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Transitional behavior in hydrodynamically coupled oscillators
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In this article we consider the complete set of synchronized and phase-locked states available to pairs of
hydrodynamically coupled colloidal rotors, consisting of spherical beads driven about circular paths in the
same, and in opposing senses. Oscillators such as these have previously been used as coarse grained, minimal
models of beating cilia. Two mechanisms are known to be important in establishing synchrony. The first involves
perturbation of the driving force, and the second involves deformation of the rotor trajectory. We demonstrate
that these mechanisms are of similar strength, in the regime of interest, and interact to determine observed
behavior. Combining analysis and simulation with experiments performed using holographic optical tweezers,
we show how varying the amplitude of the driving force perturbation leads to a transition from synchronized
to phase-locked states. Analogies with biological systems are discussed, as are implications for the design of
biomimetic devices.
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I. INTRODUCTION

Synchronization is ubiquitous in driven assemblies of
weakly coupled oscillators, with sufficiently similar natural
frequencies [1,2]. It apparently transcends length scales and
physical context, arising in the rotational dynamics of magnetic
stars [3] as well as in the flight paths of subatomic particles, in
the Large Hadron Collider [4], and as an emergent, sociological
effect observable in traffic flow [5] or financial trading [6]. In
microbiology synchronization is of fundamental importance.
Beating cilia generate relative fluid flow that can be used
either for propulsion [7], in the case of swimming algae and
other microorganisms, or for fluid transport in mammalian
digestive or respiratory tracts [8]. Biological function is
often accompanied by synchronization, which appears to
arise spontaneously, and may be associated with increased
efficiency [9–11]. While synchronization is known to depend
on weak coupling, the details of the relevant interactions and
underlying mechanisms are subject to ongoing inquiry, espe-
cially in biological systems. Fields of cilia exhibit metachronal
coordination in which adjacent cilia beat with a constant phase
lag [12,13], while the flagella of the alga Chlamydamonous
admit several distinct states of synchronization [14–16]. In
the former case, the coordinating interaction is thought to
be hydrodynamic [17,18]; in the latter, mechanical [19,20],
involving rotation of the swimmer body [19], although this
does not fully describe the occurrence of the discrete modes,
or switching between them.

In this article, attention is restricted to the phenomena that
may be produced by hydrodynamic interactions alone. We
consider the complete set of steady-state modes available to
pairs of coupled colloidal rotors, circulating in the same, and
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in opposing senses. As described at greater length below,
each of these arrangements is shown to sustain two distinct
modes, in which the rotors reach a stable steady state.
These we refer to, generically, as modes, states, or equilibria
(applying the last term in the dynamical, not thermodynamical
sense; these systems are obviously not at thermodynamic
equilibrium). Each equilibrium is characterized by a particular
relationship between the rotor phases. For example, we say
that a pair of rotors, circulating in the same sense, with zero
phase difference, are synchronized and refer to other phase
differences as phase locked.

Hydrodynamic synchronization requires the breaking of
time-reversal symmetry [21–23]. As has recently been shown,
this can result from fluid compressibility [23]. As noted by
the authors, the resulting effects are marginal for the regime
in which flagellae and cilia operate. Here, the dominant mech-
anisms are thought to rely on the incorporation of additional
degrees of freedom. Accordingly, two purely hydrodynamic
synchronization mechanisms, effective for incompressible flu-
ids at low Reynolds number, have been described previously.
They rely, respectively, on elastic deformation of the rotor
trajectories and driving force modulation [24–26]. Employing
a combination of analysis, simulation, and experiments, using
holographic optical tweezers (HOT), we show these processes
acting either competitively or cooperatively to determine
the observed behavior. In particular, a transition between
synchronized and phase-locked states is induced by varying
the strength of the force modulation.

Our principle aim is to understand the transition between
synchronization and phase locking in this class of hydro-
dynamically coupled oscillator. However, analogies to real,
biological systems are evident, suggesting that even when
correlations in the motion are not principally determined by
hydrodynamics, they may act in cooperation with it. For
instance, the equilibrium states of our counter-rotating rotors
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FIG. 1. Schematic showing the geometric arrangement and pa-
rameters defining the system of colloidal rotors.

are seen to be reminiscent of the swimming strokes of the
alga Chlamydamonus. In addition, our comments on the
efficiency of the various states, and on methods to strengthen
and reinforce synchronization, may have implications for the
design and control of artificial microfluidic elements.

II. MODEL SYSTEM

We consider a pair of colloidal oscillators each represented
by a single spherical bead, driven by a tangential force, about
a circular trajectory to which it is harmonically bound (see
Fig. 1). Similarly reduced models have been employed, both
theoretically [9,11,24,25,27,28] and experimentally [21,26],
to investigate hydrodynamic synchronization of beating cilia.
The apparently crude approximation of complex elements,
such as cilia, by colloidal beads is partially justified by the
near equivalence of the flow fields generated by real and model
systems [29,30]. Regardless of the fidelity with which the
biological systems are represented, this coarse-grained analog
serves as an archetypal model of hydrodynamic synchroniza-
tion that is of basic interest as well as being of relevance to the
design of future biomimetic, microfluidic devices, such as the
magnetic cilia studied by Shields et al. [31].

The model [Fig. (1)] is parametrized by a radial stiffness,
kr , binding the bead, of radius a, to a circular path of radius
R0. The bead is driven by a weakly phase-dependent tangential
force, F i

φ(φ) (where i = 1,2 labels the rotor). The separation
between the centers of rotation is d.

Previous work has concentrated on rotors circulating in the
same sense [F 1

φ (φ) = F 2
φ (φ)], and has revealed two distinct

mechanisms leading to synchronization.
First, when the tangential force is constant, and independent

of phase, the finite value of the radial stiffness, kr , allows
elastic distortions of the bead trajectories, which can result
in synchronization. Since the tangential force depends only
on the angular coordinate, φ, reducing the radius of the path
increases the angular velocity. In this way, phase differences
arising between the beads are reduced as the leading bead is
pushed outwards and the trailing bead pulled inwards, until
synchrony is restored. This effect appears always to induce
synchronization, as opposed to phase locking.

Second, a weak phase dependence to the tangential force
can also, through subtler considerations [25], lead to synchro-
nization. Qualitatively, a small phase difference between a pair
of beads will be reduced in regions of the cycle in which the
force is decreasing with phase (since the trailing bead feels a
greater force than the leading one), and grow in regions where

the force increases with phase. Hydrodynamic interactions can
modify the rate of progress of the bead about its path, resulting
in systematic reductions of phase differences over a complete
cycle and leading, once more, to synchrony. It has previously
been suggested that this mechanism is of longer range than the
one based on finite kr and dominates in the far field [25].

In this work, we consider pairs of colloidal rotors of this
type driven by tangential forces of the general form given in
Eq. (1):

F i
φ(φ) = F i

0[1 − Ai sin(2φ)], (1)

where i = 1,2 labels the rotor. Restriction of the phase
dependence of the force to the second harmonic implies
no particular loss of generality since the first harmonic is
ineffective to first order, and the influence of higher-order terms
becomes progressively weaker [26]. We further consider pairs
of oscillators of even parity [F 1

φ (φ) = F 2
φ (φ), i.e., F 1

0 = F 2
0 ,

A1 = A2], in which rotors circulate in the same sense, as
well as odd parity [F 1

φ (φ) = −F 2
φ (π − φ), i.e., F 1

0 = −F 2
0 ,

A1 = −A2], in which rotors circulate in opposing senses. In
each case, we examine the effect of varying the amplitude of
the perturbation, Ai , between negative and positive values.

In the following sections, this system is analyzed alge-
braically, numerically, and experimentally, using holograph-
ically controlled optical traps to apply appropriate forces
to pairs of polystyrene beads. The complete set of steady-
state modes available to this system are presented, and the
mechanisms underlying their stability are elucidated.

III. THEORETICAL

In the low Reynolds number limit, the equation of motion
for two externally driven spherical particles is

Fi =
∑

j

H−1
ij ṙj + fi(t), (2)

where i = 1,2 is the bead index, Fi is the external driving
force on rotor i, and ṙi is its velocity. H is the mobility
matrix given here by the Oseen tensor [32]. fi is the stochastic
Langevin force, uncorrelated, with zero mean, 〈fi〉 = 0, and
covariance, 〈fi(t) ⊗ fi(t ′)〉 = 2kBT H−1

ij δ(t − t ′). We assume
small, distant rotors (a�d, R�d), moving in one another’s
hydrodynamic far-field; in subsequent equations, terms beyond
O( a

d
) andO(R

d
) are discarded. Neglecting thermal fluctuations,

and following the procedure described in detail in Ref. [26]
(see Sec. 2, Supplemental Material), evolution of the radial
coordinate of each bead can be assumed instantaneous on the
time scale of the phase evolution, thereby decoupling angular
and radial components. Equations of motion for the phases of
the rotors result:

φ̇i = F i
φ(φi)

γR0
+ 3a

8γR0d

{
F

j

φ (φj )[3 cos(φi − φj )

− cos(φi + φj )] − F i
φ(φi)F

j

φ (φj )

R0kr

[3 sin(φi − φj )

− sin(φi + φj )]

}
, (3)
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FIG. 2. Schematic indicating the motion of the beads in the
synchronized and phase-locked states of pairs of rotors of even
(corotating) and odd (counter-rotating) parity.

for i = 1,2, and φ̇ is the time derivative of the phase.
γ = 6πμa is the Stokes drag on an isolated sphere. In
order to identify equilibria and assess their stability, we next
consider the evolution of small disturbances. The deviation in
the relative phase of the rotors, with respect to a particular
equilibrium, is given by Eq. (4):

δE/O = (φ1 ∓ φ2) − δ
E/O

0 . (4)

Here, the superscript E refers to even, or same sense rotation,
for which the phase difference is taken, and O is odd,
or opposing sense rotation, which makes use of the phase
sum. δ

E/O

0 is an equilibrium state, δ
E/O

0 = (φ1 ∓ φ2)eqm.
Equation (3) can be used to evaluate the time rate of change
of a disturbance, δ̇E/O , for small δE/O . The condition that a
particular pair of phases, δ

E/O

0 , correspond to an equilibrium,
is simply that δ̇E/O ∝ δE/O , so that δE/O(t) = 0 is a solution.
Precisely four equilibrium states emerge; see Fig. 2.

The first two we refer to as synchronized, as indicated by
the subscript S. In this case the sum, or difference, of the
rotor phases is zero, δ

E/O

0 = 0, depending on the parity of
the rotors. The second two are referred to as phase-locked,
or antisynchronized, the phases being related by δ

E/O

0 = π

(where the subscript P refers to the phase locked state).
A strong condition for the stability of a particular state is

simply that the time rate of change of a small disturbance be
of opposite sign to the disturbance itself, i.e., that δ̇/δ < 0, for
all phase angles, φ. Applying Eq. (3) to each equilibrium state,
and assuming δE/O�1, gives

δ̇E
S/P

δE
S/P

≈ −2F 1
0 A1 cos(2φ)

γR0
∓ 3a

4d

{
3
(
F 1

0

)2
[1 − A1 sin(2φ)]2

4R2
0γ kr

− F 1
0 A1 cos(2φ)

γR0
[3 − cos(2φ)]

}
, (5a)

δ̇O
S/P

δO
S/P

≈ −2F 1
0 A1 cos(2φ)

γR0
∓ 3a

4d

{(
F 1

0

)2
[1 − A1 sin(2φ)]2

R2
0γ kr

+ F 1
0 A1 cos(2φ)

γR0
[3 cos(2φ) − 1]

}
. (5b)

Here, φ, is the phase of the unperturbed system, e.g., for
the synchronized state of even parity rotors, δE

S = φ1 − φ2,
and we have used φ1 = δE

S + φ, φ2 = φ.
These equations are revealing, although the appearance

of the first terms [the zeroth-order terms in (a/d)] on
the right-hand sides of Eqs. (5a) and (5b) is, perhaps,

misleading. These terms occur for rotors even in the absence
of hydrodynamic interaction and arise solely by virtue of the
force modulation. When the force is decreasing with phase
[cos(2φ) < 0], trailing beads experience higher tangential
forces than leading ones, thereby closing the gap. Conversely,
when it is increasing, the opposite occurs. For this term to
contribute to stability, its time average over a complete cycle
would need to be negative, which is possible if circulation is
slower in some parts of the cycle than in others. However, since
the angular average is zero, the effect, if it exists, is likely to
be minimal.

Next, the first-order terms in (a/d) contain two contribu-
tions. The first is of the same sign for all phase angles, φ. It
continues to act when the tangential force is constant (A1 = 0)
and vanishes when the radial stiffness is infinite. It can there-
fore be identified with elastic trajectory deformation (finite kr ),
although its strength is modified for phase-dependent force
(A1 
= 0). It always promotes the stability of synchronized
states and degrades the stability of phase locking. The second
contribution to the first-order term is effective only when the
force varies with phase but appears even for rigidly tethered ro-
tors (kr = ∞). Unlike the first contribution, the sign of the sec-
ond varies with phase. This time its angular average does not
vanish, so that it may be expected to influence synchronization.
In all cases, positive values of A1 promote synchronization.

Evidently, the only states that are potentially stable under
the strong condition that δ̇E/O/δE/O < 0∀φ, are the synchro-
nized states, since they are stabilized by the first components of
the first-order terms in Eq. (5) and these are of the same sign for
all values of φ. However, other states may be stable in a weaker
sense; for example, the requirement that disturbances [Eq. (4)]
be reduced over a complete cycle. This looser condition
allows δ̇E/O/δE/O to vary in sign over a cycle, providing
that negative contributions outweigh positive. Synchronized
states, for which the two first-order terms are comparable, due
to particular values of stiffness, kr , or force amplitude, A1,
may only be stable under the weak condition. Crucially, it
is the only sense in which the phase-locked states, identified
above, can be stable.

Defining the synchronization strength as the cycle averaged
growth of a disturbance from equilibrium results in the less
exacting stability condition

�
E/O

S/P =
∫ 2π

0

δ̇
E/O

S/P

δ
E/O

S/P φ̇
dφ < 0, (6)

where �
E/O

S/P is the synchronization strength of the indicated
mode and is negative for stable states; i.e., stability requires
that the growth of the cycle averaged phase difference is
decreasing. Using Eq. (5) and, following Ref. [26], taking
δ

E/O

S/P = 0 in Eq. (3) to get appropriate expressions for φ̇ for
each equilibrium state gives

�E
S/P = ∓3πa

2d

{
3F 1

0

R0kr

+ 2

A1
[1 −

√
1 − (A1)2]

}
(7a)

�O
S/P = ∓3πa

2d

{
F 1

0

R0kr

+ 6

A1
[1 −

√
1 − (A1)2]

}
. (7b)

The zeroth-order terms in Eq. (3) do indeed average to
zero, leaving only first-order terms in ( a

d
). In this regime, the
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FIG. 3. Bracketed term, Eq. (7), for typical sets of parameters and
for even and odd parity rotors.

hydrodynamic far-field contributions to stability from elastic
deformation (finite kr ) and force perturbation (finite A1) are
of comparable magnitude. Once more, synchronization is
promoted by elasticity, as represented by the first terms on
the right. The second term derives from force modulation. It
passes through the origin with a positive gradient and is locally
linear. Providing the magnitude of the first term is not too great,
the synchronization strength changes sign for a small, negative
value of A1; see Fig. 3.

Beneath this value the phase-locked state is stable and
above it is the synchronized state. This is an apparently smooth
transition. As it is approached, the growth rate of a deviation
from equilibrium also approaches zero, allowing the phase
difference between the rotors to meander.

The primary difference between even and odd parity rotors
is in the weighting of the contributions of the two mechanisms.
The role of trajectory deformation is three times weaker for
counter-rotation than it is for corotation, and the influence
of force perturbation is three times stronger. We note that this
less-stringent stability criterion admits steady-state trajectories
in which the phase difference, δ

E/O

S/P , oscillates periodically
about zero, providing its cycle average is zero. Similar such
trajectories have been analyzed previously [22] and appear in
experimental results.

Finally, we briefly consider the time periods and dissipation
rates associated with each mode. Assuming zero disturbance
from equilibrium (δE/O

S/P = 0), integration of Eq. (3), T =∫ 2π

0
dφ

φ̇
, gives the time periods of each of the four modes:

T E
S/P = 2πγR0

F0

√
1 − (A1)2

(
1 ∓ 9

8

a

d

)
(8a)

T O
S/P = 2πγR0

F0

√
1 − (A1)2

(
1 ∓ 3

8

a

d

)
. (8b)

The energy dissipated per cycle is W
E,O
S,P = ∫ T

0 RiF
i
φφ̇idt =∫ 2π

0 RiF
i
φdφi . For sufficiently high radial stiffness the path

deformation is only minor, Ri ≈ R0, and the energies of each
mode converge to a single value, W

E,O
S,P = W ≈ 2πR0F0, for

all modes. Under these conditions, the cycle averaged dissipa-
tion rates (WE,O

S,P /T
E,O
S,P ) are inversely proportional to the time

periods, so that the synchronized states are the most efficient

in this respect. For decreasing kr , a more detailed treatment
suggests that the efficiency advantage of synchronization is
first degraded, then reversed. However, the substantial radial
perturbations that are acquired by the rotors under these
conditions, and the neglect of thermal fluctuations, which
become increasingly significant, means that a more general
approach would be required to properly treat the low kr regime.

Comparing Eqs. (7) and (8) reveals that, for the set of four
modes, the time periods and the contributions from each of
the synchronization mechanisms are all evenly spaced and
distinctively ordered. In particular, time periods are ordered,
T E

S < T O
S < T O

P < T E
P . Furthermore, setting A = 0, gives

�E
S < �O

S < �O
P < �E

P for the synchronization strengths of
rotors driven with constant torque, while putting kr = ∞,
yields �O

S < �E
S < �E

P < �O
P , for the ordering for rigidly

tethered rotors, with A > 0.

IV. EXPERIMENTS AND SIMULATIONS

An experimental investigation of the system treated above
has been conducted using holographic optical tweezers (HOT)
to drive colloidal beads in the required manner. As has been
described previously [26]. The parameters determining the
system, the tangential force and its modulation amplitude
(F i

φ,A1), and the radial stiffness, kr , can be emulated with HOT.
A force-clamping protocol [33] is used to produce the required
tangential force, and position clamping [34] is used to generate
the prescribed linear, radial restoring force. HOT control was
performed using a modified version of the LabVIEW program
detailed in Ref. [35].

Implementation of the force and position clamping pro-
cedures in HOT systems requires the accurate measurement
of the coordinates of the beads followed by an update of the
state of the spatial light modulator (SLM), so as to reposition
the optical traps in such a way as to impose the required
forces. This process introduces discrete time delays into the
system. In order to approximate a continuous system, with
the desired parameters (F i

φ,A1,kr ), the characteristic times
of the system, including the effective relaxation times of the
traps, must be substantially longer than these time delays. We
ensure that this condition is satisfied by selecting the size of the
beads we use and by controlling the viscosity of the ambient
fluid, as described below. Other geometric parameters of the
system, such as the size and separation of the oscillators, are
constrained by the usable size of the field of view, and the
requirement that the rotors be well separated from the container
walls. As will be seen, the analysis captures the qualitative
behavior of the system and provides satisfactory quantitative
agreement. The moderate numerical disagreement can be
attributed to the imperfections in the experimental system
described above. To bridge the gap, we compare experiment
with numerical integration of the basic equation of motion
Eq. (2), using the scheme of Ermack and McCammon [36].
Idealized simulations reproduce analytical results, under the
required assumptions (a�d, R0�d). Further, the time delays
introduced by the feedback loop can be directly incorporated
into the simulation, as can the thermal fluctuations, allowing
direct comparison between simulation and experiment, and
thereby indirect comparison between analysis and experiment.
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Since synchronization strength cannot, itself, be directly
measured, we concentrate on synchronization relaxation times.
In direct analogy with standard methods of calibration for
optical traps, equilibrium states of the rotors are considered
to be bound by a fictitious potential. Since � gives the
cycle-averaged growth rate of a particular disturbance, it
evolves according to δ(i + 1) − δ(i) = �δ(i), where i indexes
the cycle, resulting in the relationship between relaxation time
and synchronization strength:

τ = −1

ln(1 + �)
≈ −1

�
. (9)

For a pair of rotors, thermally fluctuating about a steady
state, the relaxation time manifests itself as the decay time
of the autocorrelation of the disturbance, δ

E/O

S/P . The term on
the far right, appropriate for � → 0, describes the region in
the vicinity of the transition and illustrates the qualitative
interpretation of the synchronization strength as the reciprocal
of the relaxation time, τ . It corresponds precisely to the
solution of the continuous evolution, δ̇ = �δ.

It should be emphasized that this step is essentially
heuristic. There is no a priori reason why a nonequilibrium
thermodynamic process, such as colloidal synchronization,
should be statistically similar to a system at thermodynamic
equilibrium, such as a bead in a potential. Neither is it
necessarily the case that the potentially complex restoration of
synchrony, involving the combination of multiple relaxation
processes, as indicated by the phase dependence of δ̇/δ in
Eq. (5), should be well represented by a single, cycle-averaged
relaxation. These issues are exaggerated in the case of phase-
locked states, in which the range of δ̇

E/O

P /δ
E/O

P necessarily
includes positive and negative values, and disturbances can
grow before they decrease. However, as is amply demonstrated
by the proceeding results, the protocol described above
constitutes a meaningful measure of the time taken for a
disturbance to return to steady state, even if the true physical
complexity is concealed.

The parameters used in experiments were chosen in such a
way as to facilitate both the conduction of the experiment, in
terms of applying force and position clamping protocols, and
the taking of measurements. In particular, we use solutions
of glycerol to increase the fluid viscosity and slow down the
dynamics in which we are interested, so that the discrete nature
of the force and position clamping algorithms is smoothed
out. Additionally, we use moderately large polystyrene beads
of radius a = 1.66 μm, to ensure accurate measurement of
their coordinates. The beads are driven around circular paths
of radius R0 = 2 μm to which they are bound by a radial
stiffness, kr = 9.32 pN/μm, for even parity rotor pairs, and
kr = 2.50 pN/μm for odd pairs. Tangential forces are F 1

0 =
3.85 pN for even parity and F 1

0 = 5.37 pN for odd parity
rotors. The rotor separation d = 10 μm (Fig. 1) in both
cases. Measurements are performed in a mixture of water and
glycerol, with a viscosity of 0.24 Pas for even, and 0.19 Pas for
odd parity. The viscosity of glycerol solution changes rapidly
with concentration and temperature, making precise control
difficult; the quoted values are measured experimentally in
situ by measuring the autocorrelation of a bead in a static
trap [26]. The rotors are separated from the nearest wall of the

sample cell, by 50 μm. Beads are tracked by image processing
of camera frames at 280 Hz, and trap positions are updated by
an SLM with an update rate of 50 Hz, with new trap positions
determined by current bead positions. An iterative calibration
process is used to determine the size of the tangential steps
taken by the optical traps, such that the desired force profiles,
F i

φ(φ), are obtained. This is achieved by measuring the
velocity profile, which is proportional to the force profile,
of each rotor in isolation. The radial placement of each trap is
proportional to the distance between the bead location and the
defined trajectory, and the constant of proportionality scales
the effective stiffness, kr , of the radial force that acts to keep
the bead on the defined trajectory. Autocorrelation function
analysis is performed on Brownian trajectories of pairs of
beads, after they have reached a steady state.

Figure 4 shows simulated and experimentally measured
relaxation times, for even and odd pairs of rotors, as function
of the amplitude of the force perturbation. Beneath these
curves are shown experimental and simulation results for the
equilibrium phase differences between the rotors. It appears
that the transition between synchronized and phase-locked
states is accompanied by a singularity in the relaxation time,
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FIG. 4. (Color online) Graphs showing the variation of relaxation
time with amplitude of force variation, A1, for rotors of even
(above), and odd parity (below). Experimental data is plotted as
points and continuous lines show numerical results. The analytical
approximation is shown by the dashed line.
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as the synchronization strength approaches zero. However,
accurate measurement of the relaxation time close to the
singularity is challenging, and the details of the dynamics,
as qualitatively discussed below, may become complicated.
Hence, the interpretation of both numerical and experimental
results becomes unclear in this region. It is evident, however,
that the transition occurs for significant values of A, indicating
that the force modulation mechanism does not completely
dominate behavior in this regime, and the two identified
mechanisms compete to determine behavior. Also shown
Fig. 4 are analytically estimated relaxation times. As described
above, for practical reasons, the experimental parameters
do not conform precisely to the approximations made in
the analysis. In particular, the ratio (a/d) is assumed small
although, experimentally it is ≈0.17. Furthermore, the analysis
omits the time delays associated with force and position
clamping. Nevertheless, Eqs. (7) predict sensible values for
the modulation amplitude, A1, at which the transitions from
synchronization to phase locking occur: −0.56 for the even
rotors, −0.34 for odd. Additionally, estimates of the relaxation
times, according to τ ≈ −1/�, are qualitatively consistent
and quantitatively comparable with the experimental and
numerical results.

Differences in the physical parameters used in the two sets
of experiments makes direct comparison of measured time
periods, with Eq. (8), complicated. However, it is incontro-
vertibly the case that synchronized states have lower time
periods than phase-locked states. In addition, the influence of
hydrodynamic coupling on time period is substantially greater
for even parity rotors than it is for odd parity. In particular,
measured time periods are T E

S ≈ 20s, T E
P ≈ 30s, T O

s ≈ 13s,
and T O

p ≈ 20s.

V. CONCLUSIONS

To summarize, we have examined experimentally, nu-
merically, and analytically the steady-state modes available
to hydrodynamically coupled colloidal rotors circulating in
the same sense (even parity rotors) and in opposing senses
(odd parity). Attention is restricted to the hydrodynamic far
field, in which the rotors are small compared with their
separation. The rotors used are the simplest possible; colloidal
beads harmonically bound to a circular path, with finite
radial stiffness (kr ), and driven by phase-dependent tangential
forces, Fφ = F0[1 − A sin(2φ)]. Experimental investigations
are conducted using holographic optical tweezers to re-create
the required conditions. Two independent mechanisms for
synchronization have previously been identified. One relies on
elastic deformation of the bead trajectory through finite radial
stiffness (finite kr ), the other on modulation of the tangential
force (finite A). We have shown that these mechanisms interact
to determine behavior. Four equilibrium states have been
identified. Each parity admits a synchronized state in which
the phase difference (or sum, for odd parity), is zero, and a
phase-locked state in which the phase difference (or sum), is
π rads. The weighting of the two synchronization mechanisms
determines which mode is selected, and this can be adjusted
by varying the radial stiffness (kr ) or the amplitude of the
force modulation (A). This is experimentally demonstrated
by varying A between positive and negative values to induce

a transition between synchronized and phase-locked states.
Numerical simulations reproduce analytical results as well
as experimental results when experimental nonidealities are
incorporated.

Several conclusions can be drawn from this work. First
of all, the previously identified synchronization mechanisms
(finite kr and finite A), are of comparable magnitude and
can compete or cooperate to determine behavior, depending
on A and kr . Next, odd and even parity rotors admit both
synchronized and phase-locked modes. Here we note that,
for odd parity, counter-rotating rotors, these two states are
reminiscent of the swimming strokes of the alga, Chlamy-
domonas. In particular, the phase locked mode is similar to
the antiphase synchronization recently observed in mutant
Chlamydomonas [14,15]. Although, these forms of synchrony
are predominantly attributed to mechanical coupling [19,20],
our results indicate that aspects of the observed behavior can
be re-created through hydrodynamic interactions alone. While
mechanical coupling is certainly the dominant mechanism, it
apparently works in concert with hydrodynamics. In addition,
analysis suggests that it is only the synchronized modes that
can be uniformly stable in the sense that a small disturbance
will be reduced for all phases in a cycle. In contrast, the
phase-locked states can only be stable in a weaker sense,
in which average disturbances are reduced over a complete
cycle. Further, we have shown that the synchronized states
lead to increased efficiency, in terms of energy dissipated
into the ambient fluid, and that the stability of the modes,
and therefore their robustness against thermal effects, can
be increased via the force modulation amplitude, A. These
insights could assist in determining effective ways of driving
biomimetic microfluidic devices [31].

A number of new questions present themselves. For
example, in common with other existing studies, we have
remained in the hydrodynamic far field. In this regime, the
two synchronization mechanisms (finite A, finite kr ) appear
distinct, so that their weights can be adjusted independently.
The extent to which this remains true for large, proximal
rotors is unclear. Similarly, the stability conditions for each
of the four states described above appear mutually exclusive,
in that there is no apparent bistability. Were this to break
down in the near field, one would expect to see a variety
Kramers hopping between nonequilibrium states or, given a
higher thermal barrier, hydrodynamic hysteresis. Although not
presented here, simulations of rotors close to the transition
between synchronization and phase-locking appear to show
such behavior, even in the far field. Finally, we note that the
nature of synchronization mechanisms studied here derives
from the symmetry of the rotors. However, the way in which
these processes are modified by reductions in rotor symmetry
is yet to be fully understood [37].
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