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Buoyancy-driven instabilities around miscible A+B→C reaction fronts: A general classification
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Upon contact between miscible solutions of reactants A and B along a horizontal interface in the gravity field,
various buoyancy-driven instabilities can develop when an A + B → C reaction takes place and the density
varies with the concentrations of the various chemicals. To classify the possible convective instability scenarios,
we analyze the spatial dependence of the large time asymptotic density profiles as a function of the key parameters
of the problem, which are the ratios of diffusion coefficients and of solutal expansion coefficients of species A,
B, and C. We find that 62 different density profiles can develop in the reactive problem, whereas only 6 of them
can be obtained in the nonreactive one.
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I. INTRODUCTION

Chemical reactions can induce buoyancy-driven convec-
tion when concentration gradients yield unfavorable density
gradients in the gravity field [1,2]. In the case of miscible
solutions and a simple A + B → C reaction, related reaction-
diffusion-convection (RDC) dynamics have recently been
studied both experimentally [3–12] and theoretically [8–18].
In vertically oriented systems, when a solution of A overlies
a solution of B in the gravity field, the reaction has been
shown to modify the symmetry of the classical hydrodynamic
instabilities [8,12]. The fact that a third species, C, is produced
as time passes by can also profoundly modify the density
profiles in situ and lead to observing different successive
instabilities in the course of time [12]. Moreover, the fact
that all three species A, B, and C usually have different dif-
fusion coefficients can trigger nonmonotonic density profiles,
which provides the possibility of localized convective zones
[8–12].

To appreciate all of the possibilities offered by such a
simple A + B → C reaction in modifying the convective
dynamics with regard to the nonreactive case, let us first recall
the situation expected in nonreactive systems. In the gravity
field, various buoyancy-driven instabilities can develop around
a horizontal miscible interface between two nonreactive
solutions. When a denser fluid is placed above a less dense one
along a horizontal interface (Fig. 1), a Rayleigh-Taylor (RT)
instability occurs, deforming the interface into finger-shaped
convective currents [19,20]. In the reverse case, i.e., when a less
dense fluid is placed above a miscible denser one, instabilities
can occur due to differential diffusion effects [20–24]. In the
case of a vertical interface (i.e., parallel to the gravity field)
between solutions of A and B of different density, convection
always sets in, with the denser solution sinking below the less
dense one in a gravity current that mixes the two fluids and
spreads continuously in time.

The modifications of these convective dynamics when
an A + B → C reaction actively modifies the density have
been studied in different limits. If the initial contact line
is vertical, i.e., when the two solutions are side by side,
Rongy et al. [13,14] found that six different types of density
profiles were possible when all of the species diffuse at the

same rate. For equal initial concentrations, they found that
one could analytically predict the number of convective rolls
(0, 1, or 2) and the preferred reaction front direction using
the known results for the one-dimensional reaction front. In
the case of a horizontal interface (Fig. 1), various different
scenarios have already been found. As an example, if a less
dense solution of an acid is put on top of a denser solution
of a base, differential diffusion and production of a salt of
intermediate density yields an asymmetric density profile with
a localized minimum located above the initial contact line
and around which convection rolls develop. The resulting
buoyancy-driven chemical pattern shows fingers rising above
the interface [8–12]. In other systems, such as in the presence of
a color indicator for instance, convection can also be observed
below the initial contact line because of the buildup of a local
maximum in this zone [3,10].

These observations, sustained by theoretical modeling of
the specific problem at hand, show that, obviously, the reactive
systems allow for much more instability scenarios than the
nonreactive one simply because it deals with a three-species
(A,B,C) problem rather than only two as in the nonreactive
one. There is, however, a lack of general understanding of the
number of possible instability scenarios and for which values
of parameters they are expected.

In this context, we provide here a general theoretical clas-
sification of the various types of buoyancy-driven instabilities
that can be induced by a simple isothermal A + B → C

chemical reaction at the miscible horizontal interface between
solutions of reactants A and B. To do so, the density profiles
are reconstructed on the basis of asymptotic reaction-diffusion
profiles, computed as large time solutions of the related
reaction-diffusion problem. We show that 62 different density
profiles can be obtained in the parameter space spanned by
the ratio of diffusion coefficients and solutal expansion of the
chemical species. The density profiles derived here provide
the base states to be used for future linear stability analysis
of the related RDC problem.

In Sec. II, the theoretical model is presented, while the
various types of base-state density profiles are derived in
Sec. III along with the conditions for the onset of a double-
diffusive instability.
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FIG. 1. Sketch of a two-dimensional cut in the system. x points
vertically along the gravity field, while y is the horizontal direction.

II. MODEL

We consider a vertically orientated system (Fig. 1), in which
a solution containing a reactant A, of concentration A0, is put
above a solution containing a reactant B, of concentration B0,
along a horizontal contact line at time t = 0. By diffusion, the
reactants meet and react via the scheme

A + B → C (1)

to generate a product C. The equations describing the RDC dy-
namics of the concentrations A,B, and C of the corresponding
species are

∂A

∂t
+ u · ∇A = DA∇2A − qAB, (2a)

∂B

∂t
+ u · ∇B = DB∇2B − qAB, (2b)

∂C

∂t
+ u · ∇C = DC∇2C + qAB, (2c)

where q is the kinetic constant and DA,B,C are the molecular
diffusion coefficients of species A,B, and C, respectively.
To complement the model, a flow equation for the velocity
field u must be given in two dimensions (2D) or 3D typically
Navier-Stokes equations, in general, or Darcy’s law for flows
in porous media, along with boundary conditions depending
on the geometry. In buoyancy-driven instabilities in reactive
systems, the interplay between reactions and hydrodynamics
is achieved through the fact that the density ρ acting in the
buoyancy term ρg is a function of the concentrations [8,12,13].

Here, the solutions are considered sufficiently dilute so that
nonideal effects can be ignored, i.e., the diffusion coefficients
are constant and the density ρ varies linearly with the
concentrations as

ρ = ρ0[1 + γAA + γBB + γCC], (3)

where ρ0 is the density of the pure solvent and the molar
expansion coefficients γi are defined as

γi = 1

ρ0

∂ρ

∂Ci

,

where Ci is the concentration of the relevant chemical species.
For simplicity, we assume the γi’s are positive so that the
presence of each solute increases the density.

The spatial domain is considered infinite so that the initial
conditions can be expressed as

A = A0, B = 0, C = 0 for x < 0,

A = 0, B = B0, C = 0 for x > 0,

where x < 0 is the upper region above the contact line and
x > 0 is the lower region, as shown in Fig. 1.

For convenience, we nondimensionalize the equations
using t̂ = t/T , x̂ = x/L, û = u/U , [a,b,c] = [A,B,C]/A0,
where hats denote a dimensionless quantity and g = |g|. The
time and length scalings are given by

T = DA

U2
and L = DA

U ,

respectively, where the typical velocity scaling U is chosen
according to how the flow is modeled. Additionally, the
dimensionless density is given by ρ̂ = (ρ − ρ0)/(ρ0γAA0).
Substituting these nondimensional quantities into Eqs. (2)
and (3) and dropping hats for convenience leads to the
dimensionless model

ρ = a + Rbb + Rcc, (4a)

at + u · ∇a = ∇2a − D ab, (4b)

bt + u · ∇b = δb∇2b − D ab, (4c)

ct + u · ∇c = δc∇2c + D ab, (4d)

along with dimensionless flow equations involving u. The
initial conditions now become

a = 1, b = 0, c = 0 for x < 0, (4e)

a = 0, b = ϕ, c = 0 for x > 0, (4f)

where ϕ = B0/A0 is the ratio between the initial concentra-
tions of A and B. In addition to ϕ, other parameters of interest
for the classification of instability scenarios are two diffusion
coefficient ratios δb,c and the Damköhler number D given by

δb = DB

DA

, δc = DC

DA

, D = qA0T ,

respectively. The Damköhler number D is the ratio between
the characteristic hydrodynamic time scale T and the chemical
time scale 1/(qA0).

The dimensionless density ρ(a,b,c) involves two additional
parameters, i.e., the expansion coefficient ratios

Rb = γB

γA

, Rc = γC

γA

expressing the relative weight of equimolar solutions of B
or C with regard to an equimolar solution of A. Initially the
upper pure solution of A has a density ρ = 1, while the lower
layer of B features a density ρ = ϕRb. If ϕRb < 1, the initial
stratification implies that there is a denser solution of A on
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top of a less dense solution of B which is right away unstable
with respect to a Rayleigh-Taylor (RT) instability. We seek
here to understand how, in general, an A + B → C reaction
can destabilize situations of less dense A on top of denser B
(ϕRb > 1) as a function of the six dimensionless parameters
Rb,Rc,δb,δc,ϕ, and D.

We will therefore derive the various density profiles that can
build up in time upon diffusion and reaction of the two reactants
A and B to yield C, in the case ϕRb > 1. The equivalent
profiles in the initially RT unstable case ϕRb < 1 can trivially
be obtained by turning the obtained profiles upside down.

III. BASE STATE OF THE SYSTEM

Let us now analyze the concentration base states of the
system and reconstruct the related density profile to help
identify any sources of instability in the system. If the system
is in a stable configuration, no disturbances grow, there is no
fluid flow, and we can assume that the concentration fields
are only functions of x and t . The resulting one-dimensional
reaction-diffusion (RD) base-state solutions can be computed
by solving the RD equations (4b)–(4d) with u = 0 along
with the initial conditions (4e) and (4f). We let a(x,t),b(x,t),
and c(x,t) denote the base-state concentrations, to allow the
dimensionless base-state density profiles to be reconstructed
as

ρ(x,t) = a + Rbb + Rcc. (5)

Such base states can be obtained numerically to perform linear
stability analyses, for instance. However, they can also give
information on potential instabilities that typically develop
dynamically in time in zones where locally ∂ρ/∂x < 0. This
indeed signals the presence locally of a buoyantly unstable
stratification of a denser zone on top of a less dense one,
which is typically prone to give rise to convection. To identify
the values of parameters for which such zones with unfavorable
density gradients can develop (and their localization with
regard to the initial contact line), we examine each of the limits
t → 0,D → 0,t → ∞, and D → ∞ for which the base-state
solutions approach self-similar profiles, with

η = x

2
√

t

being the similarity variable. The first limits t → 0 or D → 0
address the situations where the RD processes do not dominate
and the hydrodynamic instabilities take place first. This is
indeed typically the case when the Damköhler number tends
to zero (no reaction effect) or at early times when RD processes
have not yet had time to impact the density profiles. We recover
then the hydrodynamic instabilities described in Sec. III A
and for which the known base states given in Fig. 2 provide
good agreement with experimental results (see [20,24], for
instance).

On the contrary, if the Damköhler number tends to infinity
(the reaction time is then much shorter then the hydrodynamic
one), the reaction has time to operate to construct the RD
density profiles before the hydrodynamic instability sets in.
Then, either the system is initially RT unstable (denser on
top of less dense) and the extrema triggered by the RD
nonmonotonic profile can modify the symmetry of the pattern,

= ( )2

= (
)2

/3

DLC

DD

RT

RT

1

1

0

FIG. 2. Density profiles in the nonreactive case. If ϕRb � 1,
we have a denser over less dense case, yielding a RT instability.
If ϕRb � 1, the less dense over denser stratification can become
unstable towards either a DD or a DLC mechanism.

provided the density difference is not too large [12], or the
system is initially stable (less dense on top of denser) and
can certainly be affected by local unfavorable zones where
∂ρ/∂η < 0. The asymptotic profiles give the locations where
this happens. A good agreement between what is observed
experimentally and what the asymptotic RD profile predicts
has already been obtained in the specific case of acid and base
systems and of color indicators [8–12].

Our objective here is to generalize this strategy to any
possible cases. To do so, let us then seek to gain insight into
the dependence of ρ on Rb,c and δb,c and analyze the shape
of asymptotic density profiles in both nonreactive and reactive
cases.

A. Nonreactive case

If the reaction is slow (i.e., in the small Damköhler number
limit) or in the small time limit, the reaction does not really
affect the dynamics and the reactive term can be neglected
from the leading order equations. In the limit of D → 0, the
nonreactive case is recovered. The base-state profiles then have
classical analytical pure diffusive solutions [25] given by

a = 1

2
erfc (η) , b = ϕ

2
erfc

(
− η√

δb

)
, c = 0. (6)

Combining Eqs. (5) and (6), one recovers the fact that, in this
case, the gradient of the base-state density ρ is symmetric about
η = 0 and the resulting hydrodynamic patterns are typically
developing convective flows that extend as much upwards as
downwards in the gravity field [20–22,24]. The condition for
a RT instability (denser over less dense; Fig. 2) is ϕRb � 1,
while an initially stratifically stable situation is obtained in
the reverse case. In the RT zone, differential diffusion effects
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can induce in time nonmonotonic density profiles (Fig. 2),
provided δb > 1 or δb < (ϕRb)2 [24].

In the ϕRb > 1 case, if the lower region initially contains
the slower diffusing species, i.e., δb < 1, then a diffusive-
layer convection (DLC) instability develops with convective
motions appearing symmetrically above and below the initial
contact line in the zones of unfavorable density gradients of the
nonmonotonic profile, i.e., in the locations where ∂ρ/∂x < 0
(Fig. 2). If the lower region initially contains the faster
diffusing species, i.e., δb > 1, then nonmonotonic density
profiles exist provided δb > (ϕRb)2. A double-diffusive (DD)
instability can develop around the initial contact line, even
when ∂ρ/∂x > 0 (Fig. 2). If the two species A and B
have constant concentration gradients ∂A/∂x and ∂B/∂x,
respectively, the condition for such a DD instability is [21,26]

− RB (∂B/∂x)

RA (∂A/∂x)
<

DB

DA

, (7)

where DA and DB are their respective diffusion coefficients
and RA and RB are their respective solutal expansion coeffi-
cients.

One can use this inequality to predict the conditions for
an instability in our nonreactive system by approximating
the concentration gradients by their maximum values. Using
∂a/∂x = −(4πt)−1/2 and ∂b/∂x = ϕ(4πδbt)−1/2, which are
the concentration gradients at x = 0, one finds that the only
region of the parameter space which remains stable for all time
is

1 � δ
3/2
b � ϕRb. (8)

Although in many circumstances one wants to induce con-
vection to increase mixing, there are also situations when, in
fact, one wants to avoid convection, and so Eq. (8) provides the
conditions required to avoid any buoyancy-induced convection
for a nonreactive system. Figure 2 shows that the nonreactive
case is thus limited to six different density profiles (three with
the denser zone on top and three with the denser part on the
bottom).

B. Reactive case

In diffusion limited problems, the reaction A + B → C

induces a reaction zone. Within the reaction zone, the reaction
front is generally defined as the position where the reaction rate
is largest. If the reaction is fast, i.e., in the large Damköhler
number limit or in the large time limit, the base-state solutions
outside the reaction zone have been obtained analytically. Gálfi
and Rácz [27] first showed that when the diffusion coefficients
are equal, the position xf of the reaction front scales with

√
t

while the width of the reaction front scales with t1/6. Thus, on
the diffusive length scale, which scales with

√
t , the width of

the reaction front tends to zero. This allowed them to construct
a solution outside the reaction zone in which no reaction
takes place and set the two reactant concentrations to zero
at the position of the reaction front. Koza [28] extended their
study to unequal diffusion coefficients to obtain the large time
asymptotic reactant solutions, while Sinder and Pelleg [29]
obtained the solution for the product. Explicitly, the center of
the reaction front is at

xf = 2α
√

t, (9)

where α is a constant depending on δb and ϕ. If α = 0, the
front remains localized at the point of initial contact between
the solutions of A and B. If α > 0 (< 0), then the front moves
downwards (upwards). The large time asymptotic base-state
solutions are [28,29]

aU = 1 − erfc(−η)

erfc(−α)
,

cU

β
= erfc(−η/

√
δc)

erfc(−α/
√

δc)
, (10a)

b
L

ϕ
= 1 − erfc(η/

√
δb)

erfc(α/
√

δb)
,

cL

β
= erfc(η/

√
δc)

erfc(α/
√

δc)
, (10b)

with b
U = aL = 0 and where the superscripts U and L denote

the upper solutions (above the reaction front, η < α) and lower
solutions (below the reaction front, η > α), respectively. The
constant β is given by

β = eα2(δ−1
c −1) erfc(α/

√
δc)erfc(−α/

√
δc)

2
√

δcerfc(−α)
, (10c)

and α is the solution of the equation

eα2(δ−1
b −1)erfc(α/

√
δb) = ϕ

√
δberfc(−α). (10d)

We note that the direction of the reaction front is determined
by the sign of (1 − ϕ2δb); see [28]. When ϕ

√
δb = 1, i.e.,

explicitly when A2
0DA = B2

0DB , then, in the large time asymp-
totic limit, the position of the reaction front is stationary (α =
0). When (1 − ϕ2δb) is positive, the front moves downwards
as α > 0, and the reverse occurs when it is negative.

If the system is stable for a long period of time before
an instability occurs, then we can approximate the base-
state solutions in the upper (U) and lower (L) parts by their
large time asymptotic solutions given by Eq. (10). These large
time asymptotic base-state solutions can be used to obtain

the density as ρU = aU + Rcc
U and ρL = Rbb

L + Rcc
L, i.e.,

explicitly,

ρU =
[

1 − erfc(−η)

erfc(−α)

]
+ Rcβ

erfc(−η/
√

δc)

erfc(−α/
√

δc)
,

ρL = ϕRb

[
1 − erfc(η/

√
δb)

erfc(α/
√

δb)

]
+ Rcβ

erfc(η/
√

δc)

erfc(α/
√

δc)
.

As it is much easier to determine the properties of the density
by examining its derivative dρ/dη [13,30], we next examine
it in detail:

dρU

dη
= − 2e−η2

√
πerfc(−α)

+ 2βRce
−η2/δc

√
πδcerfc(−α/

√
δc)

,

dρL

dη
= 2ϕRbe

−η2/δb

√
πδberfc(α/

√
δb)

− 2βRce
−η2/δc

√
πδcerfc(α/

√
δc)

.

Let us now see whether this profile admits extrema either above
or below the reaction front.

1. Above the reaction front

Above the reaction front, the density has a local extremum
when dρU/dη = 0 in η < α. This extremum may occur at
η2 = EU where

EU = δc

1 − δc

ln(Rc/U1),
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with

U1 = U2e
α2(1−δ−1

c ) and U2 = 2δc

erfc(α/
√

δc)
.

If α > 0 and η < α, then there are two points which satisfy
dρU/dη = 0 when 0 < EU < α2, one point when EU > α2,
and no points when EU < 0. The dividing curves EU = 0 and
EU = α2 are, respectively, given by

Rc = U1, Rc = U2. (11)

These two curves cross at the point δc = 1 with Rc =
2/erfc(α). However, if α = 0, then the condition for a local
extremum is (2δc − Rc)(δc − 1) > 0 and, hence, one only
needs to consider the lines δc = 1 and Rc = 2δc.

If α < 0 and η < α, then there is one point which satisfies
dρU/dη = 0 when EU > α2 and no points when EU < α2.
Now EU = α2 is the only dividing line.

In Fig. 3, the large time asymptotic density profiles above
the reaction front are classified by their types of extrema. Six
types of base-state density profiles exist when the reaction
front moves downwards [α > 0; Fig. 3(a)]. These profiles
can be monotonic or feature one or two extremas. Only four
different base-state density profiles exist when the reaction
front is stationary or moves upwards [α � 0; Fig. 3(b)]. Such
profiles are either monotonic or include a single extremum.

These density profiles can be physically explained. First, if
δc < 1, it means that species C diffuses slower than species
A, leading to a minimum in the density profile between the
reaction front and the upper pure solution of A where the fast
escape downwards of A has not been compensated by diffusion
of C upwards. However, when the relative contribution of C

to density is increased (increasing Rc), this local minimum
becomes less and less dominant. Conversely, if δc > 1, then
species C diffuses faster than A, which can lead to a local
maximum in the density profile between the reaction front
and the upper liquid when the density of species C is not
too large. At large Rc, the much denser C produced in the
reaction front leads to an increase of the density at η = 0.
Note that when α > 0 [Fig. 3(a)], i.e., when the front moves
downwards because A2

0DA > B2
0DB , the differential flux of A

and B towards the reactive zone explains why two extrema can
be obtained in the intermediate values of Rc, leading to six
different possible profiles. If α < 0 [Fig. 3(b)], then A2

0DA <

B2
0DB and the larger flux of B towards the reaction zone leads to

the upward motion of the front but also hinders the possibility
of two extrema, allowing only four profiles to be obtained.
These density profiles allow one to see for which range of
parameters there is a zone where dρ/dη < 0 features a local
stratification of denser on top of less dense, which is prone to
develop an instability.

A stratifically stable density profile is only possible above
the reaction front when δc > 1 and

Rc > U1 for α > 0,

Rc > U2 for α < 0.

However, just as in the nonreactive case, even a stratifically sta-
ble density profile can induce an instability due to differential
diffusive effects. The corresponding neutral stability condition

= 1= 2

1

0

= 
2

DLC

RT

(a)

(b)

DD

RT

= 2

= 2

1

0

DLC

RT

DD

RT

c

FIG. 3. Classification of the large time asymptotic base-state
density profiles above the reaction front, i.e., in η < α. The direction
of the reaction front is (a) downwards, i.e., α > 0 and (b) stationary
(α = 0) or upwards (α < 0). The shaded area corresponds to the
stable region.

can be obtained analytically in the large time asymptotic limit.
As the instability will be focused in the region where the
concentration gradients are largest, one can approximate the
various large time asymptotic concentration profiles by their
profiles at the reaction front, near x = 2α

√
t . Thus, above

the reaction front, we can approximate the gradients of the
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concentration by

daU

dη
= −�,

db
U

dη
= 0,

dcU

dη
= �

U2
,

in the large time limit, where �−1 = eα2√
π erfc(−α). When

a solution of A overlies a solution of B, the condition
for a DD instability to occur when linear concentration
profiles are present is given by Eq. (7). Using the large
time asymptotic linear gradients at the reaction front in
the region above the reaction front, the condition becomes
−(Rc∂c/∂x)/(∂a/∂x) < δc, which means that a DD instability
can occur above the reaction front when

Rc < δcU2 (12)

so that the product is not too dense. This condition was used
to determine the stable region in Fig. 3. Such regions are
anticipated to be stable as they have a monotonic increasing
density profile and a DD instability is not possible.

2. Below the reaction front

Below the reaction front, the density has a local extremum
when dρL/dη = 0 in η > α, with the extremum occurring at
η2 = EL where

EL = δcδb

δc − δb

ln(RbL1/Rc),

with

L1 = L2e
α2(δ−1

b −δ−1
c ) and L2 = 2δc

δberfc(−α/
√

δc)
.

If α < 0 and η > α, then there are two points which satisfy
dρL/dη = 0 when 0 < EL < α2, one point when EL > α2,
and no points when EL < 0. The dividing lines EL = 0 and
EL = α2 are, respectively, given by

Rc

Rb

= L1,
Rc

Rb

= L2. (13)

These two curves cross at the point δc = δb with Rc/Rb =
2/erfc(−α/

√
δc).

However, if α = 0, then the condition for a local extremum
is (2δcRb − δbRc)(δc − δb) > 0 and, hence, one only needs to
consider the lines δc = δb and Rc = 2δcRb/δb.

If α > 0 and η > α, then there is one point which satisfies
dρL/dη = 0 when EL > α2 and no points when EL < α2.
Now EL = α2 is the only dividing line.

In Fig. 4, the large time asymptotic density profiles below
the reaction front are classified by their types of extrema.
As an echo of the situation described in Fig. 3 above the
front, we see that now only four different types of base-state
density profiles exist below the front when the reaction front is
stationary or moving downwards [α � 0; Fig. 4(a)], while six
different profiles can develop when the reaction front moves
upwards [α < 0; Fig. 4(b)].

Again, some of these density profiles can be physically
explained. If δb/δc < 1, then species C diffuses faster than
species B, leading to a larger density at η = 0 when Rb/Rc

is small. When the contribution of B to the density becomes
progressively more important than that of C (i.e., when Rb/Rc

increases), the value of ρ at η = 0 decreases. A maximum can
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FIG. 4. Classification of the large time asymptotic base-state
density profiles below the reaction front, i.e., in η > α. The direction
of the reaction front is (a) stationary (α = 0) or downwards (α > 0)
and (b) upwards, i.e., α < 0. The shaded area corresponds to the
stable region.

then develop below the front because B diffuses too slowly
from the bulk to fill in the decrease caused by its replacement
by a less dense C in the reaction front. In the intermediate
regime of Rb/Rc, two extrema can be obtained if α < 0.
When δb/δc > 1, then species C diffuses faster than B, which
can lead to a local minimum in the density profile between
the reaction front and the lower liquid when the density of
species C is sufficiently large (Rb/Rc small). On the contrary,
a monotonically increasing density is obtained if Rb/Rc is
large enough.
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A stratifically stable density profile is only possible below
the reaction front when δb/δc > 1 and

Rc

Rb

< L1 for α < 0,

Rc

Rb

< L2 for α > 0.

Again, a stratifically stable density profile can induce an
instability due to differential diffusive effects. Now, below
the reaction front, we approximate the gradients of the
concentration by

daL

dη
= 0,

db
U

dη
= �

δb

,
dcU

dη
= − �

δbL2
.

Using these large time asymptotic linear gradients at the
reaction front in the region below the reaction front, the
condition becomes −(Rb∂b/∂x)/(Rc∂c/∂x) < (δb/δc), which
means that a DD instability can occur below the reaction front
when

Rc

Rb

>
δc

δb

L2, (14)

so that the product is sufficiently dense. This condition
was used to determine the stable regions in Fig. 4. Such
regions are anticipated to be stable as they have a monotonic
increasing density profile and a double-diffusive instability is
not possible.

3. Global base-state density profiles

In the previous two sections, we have separately classified
the different types of base-state density profiles possible,
respectively, above and below the reaction front by the type of
extrema featured.

In the case of a stationary reaction front (α = 0), there are
four different types of density profiles both below [Fig. 4(a)]
and above [Fig. 3(b)] the reaction front. Combining them leads
thus, when starting from a solution of A on top of a denser
solution of B, to a total of 16 different types of density profiles
over the whole domain, as illustrated in Fig. 5. Intuitively,

< (1, ) < < 1 1 < < (1, ) < 

2
_ _< 1,

2
_ _1 < <

 2
_ _ <  < 1

 2
_ _ 1,  <

FIG. 5. Sketch of the 16 types of base-state density profiles for a
stationary reaction front, α = 0. The vertical dashed lines correspond
to the position of the stationary reaction front.

this can be understood as the 16 different combinations
possible when playing with two different diffusion coefficients
(horizontal axis of Fig. 5) and two different soluble expansion
coefficient ratios (vertical axis of Fig. 5) submitted to the
condition δb = 1/ϕ2 fixed by the condition α = 0. Physically,
some cases can easily be understood: if the product C is the less
dense species and diffuses the slowest, then a nonmonotonic
profile with a minimum in the reaction zone is formed (top,
left corner of Fig. 5). Shifts of the extremum position above
or below the reaction front are obtained if A diffuses the
slowest or the fastest (second and third panels, respectively, in
column 1 of Fig. 5). More than one extremum is obtained if
the slow diffusion C is the densest one (last panel in column
1 of Fig. 5). The other cases can be explained by similar
arguments. Reversing the situation of Fig. 5 by turning it
upside down, i.e., starting from a denser solution of A on top of
a less dense solution of B, gives an additional 16 profiles with
the two monotonic ones being the same. Hence, 30 different
density profiles can be obtained in the case of a stationary front
(α = 0).

When the reaction front is moving, then there are six
different types of density profiles behind the reaction front
and four different types of density profiles ahead of it. As an
example, the six profiles of Fig. 3(a) above the reaction front
must be combined with the four profiles of Fig. 4(a) below
the front. This leads to a total of 32 different types of density
profiles, which consists of the 16 (4 × 4) profiles included in
Fig. 5 (constructed with the half profiles of Figs. 3 and 4 with
only one extremum) plus the additional 16 profiles constructed
from the cases when two extrema occur behind the reaction
front. We note that there are not 36 (6 × 6) profiles, as there
cannot be two extrema ahead of the reaction front.

Again, this classification has not discriminated between the
cases of denser on top of less dense and the reverse less dense
on top of denser. Thus, for a moving reaction front, there are
a total of 62 different types of density profiles, which comes
from 2 + 2 × 30, as 30 of the profiles can occur in the denser
on top of less dense situation and the reverse case, but the two
cases with monotonic profiles can only occur once.

As a final comment, we note that in order for the entire
density profile to be monotonically increasing, we require that
δb > δc > 1 and

U1 < Rc < RbL2 for α > 0,

U2 < Rc < RbL1 for α < 0.

A sufficient condition for a monotonically increasing density
profile to exist for all values of α is when

Rb > δb > δc > 1

for Rc within an appropriate range, but this is not a necessary
condition.

We recall that this problem contains six dimensionless
parameters, namely, D,Rb,Rc,ϕ,δb, and δc. However, now
that the various density profiles and differential diffusion
instabilities have been classified within this parameter space,
it should now be much easier to identify suitable parameters
to yield a variety of different types of instabilities.
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IV. CONCLUSIONS

Buoyancy-driven instabilities around A + B → C reaction
fronts exhibit a much richer possibility of dynamics than the
nonreactive case. This is mainly due to the fact that the two-
species problem of the nonreactive stratification of A on top
of B is replaced by a three-species problem (A,B,C) where
the product C is generated in situ as soon as A and B are
put in contact in the reactive case. The parameter space of
the reactive case encompasses six parameters which affect the
density profile, namely, the initial ratio ϕ of concentrations of
A and B, the ratios of diffusion coefficients δb,c and of solutal
expansion coefficients Rb,c, as well as the Damköhler number
D. Here we have classified the various possible instability

scenarios in this parameter space, showing that the reactive
case can feature 62 different types of density profiles, where
the nonreactive one can only have six different cases. Our
classification opens the way to a better understanding of the
instability mechanisms at play for a given set of parameters
and calls for further experimental and theoretical analysis of
the nonlinear dynamics to be observed in each case.
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