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We consider a modified Noguchi electrical transmission line and examine the effects of a linear capacitance Cs

on the wave characteristics while considering the semidiscrete approximation. It appears that wave modulations
in the network are governed by a dispersive nonlinear Schrödinger equation whose coefficients are shown to be a
function of Cs . We show that the use of this linear capacitance makes the filter more selective. We also show that
the width of the unstable regions increases while that of the stable regions decreases with Cs adding consequently
the width of the frequency domain where bright solitons exist. Furthermore, we establish the existence of one
more region (compared to the work of Marquié et al. [Marquié et al., Phys. Rev. E 49, 828 (1994)]) in the
dispersion curve that allows the motion of envelope solitons of higher frequency in the system. Numerical and
experimental investigations done on the model confirm our analytical predictions.
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I. INTRODUCTION

Nonlinear transmission lines (NLTLs) are known as conve-
nient tools to study wave propagation in nonlinear dispersive
media. Since the pioneering work by Hirota and Suzuki [1] on
electrical lines simulating Toda lattices [2], growing interest
has been devoted to the use of NLTLs, in particular for the study
of nonlinear wave propagation [3–10]. This great amount of
attention is motivated by the capacity of these lines to support
soliton excitations [11,12] and because they provide a useful
way to model the exotic properties of new systems [13–15].

Contributing to the understanding of this mechanism is
the motivation of this paper. Indeed, Noguchi built a new
type of electrical transmission line to study experimentally
the propagation of the first-order Korteweg–de Vries (KdV)
solitons [16]. This line was different from the Hirota-Suzuki
model [1] by the presence of a linear dispersive capacitance
Cs . This network was exploited to carry out theoretical
investigations of the motion of the second-order KdV soli-
tons using the Toda potential [17]. Moreover, Yoshinaga
and Kakutani considered this Noguchi line and examined
experimentally the properties of the second-order KdV solitons
using a new potential that generalized the Toda potential [18].
Unfortunately, it clearly appears that all these studies on
the Noguchi’s electrical transmission line neglect the effects
of Cs .

In this work we introduce a modified version of Noguchi’s
model and examine the effects of the linear capacitance
Cs on the wave characteristics and their consequences on
existing research works. This paper is organized as follows.
In Sec. II a brief description of the model is given and the
basic equations of the modified discrete Noguchi transmission
line are presented. In the limit of small wave amplitudes, the
linear dispersion law is derived and the impact of Cs is found.
In Sec. III we consider the semidiscrete approximation and
establish that the dynamics of modulated waves is described
by a dispersive nonlinear Schrödinger equation (DNLSE). The
effects of the linear capacitance are investigated in terms of
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both the modulational instability occurrence and the nature
of the corresponding soliton solutions of the DNLSE. In
Sec. IV we present the contribution of the dc term in the
general solution of the circuit equations. Indeed, this term
was not taken into account in the work of Marquié et al. [6].
Analytical results are established. These results are completed
by numerical and experimental studies performed in the
network. Section V is devoted to a summary and discussion.

II. MODEL DESCRIPTION AND BASIC EQUATIONS

Our model is a lossless one-dimensional modified discrete
Noguchi electrical transmission line (Fig. 1) made of N

identical unit cells. Each unit cell is modeled by a linear
inductor L1 in parallel with a linear capacitance Cs in the
series branch and a linear inductance L2 in parallel with
a nonlinear capacitor C(V ) in the shunt branches. In this
line, the nonlinear capacitance consists of a reversed biased
diode with differential capacitance function of the voltage Vn

across the nth capacitor and biased by a constant voltage V0:
C(V0 + Vn) = dQn/dVn, where Qn(Vn) is the corresponding
nonlinear charge. For low voltages taken around V0, the
quantity Qn(Vn) can be approximated by [19]

Qn(Vn) ≈ C0
(
Vn − αV 2

n + βV 3
n

)
, (1)

where C0 = C(V0) is the characteristic capacitance and α and
β are nonlinear positive constants.

By applying the Kirchhoff laws to the circuit of Fig. 1,
we obtain the following system of equations that describe the
propagation of the voltage Vn(t) in the network:

d2Vn

dt2
+ u2

0(2Vn − Vn−1 − Vn+1)

+λ
d2

dt2
(2Vn − Vn−1 − Vn+1) + ω2

0Vn

= α
d2V 2

n

dt2
− β

d2V 3
n

dt2
, n = 1,2, . . . ,N, (2)

where u2
0 = 1/L1C0, λ = Cs/C0, ω2

0 = 1/L2C0, and N is the
number of cells considered. In the following, we plan to solve
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FIG. 1. Schematic representation of one unit cell of a modified
discrete Noguchi electrical transmission line. The network possesses
N identical unit cells.

Eq. (2) for non-null values of λ and present the impact of the
additional dispersion (introduced by Cs) on the characteristic
parameters of the signal. Numerical investigations are made
for the following values of the network parameters:

L1 = 220 μH, L2 = 470 μH, V0 = 2 V, C0 = 320 pF,

α = 0.21 V−1, β = 0.0197 V−2, CS = 56 pF (3)

It should be stressed that these parameters are not chosen
arbitrarily [6]. Indeed, the linear capacitance Cs is regarded as
the stray capacitance mainly due to the interwire capacitance
of the inductor L1 whose effects are not neglected in this
work. Therefore, in practice we should always have Cs �
C0 [18,20,21] so that the ratio λ = C0/Cs will always remains
less than the unit. The normalized capacitance λ represents an
additional dispersion.

Linear oscillations in the line with wave number k and
frequency ω are governed by the following linear dispersion
law:

ω2 = [
ω2

0 + 4u2
0sin2(k/2)

]/
[1 + 4λsin2(k/2)]. (4)

For values of k chosen in the first Brillouin zone (0 � k � π ),
the curves of Fig. 2 show the dependence of the frequency
f = ω/2π as a function of k for different values of the
linear term λ and represent a bandpass filter. As displayed
on these plots, the corresponding linear spectrum has a gap
f0 = ω0/2π , which is the lower cutoff frequency introduced
by the parallel inductance L2, and it is limited by the cutoff
frequency

fmax = ωmax

2π
= 1

2π

√(
ω2

0 + 4u2
0

)/
(1 + 4λ) (5)

due to the intrinsic discrete character of the lattice. This cutoff
frequency fmax decreases with the growth of λ, which means
that the linear dispersion λ contributes to reduce the network
effects on the wave during its motion. These results also
mean that the frequency bandpass of the modified Noguchi
filter decreases with values of λ and becomes more selective
in terms of frequency. We could also note that the upper
gap zone increases for nonzero values of Cs . Therefore, the
model is also appropriate for the investigation of upper gap
soliton dynamics. Hereafter, we will focus our attention on the
nonlinear behavior of the lattice.
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FIG. 2. Linear dispersive curve showing evolution of the fre-
quency f = ω/2π as a function of the wave number k for given
values of λ. This curve is constructed for the following line parameters
defined by Eqs. (3). The lower cutoff frequency is f0 = 411 kHz. The
upper cutoff frequencies are, respectively, fmax = 1268 kHz for λ = 0
and fmax = 972.5 kHz for λ = 0.175. We note that the frequency
domain [f0,fmax] of the filter decreases with the growth of λ and the
filter becomes more selective.

III. MODULATED WAVES AND THE DISPERSIVE
NONLINEAR SCHRÖDINGER EQUATION

Now we focus our attention on the propagation of modu-
lated waves in the system. Therefore, to derive the amplitude
equation describing the motion of such waves, we make the
following statements.

(i) We consider the reductive perturbation approach in the
semidiscrete approximation [22] to obtain short-wavelength
envelope solitons. This approach allows us to treat properly
the carrier with its discrete character and to describe the
envelope in the continuum approximation. Here new space
and time variables (X,T ) are introduced related to the basic
ones (n,t) through a parameter ε that measures the smallness
of the modulation frequency and the amplitude of the input
waves:

X = ε(n − Vgt), T = ε2t. (6)

It becomes possible to separate fast and slow variations of Vn

in both space and time by setting that Vn depends not only
on n and t but also on X and T , i.e., Vn(t) = V (n,t,X,T ).
In Eq. (6) the quantity Vg designates the group velocity of
the linear wave packets given below and plotted (Fig. 3) as a
function of the wave number k for different values of λ:

Vg = ∂ω

∂k
= [(

u2
0 − λω2

)
sin k

]/{ω[1 + 4λsin2(k/2)]}. (7)

The obtained curves show that the velocity of a wave packet
decreases as the value of the parameter λ increases, suggesting
that the wave packet will spend more time in the network for
nonzero values of λ.
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FIG. 3. Group velocity Vg versus k for the line parameters of
Fig. 2. This velocity decreases when λ increases. This result suggests
that a wave packet moving in the network will travel for a long
distance before it vanishes.

(ii) The general oscillating solution for the voltage Vn(t) is
assumed to have the following form:

Vn(t) = εV1(X,T )eiθ(n,t) + c.c.

+ε2V20(X,T ) + ε2V2(X,T )e2iθ(n,t) + c.c., (8)

in which θ = nk − ωt is the rapidly varying phase and c.c.
stands for the complex conjugation. The dc and second-
harmonic terms V20(X,T ) and V2(X,T ), respectively, are
added to the fundamental one V1(X,T ) in order to take into
account the asymmetry of the charge-voltage relation given by
Eq. (1). In spite of the bandpass character of our filter, we will
consider the solution (8) in its complete form and appreciate
the contribution of the dc term.

(iii) During the computations, there are also nonzero
voltages Vl(n ± 1,t), which are expanded in the continuum
limit around Vl(X,T ) with n = X. So fast changes of the phase
θ in Eq. (6) are correctly taken into account by considering
differences in the phase for the discrete variable n. Since we
are interested only in modulated waves with a slowly varying
envelope in space and time, we scale time and space derivatives
as ∂/∂t ∼ O(ε) and ∂/∂x ∼ O(ε), respectively, and neglect
consistently ε terms of high order. Then we keep derivative
terms of Vn(t) up to second order to balance dispersion and
nonlinearity.

With the above considerations, the substitution of Vn(t) and
its derivatives into Eq. (2) leads, for the terms proportional to
ε3eiθ , to the DNLSE

iV1,T + PV1,XX + Q|V1|2V1 = 0 (9)

in which the dispersive and the nonlinear coefficients (P,Q)
are, respectively, defined by

P = −V 2
g

2ω

(
1 + 4λsin2 k

2

)
+

(
u2

0

2ω
− λω

2

)
cos k

− 2λVg sin k, (10)
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FIG. 4. Behavior of the dispersive coefficient P as a function
of the frequency of the carrier f for different values of λ and the
line parameters of Fig. 2. These curves show that P vanishes for a
frequency fz whose value decreases with the growth of λ.

Q = M22 + M21 + M23 for M21 = −α2ω3/D0,

M22 = 3βω/2, (11)

D0 = ω2 + (
4λω2 − u2

0

)
sin2k − 1

4ω2
0,

M23 = −2α2ωV 2
g

/(
V 2

g − u2
0

)
. (12)

Moreover, we show that the continuous component V20(X,T )
of the voltage as well as its second harmonic V2(X,T ),
respectively obtained for terms proportional to ε4e0iθ and
ε2e2iθ , are connected to the fundamental V1 by the following
relations:

V20 = −(M23/α)|V1|2, V2 = (αω2/D0)(V1)2. (13)

Relations (13) show that the nonlinear coefficients M23 and
M21 come from the contribution of V20(X,T ) and V2(X,T ),
respectively. It appears from expressions (10) and (11) that P

and Q depend on the linear term λ as illustrated in Figs. 4
and 5. This allows us to refer to relation (9) as the DNLSE.
Figure 4 indicates that the dispersion coefficient P vanishes
for a value of the wave number kz that corresponds to the
frequency fz = 720 kHz for λ = 0. In the case λ = 0.175, this
frequency is reduced to fz = 655 kHz. As far as the behavior
of the nonlinear coefficient Q is concerned, we observe that its
maximum value decreases when values of λ grow (Fig. 5). We
have noted that Q vanishes for frequencies fq and fQ to be
determined. The values of these frequencies are also reduced
for λ = 0.175.

Furthermore, we investigate the behavior of the product
PQ as a function of the wave number k for different values
of the additional linear dispersion λ (Fig. 6). Since the
DNLSE (9) keeps the same form in the absence of λ,
the modulational instability (MI) criterion established by
Benjamen and Feir [23] remains valid, but critical values of
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FIG. 5. Plot of the nonlinear coefficient Q in terms of f for the
parameters of Fig. 2. We note that the maximum value of Q passes
from 7.92 × 104 rad/s V for λ = 0 to the value 3.575 × 104 rad/s V
for λ = 0.175.

k at the marginal state (PQ ≈ 0) change in the presence of
λ (Fig. 6). However, a uniform wave train propagating along
the modified Noguchi electrical transmission line will become
unstable under the modulation for PQ > 0 and will remain
stable for PQ < 0. According to Fig. 6, points A1, B1, and
C1 are zeros of PQ for λ = 0 while A2, B2, and C2 are its
zeros for λ = 0.175. Therefore, we introduce the quantities
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FIG. 6. Variations of the product PQ as a function of k for given
values of λ. Points A1 (kA1 = 0.74), B1 (kB1 = 1.04), and C1 (kC1 =
1.89) are zeros of PQ for λ = 0, while this product vanishes at
A2 (kA2 = 0.68), B2 (kB2 = 1), and C2 (kC2 = 1.80) for λ = 0.175.
We define the quantities z1 = kB1 − kA1 = 0.3, z2 = kB2 − kA2 =
0.32, z3 = kC1 − kB1 = 0.85, and z4 = kC2 − kB2 = 0.8. Since z2 >

z1, the modulational instability zone increases when λ grows. On the
other hand, we have z4 < z3, which implies that the modulational
stability zone decreases with λ. In both cases, we note that the curve
can be divided into four regions that deal with the signs of PQ.
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FIG. 7. Behavior of the nonlinear coefficient M23 versus the
frequency f of the carrier for the line parameters of Fig. 2 in the case
λ = 0. This curve shows that M23 does not possess neglected values
in spite of the bandpass character of our filter and also establishes the
existence of a maximum value at fm = 789.4 kHz.

z1 = kB1 − kA1 = 0.3, z2 = kB2 − kA2 = 0.32, z3 = kC1 −
kB1 = 0.85, and z4 = kC2 − kB2 = 0.8. Since z2 > z1, the MI
zone increases when λ grows. On the other hand, we have
z4 < z3, which implies that the modulational stability zone
decreases with λ. In both cases, we note that the curve can
be divided into four regions that deal with the signs of PQ.
These results suggest that the behavior of the product PQ
should be checked in terms of the frequency to establish
clearly the limits of each region. Based on the results
already established on the cubic nonlinear Schrödinger (NLS)
equation [4,24], the DNLS equation (9) will have both a dark
soliton (for PQ < 0) and a bright soliton (for PQ > 0).
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FIG. 8. Evolution of the nonlinear coefficient Q in terms of the
frequency f for the parameters of Fig. 2 in the case λ = 0. We
note that nonlinear effects vanish for two values of the frequency
fq = 590 kHz and fQ = 1062 kHz. The second frequency fQ was
absent in many works carried out on this bandpass filter [6,25–27].
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FIG. 9. Variations of the product PQ as a function of the
frequency f for the parameters of Fig. 2 with λ = 0. We obtain
three characteristic frequencies where this product vanishes, that is,
fq = 590 kHz, fz = 720 kHz, and fQ = 1062 kHz, which divide the
curve into four regions that deal with the signs of PQ.

On the other hand, we mentioned above that the curve of PQ
as a function of k can be divided into four regions. It should be
stressed that previous works [6,25–27] on this bandpass filter
(model without CS) divided this curve in only three regions. In
the following section we intend to emphasize this difference.

IV. CONTRIBUTION OF THE dc TERM

In this section we establish the contribution of the dc term
V20(X,T ) as part of the general modulated solution Vn(t) of
the circuit equations [Eq. (2) with λ = 0] in the semidiscrete
approximation. Our investigation is motivated by the fact that
in one of their papers [6], Marquié et al. assume that “the
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FIG. 11. Signal voltage as a function of time showing stability
of the plane wave at frequency fP = 460 kHz belonging to domain I
of the dispersion curve. The initial amplitude Vm = 0.2 V, while the
modulation rate b = 1% and modulation frequency fm = 8.75 kHz.

dc term V20(X,T ) will vanish due to the existence of the
low-frequency forbidden band in the dispersion curve.” This
assertion could have great impact on the wave equation and
the instability domains. Hereafter, we plan to appreciate the
influence of this term on these different named quantities. To
achieve this aim, we will follow our finding in the case λ = 0.

A. Nonlinear coefficient Q

Now we focus our attention on the contribution of the
dc term V20(X,T ) on the nonlinear coefficient Q. For this
purpose, considering the case λ = 0, we obtain from Eqs. (4)
and (10) that the dispersion law and the dispersion coefficient
are respectively defined by

ω2 = ω2
0 + 4u2

0sin2(k/2), (14)

P = (
u2

0 cos k − V 2
g

)/
2ω = P0. (15)
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Based on relation (14), it is easy to show that

M22 + M21 = ω

[
3β

2
− 4α2

[
ω2

0 + 4u2
0sin2(k/2)

]
3ω2

0 + 16u2
0sin4(k/2)

]
= Q0.

(16)

Therefore, we can write expression (11) in the simplest
form

Q = Q0 + M23. (17)

In relations (15) and (17), the quantities P0 and Q0 rep-
resent, respectively, the dispersion and nonlinear coefficients
obtained by Marquie et al. [6]. It should be stressed that we
have the same expression of P0, but our Q is defined by
Eq. (17), in which the additional term M23 comes from the
presence of the dc term V20(X,T ) within the solution Vn(t).
To measure the contribution of this nonlinear coefficient M23,
we seek its behavior in terms of the frequency f of the carrier
(Fig. 7). This plot shows that M23 presents a maximum value
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FIG. 12. Signal voltage versus time exhibiting the stability of the
plane wave for the frequency fp = 810 kHz (domain III) with the
parameters of Fig. 11.

at fm = 789.4 kHz. It also appears from this graph that the
contribution of M23 cannot be neglected in either the lower
or upper frequency. Thus it becomes impossible to ignore
its impact on the nonlinear coefficient. On the other hand,
we observe that (Fig. 8) evolution of Q exhibits a parabolic
behavior as a function of the frequency f with a maximum
value at Fm = 816 kHz. This curve shows that the nonlinear
coefficient Q vanishes for two values of the frequency, namely,
fq = 590 kHz and fQ = 1062 kHz. The latter frequency was
absent in the study of Marquié et al. [6]. Its presence is
justified by the existence of M23. In the following we check
the consequence of the appearance of fQ on the behavior of
the product PQ.

B. Product PQ

By considering expressions (15) and (17), we examine the
evolution of the product PQ as a function of the frequency f

of the carrier (Fig. 9). This plot establishes that the product
PQ is null for three values of the frequency, namely, fq =
590 kHz, fz = 720 kHz, and fQ = 1062 kHz. Let us recall
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FIG. 13. Modulational instability phenomenon of the plane wave
for the frequency fp = 622 kHz that belongs to domain II of the
dispersion curve with the parameters of Fig. 11.
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FIG. 14. Modulational instability phenomenon of the plane wave
observed at the frequency fp = 1205 kHz that belongs to region IV
with the parameters of Fig. 11.

that fz corresponds to the zero of the dispersion coefficient P ,
while fq and fQ are zeros of the nonlinear coefficient Q.

According to Benjamin and Feir’s instability criterion [23],
Fig. 9 establishes the existence of four regions concerning the
modulational instability of the plane wave and possible soliton
solutions of the wave equation [4,24].

Region I. The parameters are f ∈ [f0,fq], P > 0, Q < 0,
and PQ < 0, with modulational stability and a hole soliton.

Region II. The parameters are f ∈ [fq,fz], P > 0, Q > 0,
and PQ > 0, with modulational instability and an envelope
soliton.

Region III. The parameters are f ∈ [fz,fQ], P < 0, Q > 0,
and PQ < 0, with modulational stability and a hole soliton.

Region IV. The parameters are f ∈ [fQ,fmax], P<0, Q<0,
and PQ > 0, with modulational instability and an envelope
soliton.

Let us summarize those results on the dispersion relation
curve as given by Fig. 10. As we can observe from this figure,
the curve presents four regions depending on the sign of PQ
instead of three regions as shown in Refs. [6,25–27].
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FIG. 15. Propagation of the bright soliton solution of the NLS
equation in the network for fp = 622 kHz with the initial amplitude
Vm = 0.3 V.

C. Numerical investigations

The main purpose of this section is to present the results
of numerical simulations performed on the exact discrete
equation (2) governing the wave propagation in the nonlinear
electrical network. Therefore, integration of the equations
of motion (2) is done through the fourth-order Runge-Kutta
method. Our analysis is carried out on a discrete electrical
transmission line (Fig. 1) made of 1200 cells and fixed
boundary conditions. The parameters of the network are those
of Sec. II and the linear dispersion factor λ = 0.0. We will
examine numerically the modulational instability phenomenon
and the propagation of the envelope soliton in the line.

1. Asymptotic behavior of plane waves

According to the analytical results presented in Sec. IV B, a
plane wave introduced in the network becomes unstable when
PQ > 0 and remains stable for PQ < 0. To numerically achieve
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FIG. 16. Transmission of the bright soliton solution of the NLS
equation through the network for fp = 1205 kHz and Vm = 0.3 V.
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FIG. 17. (Color online) Schematic representation of the experimental arrangement.

this aim, the following signal is applied at the input of the line:

Ve(t) = Vm(1 + b cos ωmt) cos ωpt. (18)

In this relation, Vm designates the amplitude of the unperturbed
plane wave with angular frequency ωp = 2πfp and b and
ωm = 2πfm stand, respectively, for the rate and the angular
frequency of the modulation. Investigations of the asymptotic
behavior of plane waves are made over the whole carrier
wave frequency range f0 < fp < fmax and for modulation
frequencies 0.1 < fm < 10 kHz. The parameters of the input
signal are, respectively, Vm = 0.2 V, fm = 8.75 kHz, and
b = 1% and the cells 1, 250, 350, and 450 are arbitrary
chosen to observe the behavior of the input signal during its
propagation in the network.

Based on the results summarized in Fig. 10, the plane wave
injected in the line will remain stable under the modulation
for fp ∈ [f0,fq] and fp ∈ [fz,fQ], which link domains I and
III, respectively. When the carrier wave frequencies are taken
to be fP = 460 and 810 kHz, we obtain the results plotted,
respectively, in Figs. 11 and 12, showing the stability of the
plane wave after its adaptation in the line. On the other hand,
the results of Fig. 10 show that any plane wave introduced in
the line is supposed to be modulationally unstable for fp ∈
[fq,fz] and fp ∈ [fQ,fmax], which deals with domains II and
IV, respectively. For the frequencies fp = 622 and 1205 kHz,
the graphs of Figs. 13 and 14 exhibit the behavior of a plane
wave in the system. We note that as time increases, the wave

FIG. 18. Experimental stability of the plane wave with the
frequency fp = 460 kHz belonging to region I of the dispersion curve
(Fig. 10) observed in cell 16.

that travels in the network breaks into a periodic pulse train
leading to its self-modulation. At the end, we observe that
numerical analysis yields results that agree with our analytical
predictions summarized in Fig. 10.

2. Propagation of envelope solitons

To experience the transmission of the envelope soliton
through our model for several bands of frequencies dictated
by Fig. 10, we excite one extremity of the line with an
envelope solution of the NLS equation [6]. In order to avoid
signal reflection that disturbs the accurate observation of the
wave propagation in the network, the voltage across the other
extremity is set to zero and the experiment is run for a
sufficiently long time. The results of the numerical simulations
are given in Figs. 15 and 16. These curves present the spatial
evolution of the envelope solution for given time t0, t1, and t2.
It appears that data can be carried out through the nonlinear
transmission line of Fig. 1 without major distortion.

D. Experimental studies

The NLTL under consideration (Fig. 17) is implemented
and simulated by means of the NI Multisim software using
realistic components for circuit simulations. The network
is made of 16 identical cells in which each diode BB112
is biased by V0 = 2 V through a resistance of R = 5 M
.
Linear capacitors Cc, Cdec, and Cosc are used to block the

FIG. 19. Experimental stability of the signal with a carrier wave
frequency chosen in domain III (fp = 810 kHz) with the parameter
of Fig. 18.
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FIG. 20. Experimental observation of the instability under mod-
ulation of the plane wave at frequency fp = 622 kHz belonging
to domain II of the dispersion curve where PQ > 0. The signal is
at cell 16.

dc biased current but have no effects on the considered
frequencies range. The linear resistor Rg is also introduced
to protect the programmable generator XFG1. The linear
inductors L1 = 220 μH and L2 = 470 μH possess associated
resistances of r1 and r2, respectively.

The waves are created in the programmable generator and
the waveforms are observed and stored in the numerical oscil-
loscope XSC1, which has high impedance used to avoid signal
reflection. Experimental results are given for the modulational
stability or instability of a plane wave that propagates in the
system. This wave dynamics is observed in cell 21. According
to Fig. 10, for the choice of the carried frequencies fP = 460
and 810 kHz that belong to the stability regions I and III,
respectively, the plots of Figs. 18 and 19 present the behavior
of the plane wave in the experimental line. It appears from
those graphs that after a slide adaptation to the line, the wave
propagates in the network without modulation.

On the other hand, for frequencies fp = 622 and 1205 kHz
taken, respectively, in regions II and IV of the dispersion
curve, the graphs of Figs. 20 and 21 exhibit the dynamics of
the plane wave in the experimental line. The curves allow us
to observe the modulational instability behavior of the signal
during its motion in the network as predicted analytically and
seen numerically. However, we note that the wave amplitude
decreases during the transmission due to dissipation effects
induced by the losses of the NLTL. These experimental
studies evidence the fact that the NLTL under consideration is
a good medium for the propagation of pulse signal voltages.

V. CONCLUSION

In this paper we investigated the influence of the linear
capacitance CS on the characteristic parameters of a modulated
wave traveling in the modified Noguchi electrical transmission

FIG. 21. Experimental observation of the MI phenomenon of the
signal of frequency fp = 1205 kHz belonging to domain IV of the
dispersion curve with the parameter of Fig. 20.

line by means of the semidiscrete approximation. In the limit
of small wave amplitudes, we derived the linear dispersion law
and observed that the frequency domain of the carrier wave
decreases with the growth of the additional linear dispersive
parameter λ. It appears from our study that the bandpass filter
under study becomes more selective in terms of the frequency
for non-null values of λ.

On the other hand, we considered the semidiscrete approx-
imation and established that the motion of modulated waves in
the network is governed by a dispersive nonlinear Schrödinger
equation, which differs from the classical NLS equation by
the dependence of its coefficients on the additional dispersive
capacitance λ. In fact, we have shown that λ has real effects on
the dispersion and nonlinear coefficients since its presence has
reduced the values of the frequencies for which each of those
coefficients is null with related consequences on the instability
domains.

Furthermore, we have established that the increment of
λ values increases the width of the modulational instability
domains that corresponds to PQ > 0, while it reduces that of
the modulational stability domain, which deals with PQ < 0.
We also established that the linear dispersive curve is divided
into four regions (instead of three, as shown by Marquié
et al. [6]) owing to the sign of the product PQ and allowing
one additional region in the higher-frequency domain for the
propagation of the envelope soliton.

For values of the frequency chosen in each zone described
by the new dispersion curve (Fig. 10), numerical and exper-
imental simulations carried out on the wave dynamics in the
network have led to results that exhibit good agreement with
the analytical predictions. This model can be exploited to
perform the nerve transmission line exploited by Dikande and
Bartholomew [28].
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[25] J. M. Bilbault, P. Marquié, and B. Michaux, Phys. Rev. E 51,

817 (1995).
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