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Linear instability of a zigzag pattern
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Interacting particles confined in a quasi-one-dimensional channel are physical systems which display various
equilibrium patterns according to the interparticle interaction and the transverse confinement potential. Depending
on the confinement, the particles may be distributed along a straight line, in a staggered row (zigzag), or in a
configuration in which the linear and zigzag phases coexist (distorted zigzag). In order to clarify the conditions
of existence of each configuration, we have studied the linear stability of the zigzag pattern. We find an acoustic
transverse mode that destabilizes the zigzag configuration for short-range interaction potentials, and we calculate
the interaction range above which this instability disappears. In particular, we recover the unconditional stability
of zigzag patterns for Coulomb interactions. We show that the domain of existence for the distorted zigzag
patterns is accurately described by our linear stability analysis. We also emphasize the complexity of finite size
effects. Last, we provide a criterion for the onset of instability in the thermodynamic limit and propose a biphasic
model that explains some characteristics of the distorted zigzag patterns.
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I. INTRODUCTION

Many physical systems are constituted by interacting parti-
cles confined in narrow channels, moving in a way that keeps
the particles’ order, for instance, molecules moving through
cell membrane channels [1], laser-cooled ions confined in
Paul traps [2–5], optically confined paramagnetic colloidal
particles [6], plasma dusts in electrostatic traps [6–9], and
electrostatically interacting macroscopic beads [10–12]. These
confined systems give rise to interesting questions about their
stable equilibrium configurations. Indeed, according to the
interparticle interaction range, to the particle density or to the
size of the narrow channel, the particles arrange either along a
straight line or in a staggered row, called hereafter a zigzag, or
in heterogeneous configurations where zigzag and linear pat-
terns coexist. For instance ions confined electromagnetically in
Paul traps [2–5] always exhibit homogeneous configurations,
either aligned or zigzag depending on the confinement. On the
other hand, in plasma dust experiments [6–9,13] or for elec-
trostatically interacting beads in macroscopic systems [12,14–
16], heterogeneous configurations are also observed. The main
goal of this paper is to clarify the origin of this diversity.

These systems may be modeled to a first approximation
as interacting point particles transversally confined in a
quasi-one-dimensional (1D) cell by a quadratic potential. Two
relevant energies compete to produce their equilibrium config-
urations: the repulsive interparticle interaction characterized
by its amplitude and its range, and the transverse potential
which confines the particles and keeps their order. When the
confinement is much stronger than the interaction potential,
the particles are always distributed along a straight line
corresponding to the minimum of the confinement potential.
When the confinement is lowered, becoming comparable to the
interparticle interaction, a staggered zigzag row may become
energetically favorable, since the energy lost by climbing the
transverse potential up is counterbalanced by the decrease of
interaction energy due to the greater interparticle distance in
the zigzag pattern. However, the coexistence of linear and
zigzag phases in equilibrium configurations observed in some
experiments suggests a modulationnal instability of the zigzag

pattern, such that the stable equilibrium actually is a distorted
zigzag pattern.

Each kind of stable configuration results from specific
conditions, which we identify by looking at the linear sta-
bility of the zigzag configuration. We derive the vibrational
eigenmodes for a generic interparticle interaction in Sec. II. In
Sec. III we show that one mode may become unstable, with
a purely imaginary eigenfrequency. We identify the relevant
parameters and exhibit the essential role of the interaction
range. In particular, we justify the stability of the zigzag
pattern for Coulomb interactions [4,17–19], whereas it may
be unstable for dipolar interactions [20,21] or for other finite
range interactions [7–9]. In this last case, we determine a
stability criterion depending upon the particle density and
the confinement stiffness, which accounts for the diversity
of observed configurations. Finally, in Sec. IV we confront
our predictions with equilibrium configurations obtained by
molecular dynamics simulations.

II. VIBRATIONAL EIGENMODES OF THE ZIGZAG
CONFIGURATION

Let us consider a zigzag configuration of length L for 2N

identical point particles of mass m (m = 2.15 mg in the sim-
ulations) held in the plane xOy. In the longitudinal direction
(x direction) we assume periodic boundary conditions. In the
transverse direction (y direction) the particles are confined
by an harmonic potential of stiffness β. Each of the N unit
cells of this periodic configuration contains two particles
{A0

p,B0
p} (see Fig. 1) of respective coordinates {2pd,−h}

and {(2p + 1)d,+h} where d is the longitudinal interparticle
distance L/(2N ) and where h is the “zigzag height” defined
as the transverse distance between the particle and the bottom
line of the confinement potential (considered as the x axis
in the following). In what follows, d is kept constant, such
that d = 1.875 mm; that is, N = 16 unit cells is a system of
length L = 60 mm. These peculiar values of the parameters
are chosen to be consistent with experimental works [8–11].

These particles interact with a repulsive potential of energy
scale U0 and of characteristic range λ0. In order to allow a direct
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FIG. 1. A zigzag configuration, showing a unit cell (dashed box). We also show the small displacements of the particles at equilibrium
positions A0

p+2 and B0
p−2.

comparison between other experiments or simulations and our
results, we will apply potentials such as the three-dimensional
(3D) Coulomb interaction, the 3D dipolar interaction, the
Yukawa potential, and the modified Bessel function K0(·) inter-
action (relevant for superconductor vortices and experiments
with macroscopic beads) [10,11]. For Yukawa and modified
Bessel potentials, the finiteness of the interaction range allows
us to write this potential as U (r) ≡ U0f (r/λ0). To allow the
comparison between the potentials, we choose the energy
scale in such a way that the nearest neighbors’ interaction
energy is the same with all potentials. For d/λ0 = 3.91, we
take U0f (d/λ0)/kB = 8.5 × 1012 K, where kB is Boltzmann
constant.

In order to deal with all interaction potentials within the
same formalism, we take into account all possible interparticle
interactions. For short-range interaction it would be sufficient
to consider only a finite number of neighbors: for instance,
we have shown that in the case of a typical modified Bessel
interaction, keeping only the two closest neighbors is enough
to obtain the eigenfrequencies with a good precision [11,12].

With periodic boundary conditions, the potential energy is
the same for each particle in the staggered row, so that the
energy of the system reads

E = 2N

⎡
⎣ N∑

j=1

U
(√

d2
j + 4h2

)+
N−1∑
j=1

U (2jd) + β

2
h2

⎤
⎦ ,

(1)

where dj ≡ (2j − 1)d. The resulting mechanical equilib-
rium equation shows that a zigzag configuration with h �=
0 exists only below a critical confinement value βZZ =
4
∑N

j=1 F (dj )/dj where F (r) = −U ′(r). For a strong confine-
ment, β � βZZ , all the particles stand on a straight line (h = 0)
corresponding to the transverse potential minimum [12,15,22],

while for a confinement β < βZZ and a given interparticle
distance d, the zigzag height h is implicitly given as a function
of β by

β = 4
N∑

j=1

F
(√

d2
j + 4h2

)
√

d2
j + 4h2

. (2)

For the modified Bessel potential and d/λ0 = 3.91, we have
βZZ = 5.82 × 10−4 N/m, which corresponds to an energy
βZZd2/kB = 1.5 × 1014 K and to a frequency

√
βZZ/m =

16.5 s−1.
To analyze the linear stability of the zigzag equilib-

rium, we compute its vibrational eigenmodes in the linear
approximation. The coordinates of the particles are Ap =
{2pd + xp(t),−h + yp(t)} and Bp = {(2p + 1)d + up(t), +
h + vp(t)} where |xp|, |yp|, |up| and |vp| are much smaller
displacements than either d or h (see Fig. 1).

The potential energy of the system is

E =
N∑

p=1

⎧⎨
⎩

N∑
j=1

[U (ApBp+j−1) + U (BpAp+j )]

+
N−1∑
j=1

[U (ApAp+j ) + U (BpBp+j )]

⎫⎬
⎭

+ β

2

N∑
p=1

[(yp − h)2 + (vp + h)2], (3)

where the periodic boundary condition imply that indices
which are congruent modulo N correspond to the same
particle. Expanding this energy up to second order with respect
to the small displacements, and using the Euler-Lagrange
equation, we find the linearized equations of motion:

mẍp =
N∑

j=1

[Kxx(j )(up−j + up+j−1 − 2xp) + Kxy(j )(vp−j − vp+j−1)] +
N−1∑
j=1

K(2jd)(xp+j + xp−j − 2xp), (4)

mÿp =
N∑

j=1

[Kyy(j )(vp−j + vp+j−1 − 2yp) + Kxy(j )(up−j − up+j−1)] +
N−1∑
j=1

F (2jd)

2jd
(yp+j + yp−j − 2yp) − βyp, (5)

müp =
N∑

j=1

[Kxx(j )(xp+j + xp−j+1 − 2up) + Kxy(j )(yp+j − yp−j+1)] +
N−1∑
j=1

K(2jd)(up+j + up−j − 2up), (6)
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mv̈p =
N∑

j=1

[Kyy(j )(yp+j + yp−j+1 − 2vp) + Kxy(j )(xp+j − xp−j+1)] +
N−1∑
j=1

F (2jd)

2jd
(vp+j + vp−j − 2vp) − βvp, (7)

where

Kxx(j ) = (2j − 1)2d2

r2
j

K(rj ) − 4h2

r3
j

F (rj ), (8)

Kyy(j ) = 4h2

r2
j

K(rj ) − (2j − 1)2d2

r3
j

F (rj ), (9)

Kxy(j ) = 2(2j − 1)dh

r2
j

[
K(rj ) + F (rj )

rj

]
, (10)

rj ≡
√

(2j − 1)2d2 + 4h2, F (rj ) = −∂U

∂r

∣∣∣∣
rj

, K(rj ) = ∂2U

∂r2

∣∣∣∣
rj

. (11)

Here the coefficients Klm(j ) correspond to the stiffness arising from the interactions between particles separated by a distance
rj , when the displacements are in the direction l (l = x or y) for the first particle and in the direction m for the second one. Notice
that Kxy is proportional to the zigzag height h.

Owing to the periodic boundary conditions, the vibrational displacements may be expanded in Fourier modes. For instance,
xp+N = xp and

x̃(s,t) = 1

N

N∑
j=1

xj (t)e−i 2π
N

sj and xj (t) =
N∑

s=1

x̃(s,t)ei 2π
N

sj . (12)

From the Eq. (4)–(7) we obtain the dynamic matrix M(h), whose eigenvalues are the vibrational frequencies of the system:

M(h) ≡

⎛
⎜⎜⎜⎝

−2Cxx(s) 2e−iφ(s)Cxu(s) 0 2ie−iφ(s)Cxv(s)
2eiφ(s)Cxu(s) −2Cxx(s) −2eiφ(s)Cxv(s) 0

0 2ie−iφ(s) − Cxv(s) β − 2Cyy(s) 2e−iφ(s)Cyv(s)
−2ieiφ(s)Cxv(s) 0 2eiφ(s)Cyv(s) β − 2Cyy(s)

⎞
⎟⎟⎟⎠, (13)

where φ(s) = πs/N is the dimensionless wave number, and where

Cxx(s) =
N∑

j=1

Kxx(j ) + 2
N−1∑
j=1

K(2jd) sin2[jφ(s)], Cxu(s) =
N∑

j=1

Kxx(j ) cos[(2j − 1)φ(s)],

Cxv(s) =
N∑

j=1

Kxy(j ) sin[(2j − 1)φ(s)], (14)

Cyy(s) =
N∑

j=1

Kyy(j ) +
N−1∑
j=1

F (2jd)

jd
sin2[jφ(s)], Cyv(s) =

N∑
j=1

Kyy(j ) cos[(2j − 1)φ(s)]. (15)

When h = 0 (for β � βZZ), all the coefficients Kxy(j ) vanish so that Cxv(s) = 0 and the dynamic matrix M(h = 0) is block-
diagonal:

M(h = 0) ≡

⎛
⎜⎜⎜⎝

−2Cxx(s) 2e−iφ(s)Cxu(s) 0 0
2eiφ(s)Cxu(s) −2Cxx(s) 0 0

0 0 β − 2Cyy(s) 2e−iφ(s)Cyv(s)
0 0 2eiφ(s)Cyv(s) β − 2Cyy(s)

⎞
⎟⎟⎟⎠. (16)

This block structure reflects the fact that the longitudinal
vibrations (left upper block) are independent from the trans-
verse vibrations (right lower block) for linear chains as it was
previously shown [11,12].

Four vibrational branches, with eigenmodes indexed by
the wave vector φ(s) = 2πs/(2N ) with −N/2 � s � N/2

are obtained (the modes at the edges ±N/2, corresponding
to the same displacements, have by convention a weight 1/2,
so that there are exactly N modes). Hereafter, in order to
get the eigenmodes at the Brillouin zone edges, we assume
that the cell number N is even. The squared eigenfrequen-
cies ω2(s) of M(h = 0), corresponding to the linear chain,
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are given by

m
(
ω0

AL

)2 = 2[Cxu(s) − Cxx(s)], (longitudinal acoustic)

m
(
ω0

OL

)2 = −2[Cxx(s) + Cxu(s)], (longitudinal optical)

m
(
ω0

AT

)2 = β − 2Cyy(s) − 2Cyv(s), (transverse acoustic)

m
(
ω0

OT

)2 = β − 2Cyy(s) + 2Cyv(s), (transverse optical)

(17)

with the corresponding eigenvectors [V0
AL,V0

OL,V0
AT ,V0

OT ].
They have been calculated previously in Refs. [11] and [12]
and are valid for β � βZZ .

These squared frequencies are plotted in Fig. 2(a) for β >

βZZ and in Fig. 2(b) for β = βZZ . Notice that for convenience
we have described the system with a model of two particles
per cell even if the equilibrium configuration is linear. So
these curves display the usual shape of phonon dispersions in
a crystal with two atoms per cell. The Brillouin zone folding
induces degeneracies for φ(s = N/2) of the acoustic and
optical branches for longitudinal and transverse polarizations.
In each case the longitudinal acoustic branch exhibits a zero
frequency mode for s = 0 and displays a parabolic dependency
ω2 ∝ s2 at small s. This mode results from the longitudinal
translation invariance of the linear chain. Exactly at the zigzag

transition, β = βZZ , a second mode of zero frequency appears
in the transverse acoustic branch [see Fig. 2(b)]. This mode,
which appears only at the zigzag transition, is the soft mode
at the transition which would be observed at φ = ±π in the
unfolded first Brillouin zone [15].

Another point to keep in mind is that the transverse acoustic
branch corresponds to an unusual relative displacement of
particles. While the acoustic displacements are ordinary in
phase, here the transverse acoustic displacements in the same
cell are in opposite phase. Indeed, this reflects the balance
between the energy increase due to the confinement potential
and the interaction energy decrease due to a larger distance
between the particles.

When β < βZZ , h �= 0 and Kxy takes a finite value. It is
convenient to write the full dynamical coupling matrix M(h)
on the basis of the eigenvectors obtained for h = 0. This
dynamic matrix is given by M̂(h) = B−1

0 · M(h) · B0 where
B0 is the square matrix built with the column eigenvectors
[V0

OL,V0
OT ,V0

AL,V0
AT ] written on the basis of the displace-

ments (x,u,y,v):

B0 = 1√
2

⎛
⎜⎝

−e−iφ(s) 0 e−iφ(s) 0
1 0 1 0
0 e−iφ(s) 0 −e−iφ(s)

0 1 0 1

⎞
⎟⎠. (18)

On this basis, M̂(h) also has a block diagonal structure:

⎛
⎜⎜⎜⎝

−2(Cxu + Cxx) −2iCxv 0 0

2iCxv 2
(
Cyv − Cyy + β

2

)
0 0

0 0 2(Cxu − Cxx) 2iCxv

0 0 −2iCxv 2
(−Cyy − Cyv + β

2

)

⎞
⎟⎟⎟⎠. (19)

The upper left block matrix connects the two optical
eigenmodes obtained for h = 0. So, for convenience, the
corresponding eigenmodes will be improperly named hereafter
“optical modes,” even if they are not. Similarly the bottom right
block matrix involves the “acoustic modes.” Their eigenvalues
are given by

mω2
OL = TO− +

√
4C2

xv + T 2
O+,

(20)

mω2
OT = TO− −

√
4C2

xv + T 2
O+,

mω2
AL = TA− +

√
4C2

xv + T 2
A+,

(21)

mω2
AT = TA− −

√
4C2

xv + T 2
A+

with

TO±(s) = β

2
− Cyy(s) + Cyv(s) ± [Cxx(s) + Cxu(s)], (22)

TA±(s) = β

2
− Cyy(s) − Cyv(s) ± [Cxx(s) − Cxu(s)]. (23)

The evolution of the dispersion equations (20) and (21) for
β < βZZ , hence h �= 0, are displayed in Figs. 2(c) and 2(d). We

recover the four expected branches but their shapes are strongly
modified with respect to those obtained for h = 0. In particular,
the degeneracy at φ(0) = 0 of the two “acoustic modes,”
observed for β = βZZ , now disappears. This effect traces back
to the fact that Cxy �= 0. Thus only the “transverse acoustic
mode” remains a genuine acoustic mode with a parabolic
dependency ω2 ∝ s2 at small s [see Figs. 2(c) and 2(d)].
This mode is linked to the translational invariance, which
is a symmetry of the zigzag pattern, as it is of the linear
chain. As seen in Eqs. (20) and (21) the coupling between
acoustic (respectively optical) modes induces repulsion of
the corresponding branches. This anticrossing can be large
enough to move the squared acoustic transverse frequency
towards negative values for s > 0, resulting in the appearance
of unstable modes in the zigzag configuration. This is shown
in the inset of Fig. 2(c) and in Figs. 3(b) and 3(c).

III. BEHAVIOR OF THE TRANSVERSE ACOUSTIC MODE

In this section we will focus on the transverse acoustic mode
[denoting its eigenfrequency ω2(φ) ≡ ω2

AT (φ)] and explore
the conditions under which its squared frequency takes a
negative value, which means the onset of an instability of the
zigzag pattern. We shall look at the influence of the interaction
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FIG. 2. (Color online) Dimensionless squared frequencies mω2/βZZ of the acoustic transverse [thick red (dark gray) line] and longitudinal
[thick green (light gray) line] mode and of the optical transverse [red (dark gray) line] and longitudinal [green (light gray) line] modes as a
function of the dimensionless wave number φ for an infinite system. The interaction potential is the modified Bessel function, with d/λ0 = 3.91;
hence βZZ = 5.82 × 10−4 N/m. (a) β = 10−3 N/m (straight line, h = 0); (b) just at the threshold β = βZZ; (c) β = 5.15 × 10−4 N/m [thus
a zigzag pattern of height h = 0.2 mm; see Eq. (2)], and the inset is a zoom on the acoustic transverse mode plot; (d) β = 4.41 × 10−6 N/m
[thus a zigzag pattern of height h = 1.6 mm; see Eq. (2)]. The dashed and dotted plots show the squared frequencies when the off-diagonal
terms in the matrix (19) are not taken into account.

potential and more specifically the role of its range on the
instability of the zigzag pattern.

Let us consider an infinite system of interacting particles in
a zigzag pattern characterized by d and h. The variations of ω2

with φ(s) calculated for a 3D Coulomb interparticle potential
is presented in Fig. 3(a) for two values of h. These squared
frequencies are always positive in agreement with Ref. [17].

Very different behaviors are observed for short-range poten-
tials, such as the modified Bessel and Yukawa potentials. The
corresponding dispersion curves calculated for two different h

are shown in Figs. 3(b) and 3(c), respectively. In these cases,
the squared value ω2 may be negative for particular values of
h/d and φ.

In actual systems, finite size effects have to be included.
For a system of 2N particles, the smallest (nonzero) value of
φ is π/N . As an example, we display in Fig. 4 the squared
eigenfrequencies for 32, 64, and 128 particles. All discrete
values are distributed along the generic curve obtained for an
infinite system. All squared eigenfrequencies are positive for
32 particles, whereas those corresponding to the smallest wave
vectors are negative for larger systems (64 or 128 particles) (see
Fig. 4). Thus, for the same interparticle distance and the same
transverse stiffness, a zigzag pattern that is unstable for an infi-
nite system may be stable for a sufficiently small finite system.

In order to proceed further in the instability analysis, it
is convenient to plot the contour line ω2 = 0 in the plane

FIG. 3. (Color online) Dimensionless squared frequencies mω2/βZZ of the transverse acoustic mode as a function of the dimensionless
wave number φ for an infinite system. Interaction potentials are (a) 3D Coulomb (βZZ = 1.40 × 10−4 N/m, β = 9.80 × 10−5 N/m for
h = 0.5 mm, and β = 6.48 × 10−5 N/m for h = 0.8 mm); (b) modified Bessel function (βZZ = 5.82 × 10−4 N/m, β = 2.84 × 10−4 N/m
for h = 0.5 mm, and β = 1.11 × 10−4 N/m for h = 0.8 mm); (c) Yukawa (βZZ = 6.52 × 10−4 N/m, β = 2.94 × 10−4 N/m for h = 0.5 mm,
and β = 1.05 × 10−4 N/m for h = 0.8 mm). For cases (b) and (c) the interaction range is d/λ0 = 3.91. The energy scales are such that the
nearest neighbors interactions for h = 0 are the same for all three potentials. The critical threshold hC2 is defined in Eq. (29).
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FIG. 4. (Color online) Illustration of finite size effects. The black dashed line is the plot of the dimensionless squared frequency mω2/βZZ

as a function of the dimensionless wave number φ for an infinite system, with modified Bessel interaction potential, d/λ0 = 3.91 and h = 0.06
mm (β = 5.76 × 10−4 N/m). Discrete modes are shown for 32 particles (blue crosses), 64 particles (blue circles), and 128 particles (red dots).
The right plot is a zoom at small wave number.

(h/d, φ) for several short-range potentials, as done in Fig. 5. In
the closed domain defined by the h/d axis and the contour line,
we have ω2(h/d,φ) � 0. An infinite system is thus unstable
inside this domain (hereafter named “instability domain”) and
stable outside. We plot in Fig. 5(a) the instability domain for a
modified Bessel interaction and several interaction ranges for a
constant energy scale U0. We see that the area of the instability
domain decreases when the interaction range increases. The
same behavior is observed with the Yukawa potential, as
shown in Fig. 5(b). Concerning the 3D dipolar interaction,
which is a finite range potential with a much larger range than
modified Bessel or Yukawa potential, the instability domain is
of much smaller size [see Fig. 5(c)]. Consistently, there is no
instability domain in the case of 3D Coulomb interaction (see
Appendix A), which is the limit of the Yukawa potential for
λ0 → ∞. In contrast, in the limit of a very short range which
allows the restriction to nearest neighbor interactions, the
zigzag pattern displays a long wavelength (φ 	 1) instability
for all h [see the black solid line in Figs. 5(a) and 5(b) and
Eq. (25)].

The influence of the interaction potential characteristics
on the zigzag stability may be more precisely quantified.
For small φ, the dispersion equation (21) may be written

−mω2 = S(h)φ2 where S(h) is given by

S(h) =
N−1∑
j=1

(2j )2K(2jd) +
N∑

j=1

(2j − 1)2Kxx(j )

+
[∑N

j=1(2j − 1)Kxy(j )
]2∣∣∑N

j=1

[
Kyy(j ) − F (rj )

rj

]∣∣ . (24)

The instability of the zigzag pattern corresponds to a
positive S(h) since the curvature of the dispersion relation at
the origin is then negative. When the interactions are limited
to the nearest neighbors, a straightforward calculation gives

S(h) = F (r1)

4r1
, (25)

which is positive for repulsive interactions, whatever the
zigzag amplitude h. If only nearest neighbors interactions are
included, any zigzag pattern in an infinite system is unstable
towards long wavelength (φ → 0) perturbations. This is shown
by the black dashed lines in Figs. 5(a) and 5(b). Next nearest
neighbor interactions, at least, are necessary to stabilize the
zigzag pattern and forbid its collapse.

FIG. 5. (Color online) Contour line ω2(h/d,φ) = 0 in the plane (h/d,φ). The interaction potential is (a) modified Bessel; (b) Yukawa;
(c) 3D dipolar interactions (notice the scale on both axes). For panels (a) and (b) the colors indicate the interaction range, d/λ0 = 7.81 (purple,
outer curve), 3.91 (blue, intermediate curve), and 2.60 (red, inner curve). The black solid line is the contour line when only nearest neighbors
interactions are taken into account [Eq. (25)]. The green (light gray) dashed lines correspond to the threshold hC1 (Eq. (28)) and the colored
dotted lines to the threshold hC2 [Eq. (29)].
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FIG. 6. (Color online) Equilibrium position 〈y〉 in function of 〈x〉 in mm for a periodic system of 32 particles, of length L = 60 mm and
at T = 109 K. The interaction potential is the modified Bessel function, and βZZ = 5.82 × 10−4 N/m. The numerical values of β/βZZ are as
follows: (a) 1.004; (b) 0.98; (c) 0.96; (d) 0.95; (e) 0.93; (f) 0.89; (g) 0.52; (h) 0.22; (i) 0.07.

An explicit expression of the marginal stability curve
which encloses the instability domain is not available, but
an approximation, valid at small h, may be obtained. It is
done in Appendix A in the particular case of a power law
interaction,

Uα(r) = U0
dα

rα
, (26)

where it is shown that the zigzag pattern is stable for α � αc =
2.645. For 3D Coulomb interaction (α = 1) an infinite system
is always stable, whereas for dipolar interaction (α = 3) an
infinite system is unstable [Fig. 5(c)]. For modified Bessel
and Yukawa interaction the system is unstable as soon as
d/λ0 > 2.04 and d/λ0 > 1.49 respectively (see Appendix B).
Notice that this is consistent with the stability for 3D Coulomb
interaction for which λ0 → ∞. On the other hand, for very
short-range interactions (λ0 → 0), the condition is broken and
the system is unstable.

Let us consider now a zigzag pattern of amplitude h0

in a finite system of 2N particles. For such systems the
location of the point (h0/d,π/N ) determines the stability
of the zigzag pattern. If we assume that the interaction
range is small enough for the point (h0/d,φ = π/N ) to
be in the instability domain, the system is unstable for
hC1 < h0 < hC2. We compute estimates of these two thresh-
olds in order to obtain a semi-quantitative criterion of
instability.

From Eqs. (21) and (23), we may simplify the definition of
the marginal stability curve, ω2

AT = 0, as[
β

2
− Cyy(s) − Cyv(s)

]
[Cxx(s) − Cxu(s)] = Cxv(s)2, (27)

where β is given as a function of h using Eq. (2). To
determine the lower threshold hC1 we benefit from the fact
that at small h and φ, the curve ω2(h,φ) = 0 calculated with
first neighbors only is tangent to the curve that takes into
account all the interactions [see Figs. 5(a) and 5(b)]. It is
therefore sufficient to estimate hC1 in the nearest neighbors
approximation. Expanding for small h Eq. (27), we obtain for
the threshold hC1

hC1

d
≈ πs

4N

√
K(r1)

K(r1) + F (r1)/r1
≈ πs

4N
= φ

2
, (28)

since F (r1)/r1 is much smaller than K(r1).
In Figs. 5(a) and 5(c), we see that the other threshold hC2

is nearly independent of φ. Thus we expand Eq. (27) at small
φ, taking into account second neighbors interactions because
they are a necessary condition for hC2 to exist. We find that
hC2 satisfies

F
(√

d2 + 4h2
C2

)
√

d2 + 4h2
C2

+ 4K(2d) ≈ 0. (29)
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FIG. 7. (Color online) (a) The thin solid blue line is the zigzag height h of a perfect zigzag pattern, as a function of the normalized
confinement β/βZZ with βZZ = 5.82 × 10−4 N/m. The thick red dots represent the highest height h measured in the simulations for 16
particles. (b) The thin solid blue line corresponds to l∗(β) in Eq. (30), the thick red (dark gray) and blue (light grey) dots are, respectively, the
maximal longitudinal distance and the maximal AB distance as a function of the normalized confinement for 32 particles. For both plots the
interaction is a modified Bessel potential, with d/λ0 = 3.91.

Figure 5 shows the very good agreement between these
estimates and the contour line ω2(h/d,φ) = 0. The only
discrepancy happens for hC2 at the largest values of the
potential range. This is consistent since taking only next
nearest neighbors interactions becomes a poor approximation
at large interaction range.

IV. DISTORTED ZIGZAG PATTERNS INSIDE THE
INSTABILITY DOMAIN

In this section, our analytical results are compared with
molecular dynamics simulations, using a modified Bessel
interaction potential. However, the details of the potential
do not matter for the results presented in this section.
The numerical algorithm has already been described else-
where [11,12]. Basically, we simulate coupled Langevin
equations with uncorrelated thermal noise on each particle,
taking into account all interparticle interactions. We use
periodic boundary conditions in the longitudinal (x) direction,
and the particles are confined in the transverse (y) direction by
an harmonic potential of stiffness β. We study the equilibrium
configurations of a system with 2N particles, varying the
transverse stiffness.

In Fig. 6 we display the equilibrium configurations obtained
as β varies for a system of 32 particles confined in a channel
of length L = 60 mm, decreasing the transverse stiffness
from top to bottom and left to right. In this finite size
system, the minimal nonzero wave number is π/16. For strong
confinement values, β > βZZ , the particles are aligned on
the x axis [Fig. 6(a)]. When β decreases under βZZ , while
h(β) is still below hC1(π/16), the stable configuration is a
zigzag pattern [Figs. 6(b) and 6(c)]. When β reaches a critical
value such that h(β) = hC1(π/16), the zigzag pattern becomes
unstable. A spatially modulated zigzag configuration is seen
in Fig. 6(d). Now the zigzag height is local and depends upon
the particle positions along the x axis. When β is further
decreased, part of the particles are staggered while the others
stay aligned along the x axis. We call this localized zigzag
pattern a bubble. When the β decrease is carried on, the main

effect is that more and more particles become involved in the
bubble, which increases slowly in amplitude [Figs. 6(e)–6(h)].
When h(β) reaches hC2, all the particles are at the same
height and a large amplitude zigzag pattern is recovered
[Fig. 6(i)].

These patterns are summarized in Fig. 7(a), where we plot
the maximum zigzag height h as a function of the dimension-
less stiffness β/βZZ . Zone I corresponds to β/βZZ > 1, thus to
aligned particles with h = 0 [Fig. 6(a)]. Zone II corresponds
to the small amplitude zigzag pattern, h < hC1 [Figs. 6(b)
and 6(c)]. Zone III corresponds to the heterogeneous zigzag
patterns, with hC1 � h � hC2 [Figs. 6(d)–6(h)]. Zone IV
corresponds to the large amplitude zigzag, h > hC2 [Fig. 6(i)].
We compare in Fig. 7(a) the measured zigzag height with
the expectation for a perfect zigzag, given by Eq. (2). The
agreement is excellent when the equilibrium configuration
is an homogeneous pattern (zones I, II, and IV). Notice
in particular that the agreement is still very good even far
from the threshold (zone IV). In contrast, in zone III where
heterogeneous patterns are observed, the measured h is greater
than for a perfect zigzag. It means an increase of confinement
energy for the particles in the bubble, which is compensated by
a decrease in interaction energy. When compared to a zigzag
pattern, the particles inside the bubble are thus at a larger
distance from their neighbors but, as we shall see, this is also
true for the particles outside the bubble. Thus the interaction
energy is decreased for every particle.

In Fig. 8 we plot the results of systematic measurements
of hC1 and hC2, which define zone III of Fig. 7(a). The mean
interparticle distance d and the interaction potential are kept
constant, and we vary the system size, taking 2N particles
(2N = 8, 16, 32, 64) in a periodic cell of length L = 2Nd. The
measurements of the critical zigzag heights hC1 and hC2 are
compared to the solution of Eq. (27) for an infinite system. As
shown by Fig. 8, the measured values are in perfect agreement
with the threshold calculated in the thermodynamic limit.

In order to better understand the distorted zigzag patterns,
a simple biphasic model can be proposed. In a system of an
even number of identical particles with periodic boundary con-
ditions, the longitudinal distance between nearest neighbors
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FIG. 8. (Color online) The blue curve is the marginal stability
curve ω2 = 0, in the plane (φ,h), which is the blue curve in Fig. 5(a).
The red crosses are the threshold hC1 and hC2 measured on simulations
for several numbers of particles, N = 32, 16, 8, and 4 from left to
right.

is a constant, d = L/(2N ), whether they are aligned along
the x axis or in a zigzag pattern. In this latter case, the first
neighbor distances are also constant, equal to

√
d2 + 4h2.

It is thus of interest to measure the first neighbor distance
AB and its projection along the x axis for distorted zigzag
patterns.

The variations of these distances with the particle rank are
presented in Fig. 9 for the patterns displayed in Fig. 6. When
the equilibrium pattern is heterogeneous, the longitudinal
distance is greater for the particles that are aligned along the x

axis than for the ones that are in the bubble. This effect is due to
the geometric reduction of longitudinal force between adjacent
particles in the bubble, which allow the particles outside the
bubble to expand. Moreover, we notice that the AB distance is

roughly a constant, whether the particles are inside or outside
the bubble. We will call l∗ this constant distance between
nearest neighbors. In Fig. 9 we see that l∗ increases as the
confinement decreases, while the number of particles inside
the bubble increases.

This apparent adaptation of AB distance allows to interpret,
in a first approximation, an heterogeneous zigzag pattern as the
coexistence of a linear phase, in which all particles are aligned
along the x axis, and a localized zigzag phase (the bubble). For
this picture to be correct, both the linear phase and the zigzag
phase must be at equilibrium under the applied transverse
confinement. The transverse confinement has therefore to be
exactly at its marginal stability value for a system of particles
which are separated by l∗. Thus l∗ must verify the following
equation:

β = 4
F (l∗)

l∗
. (30)

In Fig. 9 we compare the measured values of l∗ with the
solution l∗(β) of Eq. (30) and see that the agreement is indeed
excellent.

The AB and longitudinal distances are plotted versus the
dimensionless stiffness β/βZZ in Fig. 7(b), for 32 particles.
When the particles are aligned (zone I) or in a zigzag pattern
(zones II and IV), the longitudinal distance is equal to the mean
interparticle distance d. We see clearly that for heterogeneous
zigzag patterns (zone III) the longitudinal distance outside
the bubble and the AB distance inside the bubble are equal,
and in very good agreement with the distance l∗(β). This
distance increases smoothly when the transverse confinement
decreases, and nothing particular is seen when the modulated
zigzag patterns are replaced by bubbles [compare, for example,
Figs. 6(d) and 6(e)].

The linear stability theory of Sec. II explains the domain
of existence of the heterogeneous patterns. The shape of the

FIG. 9. (Color online) Plot of the distance d (mm) as a function of the particles index. For green (light gray) disks d is the AB distance
between neighboring particles and for blue (dark gray) triangles d is their x distance, for the simulations of Fig. 6. In inset we display
the corresponding pattern. The amplitude of the confinement potential, β, decreases from top to bottom and left to right, corresponding to
β/βZZ = 0.96, 0.95, 0.93, 0.89, 0.22, and 0.07. The solid red line shows the distance l∗(β) defined in Eq. (30).
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FIG. 10. (Color online) In orange (light gray), plot of the number
of particles N in a bubble as a function of the dimensionless transverse
stiffness β/βZZ , for a simulation with 32 particles in a canal of length
L = 60 mm. The purple (dark gray) dots correspond to the estimated
NZZ obtained by the minimization of the energy in Eq. (31).

bubbles depends on the nonlinear interactions between the
particles and cannot be described in the linear approximation.
They are the subject of a forthcoming paper [16]. Never-
theless, the existence of a single interparticle distance l∗ in
heterogeneous patterns gives some insight into the bubbles
shape. Indeed, we may roughly describe a bubble with NL and
NZZ particles, respectively, in a linear or zigzag configuration,
requiring NL + NZZ = 2N (which amounts to neglect the
particles involved in the edges of the bubble, where h depends
on the position). The energy associated to a given bubble is then
estimated taking into account the interactions between first and
second neighbors, since nearest neighbors interactions do not
forbid bubble collapse. It reads

Ebubble ∼ NL[U (l∗) + U (2l∗)] + NZZ[U (l∗) + U (2dZZ)]

+NZZ

β
(
l∗2 − d2

ZZ

)
8

, (31)

where dZZ is the longitudinal distance between the particles
in the zigzag bubble, in such a way that the bubble height is
(l∗2 − d2

ZZ)/4. In our simple model, the distance dZZ is such
that

NZZdZZ = L − (NL − NZZ)l∗. (32)

The minimization of Ebubble, taking into account this con-
straint, and at constant β hence at constant l∗, gives an estimate
of NZZ . In Fig. 10 we compare this estimate to the number
of particles that take part in the bubble, as a function of the

transverse stiffness β. Despite the crudeness of our analysis,
the comparison exhibits a very good agreement. The small
discrepancy may be attributed to the fact that our simple model
does not carefully account for the bubble edges.

V. SUMMARY

Systems of interacting particles confined by a transverse
potential display a large variety of configurations, according
to the relative influence of the transverse confinement, to
the interaction potential, characterized by its range and
amplitude, and to the number of particles. At equilibrium,
the particles may be organized in a straight line, in a staggered
row (zigzag configuration) or in heterogeneous pattern that
we call bubbles, in which a straight line and a staggered
row coexist. This variety is due to the instability of the
zigzag configuration, characterized by the existence of a pure
imaginary eigenfrequency in its transverse acoustic vibration
branch.

In infinite systems, the study of this transverse acoustic
mode shows that zigzag patterns in Coulomb systems are
always stable. On the other hand, for finite range interactions
the zigzag pattern may be unstable. This is evidenced by
an instability domain in the plane (h/d,φ) where h is the
zigzag height and φ the wave number. For a given interparticle
distance, the area of this instability domain increases when the
interaction range decreases.

For finite systems, the situation is slightly more complex.
The discreteness of the vibrational modes implies that the
smallest nonzero mode may be outside the instability domain,
for sufficiently small number of particles, whatever the zigzag
height h. In such small systems, the zigzag is thus stable. If the
system size is large enough, we observe when the transverse
confinement decreases a small zigzag, then a heterogeneous
pattern and eventually a large stable zigzag. The relevant
zigzag amplitude thresholds for the instability of the zigzag
pattern has been determined as a function of N and λ0 in
Eqs. (28) and (29).

Gradually releasing the confinement, the unstable pattern
evolves from a zigzag to a modulated structure, then to
an heterogeneous bubble where some particles exhibit a
zigzag pattern, and are surrounded by particles that are in a
straight line. The heterogeneous pattern is characterized by
the distance between nearest neighbors, which is constant
in the whole system, and corresponds to the interparticle
distance for which an infinite system would be marginally
stable for the same confinement. A more quantitative analysis
of these nonlinear patterns will be developed in a forthcoming
paper [16].

APPENDIX A: INSTABILITY CRITERION AT SMALL h

In this Appendix, we calculate the small h expansion of S(h), defined in Eq. (24). Because of the symmetry h ↔ −h, this
expansion reads

S(h) = S0 + S2h
2 + O(h4). (A1)

An instability happens when S(h) ≥ 0. The instability at small h is observed if there is a real root
√−S0/S2.
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FIG. 11. (Color online) (a) Plot of S0 as a function of α for power law potentials; (b) and (c) plots of S0 as a function of ξ for modified
Bessel and Yukawa interactions, respectively. In all plots we use the natural unit U0/d

2 for S0.

A tedious, but straightforward calculation shows that

S0 =
N∑

j=1

[(2j )2K(2jd) + (2j − 1)2K(dj )] +
{∑N

j=1

[
K(dj ) − F (dj )

dj

]}2

∣∣∑N
j=1

[K(dj )
d2

j

− F (dj )
d3

j

]∣∣ (A2)

and

S2 = 4
N∑

j=1

(2j − 1)2

[
F (dj )

d3
j

+ K ′(dj )

2dj

− K(dj )

d2
j

]
+ 4

∑N
j=1

[
K(dj ) − F (dj )

dj

]
∣∣∑N

j=1

[K(dj )
d2

j

− F (dj )
d3

j

]∣∣
N∑

j=1

[
3F (dj )

d3
j

+ K ′(dj )

dj

− 3K(dj )

d2
j

]

+
∑N

j=1

[ 6F (dj )
d5

j

+ 2K ′(dj )
d3

j

− 6K(dj )
d4

j

]{∑N
j=1

[
K(dj ) − F (dj )

dj

]}2

{∑N
j=1

[K(dj )
d2

j

− F (dj )
d3

j

]}2 . (A3)

In the case of a power law interaction of exponent α (26), this can be expressed in terms of Riemann’s ζ function ζ (s):

∞∑
n=1

1

ns
≡ ζ (s),

∞∑
n=1

1

(2n)s
≡ 1

2s
ζ (s),

∞∑
n=1

1

(2n − 1)s
≡
(

1 − 1

2s

)
ζ (s). (A4)

The natural unit for S(h) is U0/d
2, which will be used henceforward. Therefore

S0(α) = −α(α + 1)ζ (α) + α(α + 2)
(
1 − 1

2α+2

)2
ζ (α + 2)2(

1 − 1
2α+4

)
ζ (α + 4)

, (A5)

S2(α) = 2α(α + 2)

(
1 − 1

2α+2

)2

ζ (α + 2)2

[
(α + 4)

(
1 − 1

2α+6

)
ζ (α + 6)(

1 − 1
2α+4

)2
ζ (α + 4)2

− (α + 5)(
1 − 1

2α+2

)
ζ (α + 2)

]
. (A6)

A numerical estimate shows that S2(α) < 0 for all values of α, while S0(α) � 0 for α � 2.645 [see Fig. 11(a)].
In the case of the 3D Coulomb potential (α = 1) all frequencies are real and there is no instability, in agreement with Ref. [17].

On the contrary, the 3D dipolar interaction (α = 3) leads to an instability of the regular zigzag pattern.

APPENDIX B: FINITE RANGE POTENTIALS

In this Appendix, we use the small h expansion of S(h) in terms of S0 and S2, Eqs. (A2) and (A3), but this time for modified
Bessel and Yukawa interactions. In this case we are looking for the critical interaction range where an unstable mode appears in
infinite systems. We note the inverse of the dimensionless interaction range ξ = d/λ0.

As before, the numerical estimation of S2(ξ ) is negative for all ξ , and we focus on the expressions of S0(ξ ). For the modified
Bessel K0(·) potential,

S0(ξ ) =
(∑∞

p=1

{
2K1[(2p−1)ξ ]

(2p−1)ξ + K0[(2p − 1)ξ ]
})2

∑∞
p=1

{
2K1[(2p−1)ξ ]

(2p−1)3ξ
+ K0[(2p−1)ξ ]

(2p−1)2

} −
∞∑

p=1

[
pK1(pξ )

ξ
+ p2K0(pξ )

]
, (B1)

where K1(·) is the modified Bessel function of order 1. For the Yukawa potential,

S0(ξ ) =
{∑∞

p=1
e−(2p−1)ξ

(2p−1)3 [ξ 2(2p − 1)2 + 3ξ (2p − 1) + 3]
}2

∑∞
p=1

e−(2p−1)ξ

(2p−1)5 [ξ 2(2p − 1)2 + 3ξ (2p − 1) + 3]
−

∞∑
p=1

e−pξ

p
(p2ξ 2 + 2pξ + 2). (B2)
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Figures 11(b) and 11(c) show the numerical estimates of expressions (B1) and (B2). They provide the critical interaction
ranges resulting in unstable infinite zigzag configurations, d/λ0 > 2.04 for modified Bessel potential and d/λ0 > 1.49 for
Yukawa potential.
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