η1 = 0.012 and the isotherm
corresponding to u∗ = 10.

time intervals. Figure 14 shows an example of the results
for the shock velocity D for different values of up/u∗ and
ε = 0.90. Results show that at the lower velocities, up to
up/u∗ = 0.2, the velocities of the shock waves agree with
the velocity predicted for elastic hard disks [33]. The shock
velocity then deviates from this ideal behavior between
up/u∗ = 0.3 and up/u∗ = 1.0 until the velocity approaches
D/up ≈ 1.0. The shock speed is in agreement with our
theoretical prediction obtained by solving the jump equations
for mass and momentum with the condition of isothermicity
[Eq. (8)]. The shock velocity is well predicted by this solution
for up/u∗ > 0.3.

To explain this transition occurring at up/u∗ = 0.2–0.3 we
calculate the fraction of the impact energy involved in the
activated collisions, assuming a Boltzmann distribution for the
state immediately behind the shock front. This is completed
by following the approach used in kinetic theory to treat
binary collisions, where one can begin with the rate of binary
collisions per unit volume, written as [29]

n2d
m

2kT
exp

{
mg2

4kT

}
g2 cos ψdgdψ. (9)

FIG. 13. Results for the Rayleigh line (dashed) for up/u∗ = 2.0
and ε = 0.95 plotted with the shock Hugoniot (solid line).

FIG. 14. Relationship between velocity of shock wave D and
piston velocity up , for u∗ = 10, ε = 0.90, and η1 = 0.012.

This term gives the rate of binary collisions of a system of
disks of mass m with number density n that have a relative
speed in the range of g to g + dg and an angle between the
relative velocity and the line of action in the range of ψ to
ψ + dψ . The impact velocity, as mentioned in Eq. (1) as the
normal component of the relative velocity, is gn = g cos ψ .

Multiplying Eq. (9) by (gn)2 = (g cos ψ)2 and integrating
over a range of gn yields the energy along the line of action
for collisions with impact velocities within this range of gn.
Integrating gn from 0 to ∞ recovers the energy along the line
of action for all collisions. Integrating gn from u∗ to ∞ yields
the energy seen along the line of action for impact velocities
exceeding u∗. From these results, we can calculate the fraction
of the average energy seen along the line of action for activated
collisions, compared to that for all collisions. Acknowledging
that u2

rms = 2kT /m, this ratio may be written as

(gn)2
gn>u∗

(gn)2
gn>0

= exp

{
−1

2

u∗2

u2
rms

} (
1 + 1

2

u∗2

u2
rms

)
. (10)

To evaluate the difference in this ratio for up/u∗ = 0.2
vs 0.3, we assume that the temperature at the shock jump,
before noticeable dissipation, can be estimated from elastic
theory [33], where u2

rms ≈ u2
p. Using this equality in Eq. (10)

allows us to approximate the fraction of impact energy that
is sufficient to activate an inelastic collision. The result for
this ratio near the range up/u∗ = 0.2 and 0.3 is shown in
Fig. 15. As shown, the fraction of impact energy that is
activated is negligible for up/u∗ = 0.2 (0.005%) compared to
that observed for up/u∗ = 0.3 (2.5%). This clearly shows that
up/u∗ = 0.2 is not sufficiently strong to activate a significant
number of inelastic collisions and may be approximated using
elastic jump conditions. However, up/u∗ > 0.2 is shown to
activate a more distinguishable number of collisions, which
explains the transition from elastic theory seen around this
value in the simulations.

IV. DISCUSSION OF THE INSTABILITY MECHANISM

A. Analysis of the shock Hugoniot

In the previous section, simulations showed that a shock
structure does indeed become unstable with the presence
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FIG. 15. Relationship between up/u∗ and the fraction of the
impact energy involved in activated collisions behind the shock front,
assuming elastic jump conditions across the shock wave.

of dissipative collisions. Standard explanations for shock
instability are related to the shock Hugoniot [8,15,34]. For
the DK instability, the end states lying along sections of
the Hugoniot having a positive slope are expected to have
a corrugation-type instability [15]. Figure 12 shows that the
Hugoniot does not take that form, ruling out the DK instability
as an influencing mechanism.

Another possible mechanism is if the fluid is of the BZT
type or undergoes phase transitions. Shock splitting is expected
when the Rayleigh line, representing the state across the shock
wave, intersects multiple points on the Hugoniot [34]. Such
a behavior is possible near the transition up/u∗ = 0.2–0.3,
where the end state switches from lying on the elastic Hugoniot
to lying on the isotherm. However, results demonstrate that it is
for greater values of up/u∗ that the shocks become unstable.
As shown in Fig. 13 for up/u∗ = 2.0, the Rayleigh line is
far from this transition and does not intersect the Hugoniot
in multiple locations, thus ruling out the instability associated
with shock splitting. Therefore, these mechanisms can be ruled
out.

B. Relaxation rates and comparison with clustering instability

We now turn to another mechanism for instability pre-
viously documented for homogeneous granular gases: the
clustering instability in granular gases [23]. We wish to
compare the residence time of the fluid in the shock structure
and the time scale required for clusters to develop within that
element of fluid. Instability would ensue if the fluid resides
within the relaxing region for longer times than required to
develop the instability.

Investigations of the clustering instability available in the
literature are for a homogeneous fluid at rest, which starts
cooling while kept at a constant volume. The evolution of
temperature before clustering is given by Haff’s law (see, for
example, [30]). The parameters controlling this instability have
been well documented [23–25] and are not within the scope of
the current work. One conclusion we adapt is that of Mitrano
et al.: the onset of sensible clustering occurs when the evolution
of granular temperature deviates by 5% from Haff’s law [24].
Therefore by simulating the set of parameters observed in the

shock waves, we can obtain the times scales for clustering
necessary for comparison.

To make a comparison between the instability of the
constant specific volume case and the shock case, we compare
the time evolution along the particle paths traversing the
shock wave structure with the time history of cooling in a
constant-specific-volume material element. For a meaningful
comparison, this is done on time scales corresponding to
the frequency of collisions, i.e., the local mean free time.
This permits us to automatically avoid accounting for density
changes in calculating time scales. We adopt the same criterion
for onset of instability as Mitrano et al. and pose the questions:
How many local mean free times are required for the gas to
develop instability? and How many local mean free times does
the shock transition last? The comparison between these two
time scales would permit us to address whether the clustering
instability plays an important role.

To obtain the characteristic time of clustering in terms of
local mean free times, we first express Haff’s law in a time
coordinate normalized by the local mean free time. Haff’s law
expressed with the time normalized by the initial mean free
time, τ1, may be expressed as [30]

T (t)

T1
= 1(

1 + t 1
4 (1 − ε2)

(
1 + 3

16a2
))2 , (11)

where

a2 = 16(1 − ε)(1 − 2ε2)

57 − 25ε + 30ε2(1 − ε)
. (12)

The relation between local and initial mean free time can
be shown to be

τ1

τ
= λ1/urms(1)

λ/urms
= ρb2(η)urms

ρ1b2(η1)urms(1)
. (13)

Since the density ρ and packing factor η remain constant, (13)
simplifies further to τ1/τ = √

T/T1.
Using this change in time scales in (11), we can obtain an

expression for the theoretical evolution of temperature for a
cooling homogeneous granular gas, in terms of time scaled by
the local mean free time, i.e., t ′ = t

τ
.

Constant-volume clustering simulations were then con-
ducted to determine the time when the energy of the system
departs by more than 5% from Haff’s law, denoting the time
for the onset of clustering τclust. Since η varies across the shock
structure, packing factors ranging from η = 0.05 to η = 0.25
were investigated using EDMD for ε = 0.8, 0.9, and 0.95 and
N = 10,000.

We now turn to establishing the relaxation time scale of the
shocks. We track the temperature along particle paths travers-
ing the shock structure, with time integrated by using (13)
(select particle paths shown in Fig. 3). The relaxation time τR

for each fluid element is obtained by fitting the temperature
decay to an exponential decay equation:

T (t)

T1
= A exp

(
− t

τR

)
+ b. (14)

Figure 16 shows the results of τR/τ for each particle
element with varying up/u∗ and ε. The particles generally
experience fewer local mean free times to relax when
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FIG. 16. Exponential time constant τR of cooling experienced by shocked particle paths for different values of up/u∗ and ε, where
ξ = x(t = 0).

ε decreases or up/u∗ increases. There are variations in
relaxations times seen during the evolution of the shock wave.

Since the specific particle paths along which the instability
is triggered are unknown, we compute the mean value of τR/τ

for each set of parameters, as shown in Fig. 17. The results
show that at higher shock strengths (higher up/u∗) the time
constant approaches some limiting value for each ε. Given
these results we now have a time scale to compare with the time
to clustering instability τclust/τ . Since the density increases
across the shock wave, the value of η which contributes to
the onset of instability cannot be determined accurately. For
this reason, the full range of clustering times for the range of
η = 0.05 to η = 0.25 is compared.

The results shown in Fig. 17 indicate that there is practically
no correlation between the observed shock instability and
a residence time criterion. Unstable shocks are generally
observed when the shock relaxation time is shorter than the
clustering time. Likewise, stable shocks are observed when
the shock relaxation time τR is longer than the characteristic
time for clustering. There is almost a perfect anticorrelation,
suggesting that there is never sufficient time for a particle of
fluid to develop a cluster, as it traverses the shock thickness
during its relaxation process. The results indicate that the
clustering instability may not be the mechanism controlling
shock instability.

C. Role of initial transients on instability

The instability of the shock was correlated above with the
propensity of the relaxing medium to experience a repressur-
ization event within the shock structure, as shown in Fig. 7. For
sufficiently low piston velocities (e.g., up/u∗ = 1.0) the shock
wave experiences a gradual decay in strength before attaining
a developed structure propagating at a constant velocity. For
this shock strength we do not observe instabilities. However,
as the piston velocity increases to up/u∗ = 1.5 and above, the
shock front stalls and pulls back towards the piston for a short
period before attaining a developed structure. The evolution of
these stronger shock waves exhibits a repressurization event
experienced by the early particle paths. These parameters also
show the development of an unstable shock wave, suggesting
a link between these initial transients and the stability.

The repressurization during shock development suggests
that the instability may be due to the pressure waves accelerat-
ing the flow along the piston. In this region, very strong density
gradients are established. These gradients become larger with
increasing shock speed or decreasing ε. These observations,
and the type of instability observed with rolls forming along
the density gradient, suggest that the mechanism controlling
the instability is similar to Richtmyer-Meshkov- or Rayleigh-
Taylor-type instabilities. It can be speculated that it is these
wave phenomena that trigger multidimensional instabilities.

FIG. 17. Mean exponential time constant τR of shocked particle paths for different values of up/u∗ and ε, plotted with the range in time to
clustering instability for similar values of ε. Filled circles represent simulations where unstable structures are seen.
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This is also compatible with the absence of instability, other
than the original pulsation, in 1D simulations [7]. Further
stability analysis of this initial transient would be required,
but its unsteadiness precludes using standard tools of linear
analysis, such as the multimode approach.

V. CONCLUSION

The present study showed, for the first time, that relaxing
shock waves in granular gases develop instabilities, which take
the form of convective rolls. Our investigation of the possible
mechanisms controlling the instabilities of shocks driven in
relaxing media permitted us to rule out several mechanisms.
The reconstruction of the shock Hugoniot ruled out the DK
instability, as well as instability related to shock splitting.
Results have shown that shock waves develop the instability on
similar times scales as the clustering instability seen in cooling
granular gases. However, away from the stability limit, the time

expected for clustering to occur is found to be always longer
than the time scale for relaxation across the shock, suggesting
that clustering instability is not the dominant mechanism.

Nevertheless, the onset of instability was identified during
the early stages of shock development and determined to
correspond to the sufficient condition for an internal re-
pressurization of the medium and subsequent pressure wave
interaction with the density gradient. This suggests that the
instability is of the Richtmyer-Meshkov type. Further study is
required to quantify the interactions.
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